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Abstract
In this paper, we propose to study language
modelling as a multi-task problem, bring-
ing together three strands of research: multi-
task learning, linguistics, and interpretability.
Based on hypotheses derived from linguistic
theory, we investigate whether language mod-
els adhere to learning principles of multi-task
learning during training. To showcase the idea,
we analyse the generalisation behaviour of lan-
guage models as they learn the linguistic con-
cept of Negative Polarity Items (NPIs). Our
experiments demonstrate that a multi-task set-
ting naturally emerges within the objective of
the more general task of language modelling.
We argue that this insight is valuable for multi-
task learning, linguistics and interpretability
research and can lead to exciting new findings
in all three domains.

1 Introduction

Humans are optimising their behaviour towards a
multitude of objectives to reach their goals in day-
to-day life. By learning many things at the same
time and exploiting their commonalities, they ac-
quire more general knowledge about the world,
which in turn helps them to learn new things
quicker (Perkins et al., 1992; Schwartz et al., 2005;
Cormier and Hagman, 2014; Luriia, 1976). This
idea of finding more general solutions through the
diversification of tasks has found its way also to the
machine learning community, in the field of multi-
task learning (MTL) (Caruana, 1993, 1997). In
MTL, multiple tasks are optimised jointly, enabling
the transfer of relevant information across tasks.
MTL research yields fruitful results in both appli-
cation (e.g. Collobert and Weston, 2008; Collobert
et al., 2011; Zhang et al., 2014; Donahue et al.,
2014; Kaiser et al., 2017) and theory (e.g. Bax-
ter, 2000; Maurer, 2006; Ando and Zhang, 2005;
Argyriou et al., 2008).

However, deciding on a setup requires making
many arbitrary choices. The researcher or engineer

has to decide which tasks to train together (e.g. Bin-
gel and Søgaard, 2017; Standley et al., 2020); at
which hierarchy-level to allow tasks to interact (e.g.
Søgaard and Goldberg, 2016); which degree of pa-
rameter sharing to employ (Ruder, 2017); which
distribution of training data to employ (e.g. Luong
et al., 2016), and so on. Having to make so many
arbitrary choices is inconvenient for modellers, but
also stands in the way of understanding the learning
principles of neural models in multi-task settings.
The highly constructed learning scenarios make
it difficult to see whether outcomes should be at-
tributed to one of the many a-priori decisions or to
inherent properties of the learning process.

In this paper, we propose to study MTL not in a
constructed, artificial scenario, but in a more nat-
ural setting. To do so, we consider the objective
of language modelling and exploit the fact that it
can be seen as a conglomerate of many different
tasks. To give an example: rules of word ordering
have to be learned simultaneously to rules of fea-
ture agreement and the monotonicity properties of
different linguistic environments. These different
tasks all need to be learned to achieve the greater
goal of producing acceptable sentences, and they
have to be optimised in parallel when the language
model (LM) is trained. Language modelling is in
that sense a natural multi-task learning problem
with a naturally given task hierarchy provided by
linguistic theory (see also Figure 1).

Studying language modelling as a multi-task
problem has several distinct advantages. From an
MTL perspective, it gives us a complete hierarchy
of relevant tasks that can freely interact through-
out the learning process, unconstrained by prior
assumptions. We can make theoretically informed
decisions about these tasks, drawing on linguistic
theory. We can also deduce from linguistics how
these tasks relate to each other (or, in other words,
how similar they are), which in MTL is consid-
ered to be one of the crucial factors for the learn-
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Figure 1: A conceptual visualisation of a language modelling task hierarchy, from language modelling as a whole
to single examples, with complex similarities between tasks. Colours indicate task similarities.

ing outcomes (e.g. Thrun and O’Sullivan, 1996;
Passos et al., 2012). MTL has not yet been stud-
ied from this dynamic and unconstrained perspec-
tive. Then, somewhat more delicately, the extent to
which models can exploit similarities hypothesised
by linguistic theory can play a role in confirming
or refuting specific linguistic hypotheses. Lastly,
when it comes to interpretability research, apply-
ing concepts from MTL can be valuable to better
understand the learning dynamics of models. By
understanding how models are finding solutions,
we can infer what these solutions are.

Outline In the remainder of this paper, we will
first provide some basic background about MTL
(§ 2.1), the subset of linguistic tasks we focus on
(Negative Polarity Items, where we consider their
different licensing contexts as tasks, § 2.2) and
discuss some related work in interpretability (§ 2.3).
Then, in § 3 and § 4, respectively, we present our
approach and empirical results that showcase our
idea. In § 5, we discuss our results and framework
in the light of the three fields mentioned before.
We conclude in § 6.

2 Background

In this paper, we aim to bring together three strands
of research: MTL, linguistics and interpretability
research. As a proof of concept, we focus on one

specific complex subset of linguistic tasks: licens-
ing of Negative Polarity Items (NPIs). Below, we
give a short overview of the most important charac-
teristics of the three fields of interest.

2.1 Multi-task learning

In MTL, multiple tasks are learned together to en-
able information transfer from one task to another.
If the transfer is successful, the benefits might be
threefold: the model learns tasks with less training
data (i.e. more efficient, Collobert et al., 2011; Ben-
ton et al., 2017; Kaiser et al., 2017), up to a higher
final accuracy (Collobert and Weston, 2008; Kaiser
et al., 2017) and in a way that better generalises
to new tasks (Baxter, 2000; Collobert and Weston,
2008).

Caruana (1993, 1997) and Ruder (2017) propose
several different – but related – processes that might
enable positive transfer: related tasks can provide
additional training examples for each other on the
features they share (statistical data amplification),
certain features might be easier to learn through
one task than through another, but be useful for
both of them (eavesdropping), and idiosyncratic
features of single tasks can be averaged out, while
more general features are reinforced (attention fo-
cusing)1.

1For a complete list of processes please consult the original
publications.
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However, positive transfer is not guaranteed; It
is also possible that performance deteriorates due
to interference between different tasks, resulting
in negative transfer, (Rosenstein et al., 2005; Pan
and Yang, 2010; Wang et al., 2019). Whether trans-
fer is positive depends on the task similarity and
whether the model is able to exploit this similar-
ity (Rosenstein et al., 2005; Thrun and O’Sullivan,
1996; Passos et al., 2012).

The main goal of MTL so far has been to avoid
negative- and promote positive transfer by deter-
mining task-similarity and regulate the interactions
between tasks based on these similarities. Due to
its pivotal role, much research effort was spent on
determining similarities of tasks and the regula-
tion of information transfer between them (for an
overview, see Zhang and Yang, 2017; Ruder, 2017).
The disadvantage of these approaches is that as-
suming fixed tasks and regulating transfer between
them based on fixed task-similarities puts large
constraints on possible transfers between tasks, be-
cause it neglects the fact that learning processes are
dynamic. From the perspective of the model, tasks,
as well as their similarities, can change throughout
the learning process. Here, we only use predefined
tasks and their similarities to analyse the learning
behaviour of the model, without constraining the
learning process in any way.

2.2 Negative Polarity Items

We exemplify our idea by analysing the learning be-
haviour on a complex subset of linguistic tasks: the
licensing of Negative Polarity Items (NPIs). The
properties of NPI licensing make it an interesting
and adequate subset of tasks to study, as it has a
high degree of complexity, has an appropriate fre-
quency within natural language and was previously
frequently investigated in neural models.

NPIs are characterised by the property that they
can only occur within the scope of certain licensing
contexts. For instance, in the example below, the
NPI ‘any’ can occur in sentence (1)a., where it is
in the scope of a negation, but not in sentence (1)b.,
where there is no licensor present.

(1) a. Bill didn’t buy any books that day.
b. * Bill did buy any books that day.

(2) a. Nobody has ever been there.
b. * Somebody has ever been there.

Licensing contexts are formed on the basis of
semantic properties, such as downward entail-

ment (Fauconnier, 1975; Ladusaw, 1980), non-
veridicality (Giannakidou, 2011), or scope mark-
ing (Barker, 2018). Common licensing contexts
include negation, conditionals, or superlatives, and
are often triggered by a specific expression, such
as ‘not’ or ‘nobody’.

Grasping the phenomenon of NPI licensing re-
quires understanding of three different aspects:

1. The class of NPIs: there is a group of expres-
sions that are restricted in their occurrence.

2. Licensing contexts: there exists a group of
expressions that allow NPIs to occur.

3. Scope and structure: the licensing contexts
have to stand in a certain structural relation-
ship to the NPIs.

We focus on how LMs learn the second aspect
by analysing how different types of licensing con-
texts interact and generalize throughout training.
During learning they should be able to exploit their
similarity in the other two aspects.

2.3 Interpretability

Interpretability research on LMs has shown that in
pre-trained models, such as BERT (Devlin et al.,
2019), hierarchical structure emerges throughout
the layers and that this structure demonstrates par-
allels with linguistic theory (Peters et al., 2018; Liu
et al., 2019; Tenney et al., 2019). However, the
emergence of this structure has not been explicitly
connected to MTL yet.

In recent years, research has shown that LMs
are able to understand NPI licensing. Jumelet and
Hupkes (2018) evaluate the performance of LMs
on data sets containing NPI constructions extracted
from large corpora, and Marvin and Linzen (2018);
Wilcox et al. (2019); Warstadt and Bowman (2020)
test them on artificial data sets containing template-
based NPI constructions. In our own experimental
setup we will utilise the extensive template-based
NPI corpus of Warstadt et al. (2019).

What these approaches have in common is their
focus on the performance of pretrained LMs. Our
MTL approach sheds light on an unexplored aspect
of NPI understanding: the learning dynamics of the
model during training.

3 Approach

We consider two different types of experiments.
First, to understand to which extent models can
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understand and use the similarity between different
licensing contexts (our tasks) during learning, we
exploit the effect that frequency of the different
contexts has on learning. Second, we manipulate
the LMs’ training corpus to constrain their abil-
ity to leverage information from other licensing
contexts during learning. In accordance with the
MTL-literature, we expect the LMs to learn tasks
more data-efficient and to a higher final accuracy
if they can leverage information across contexts.
Before we describe our experiments in more de-
tail, we present our model architecture and training,
the evaluation procedure of the licensing contexts,
and the filter procedure we use to manipulate the
training corpus.

3.1 Model

Following previous work in this area, we con-
sider recurrent language models. We focus on uni-
directional LSTM models and mirror the hyperpa-
rameter setup of Gulordava et al. (2018)2. We train
the models on the corpus provided by the same
authors3 – a subset of the English Wikipedia – or
modified versions of the same for our second ex-
periment (see § 4.2). To track the learning process,
we save models every 100 batches of training (371
model-checkpoints per epoch). For all experiments,
we average performance across five random seeds.

3.2 Evaluation

To estimate the LMs’ understanding of NPIs and
their dependence on the different licensing contexts,
we adapt the Cloze task of Warstadt et al. (2019),
based on the implementation of Jumelet (2020).
This task considers nine different types of licensing
contexts (a list of the contexts, including examples,
can be found in Table 1). For every such context,
Warstadt et al. (2019) generated a large number of
minimal pair sentences, containing correctly and
incorrectly licensed NPIs. For instance, for the
adverbs licensing context:

(3) a. A lady rarely ever thought that the
children saw the boy.

b. * A lady sometimes ever thought that
the children saw the boy.

Following previous work, we quantify an LM’s
2Hyperparameters: batch size = 64, BPTT length = 35,

dropout = 0.1, adaptive SGD learning rate = 20, layers = 2,
hidden and embedding size = 650, epochs = 40.

3https://github.com/facebookresearch/
colorlessgreenRNNs/tree/master/data

understanding of a particular type of licensing con-
text by computing the percentage of minimal pairs
in that context for which the model correctly as-
signs a higher probability to the NPI in the licensing
contexts than in the non-licensing contexts. I.e., in
the example above, we would compare the prob-
ability the model assigns to the word ever in the
contexts “A lady rarely” and “A lady sometimes”
(see also Figure 2).

P(ever)

P(ever)

LM
A lady rarely ...

A lady sometimes ...

P = 0.2

P = 0.01

✓

Figure 2: The NPI judgement task that is used for eval-
uating the LMs. A correct prediction assigns a higher
probability to an NPI in a context that licenses it, based
on the corpus of Warstadt et al. (2019).

3.3 Identification of NPIs in training corpus
The Warstadt et al. (2019) corpus provides us with
a task to evaluate nine different context types that
license NPIs. To manipulate the training corpus for
our experiments we also need to identify sentences
in the training corpus of the model in which these
contexts actually licence NPIs. To do so, we need
to locate these contexts, as well as establish that
they in fact licence an NPI in a particular sentence.

We consider the nine Warstadt et al. context
types, and the corresponding list of 30 expressions
that are part of these contexts (e.g. the list of ad-
verbs licensing NPIs). As for the NPIs, we consider
an extensive list of 160 distinct NPIs4, based on
the collection provided by Hoeksema (2012). We
then identify sentences in which an element of our
NPI list is preceded by an element from our context
list, ensuring that there is a dependency relation be-
tween them using the dependency parser of spaCy
(Honnibal and Johnson, 2015). When there are
multiple potential licensors in a sentence, we use
the hierarchical distance between the licensor and
the NPI in the parse tree as a heuristic to find the
correct licensor. By testing this procedure on a
manually labeled set of 200 randomly selected sen-
tences with multiple licensors, we estimate that it
identifies the correct among multiple licensors in
around 97% of cases. In Table 1, we report ex-
amples and frequencies of the different licensing
contexts in the training corpus based on this filter-
ing scheme.

4This list can be found in Appendix A.

https://github.com/facebookresearch/colorlessgreenRNNs/tree/master/data
https://github.com/facebookresearch/colorlessgreenRNNs/tree/master/data
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Frequency per
Context Example 100k sentences
Simple Questions Did he ever do a mean thing? 10
Adverbs In the present political culture, there are hardly any leaders who would avoid

limelight and refuse positions of power.
23

Questions However, various writers attribute it to Putnam, Stark, Prescott or Gridley,
while others question whether it was said at all .

25

Superlative [...] and caused the worst winter flooding in decades for river and stream
valleys [...].

32

Only [...] ”Those [students] only are supposed to pay anything who are abundantly
able, or prefer to do so.

85

Conditional In 1997 Li published a paper attempting to replicate <unk>’s results and
showed the effect was very small, if it existed at all.

127

Quantifier That’s all you’ll ever need. 179
Determiner negation In spite of the <unk> of the disaster, no one was ever held accountable. 218
Sentential negation It is not judged under any subjective points of view, only the clock. 712

Table 1: The nine types of licensing contexts taken from Warstadt et al. (2019), with an example and the context
frequency within the training corpus.

4 Experiments and results

As a first step, we assess whether the LMs can
adequately represent all nine categories of the eval-
uation task. To do so, we train five models on the
regular training corpus, and compute their final
accuracy on our nine tasks. All models show ade-
quate performance on most contexts (see Table 2),
with the exception of the simple question context.
Additionally, we observe that the models achieve
their accuracy surprisingly fast: already after two
epochs, there are no more substantial changes in
empirical error (see Figure 3). In the rest of our
experiments, we therefore focus only on these first
two epochs.

Context Accuracy ± std

Simple Questions 0.62 ± 0.05

Adverbs 0.92 ± 0.01

Questions 0.88 ± 0.03

Superlative 0.78 ± 0.03

Only 0.86 ± 0.04

Conditional 0.82 ± 0.06

Quantifier 0.86 ± 0.04

Determiner negation 0.92 ± 0.05

Sentential negation 0.85 ± 0.03

Table 2: Performance of the LMs on the evaluation task
after 40 epochs of training, averaged over 5 runs.

4.1 Frequency vs data efficiency

While some licensing contexts are rather common
(e.g. negation), others appear scarcely as a licensor
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Figure 3: Average evaluation task performance. The
performance rises steeply during approximately the
first 2 epochs of training and afterwards levels off.

(e.g. adverbs). Therefore, throughout the learning
process, the LMs encounter many instances of the
more frequent contexts before they see an exam-
ple of an infrequent context. If LMs were able to
leverage information across contexts, less frequent
contexts should thus have more prior established
NPI-understanding that they can bootstrap from.
Consequently, the LMs should require fewer train-
ing examples to learn less frequent contexts than
they need to learn more frequent contexts. In other
words, the LM should be more data efficient for
these infrequent contexts.

In our first experiment, we use this hypothesised
relationship between frequency and data efficiency
to assess whether LMs can exploit the similarities
between different licensing contexts. To be able to
compare across different contexts, we quantify the
data efficiency of an LM for a particular context as
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the number of examples the LM needs to observe
until it reaches 95% of its final accuracy for that
context.5 To make this measure more robust, we
first apply a Savitzky–Golay noise-filter to the
learning curve (degree of polynomial = 1, window
size = 25; Savitzky and Golay 1964).
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Figure 4: Data efficiency of nine different licensing
contexts plotted against their frequency, averaged over
five runs. The data efficiency is quantified as num-
ber of training examples the model needs to observe
to achieve 95% of the trained-out performance.

We compute the data efficiency of the trained
LMs for all nine contexts and compute the correla-
tion between a context’s frequency and the model’s
data efficiency with respect to that context. In Fig-
ure 4, we plot the average data efficiency of each
context against the frequency of that context, as
well as the linear fit that relates these two variables.
The experiment demonstrates a strong relationship
between the data efficiency and frequency of a re-
spective context: r = .89, p < .05. Hence, the less
frequent a licensing context is, the fewer examples
are needed for the model to learn it, from which we
conclude that the model is indeed able to transfer
knowledge from previously acquired knowledge.

4.2 Transfer from general knowledge

While the presented relationship between fre-
quency and data efficiency demonstrates that LMs
can leverage previously learned information to
learn less frequent licensing contexts, it does not
unequivocally show that it leverages information
from other NPI contexts. After all, when a less fre-
quent context is encountered, the LM has not only
had the opportunity to acquire prior knowledge
about NPIs, it has also simply seen more language
in general. In other words, the LM may meanwhile

5The more data efficient, the lower this number thus is.

also have acquired more general language knowl-
edge, which may help it to more quickly learn a
less frequent licensing context. In our second ex-
periment, we isolate transfer from general language
knowledge and transfer from previously observed
NPIs by training LMs on single-context corpora.

Single-context corpora Single-context corpora
contain NPIs licensed only by a single context.
LMs trained on these corpora can thus not transfer
knowledge acquired from other licensing contexts,
as these are not present in the training data. By
comparing the data efficiency of contexts between
LMs trained on all-context and single-context cor-
pora, we can thus infer how much of the increase of
data efficiency for lower-frequent contexts is due
to leveraging information from other contexts.

To create our nine single-context corpora, we
use the procedure described in § 3.3 to identify
all sentences containing NPIs licensed by our nine
contexts. For every context, we then create a corpus
in which all sentences containing other contexts
licensing NPIs are replaced by a neutral sentence
of the same length, sampled from the rest of the
corpus. During this replacement procedure, the
ordering and composition of the corpus remained
otherwise intact.

When we compare the learning of single-context
with all-context models, we cannot rely on the pre-
viously used data-efficiency metric from Experi-
ment 4.1. The data-efficiency measure is bound to
how quickly the model reaches its final accuracy
and accordingly benefits when its final accuracy
decreases. As we expect the final accuracy to be
lower in the single context models, comparing only
data-efficiencies between models is likely to be
uninformative.6. In this experiment, as explained
below, we instead consider the area between the
curves (AbC).

Area between Curves (AbC) Area between
Curves (AbC) incorporates both data efficiency
and accuracy: for every context, we calculate the
area between the all-contexts and single-context
learning curves until the point in time where they
both have reached 95% of their final accuracy. The
larger this area is, the more impactful it is to remove

6Consider, for instance, the extreme case in which an LM
does not learn a particular context at all anymore in the single-
context condition, as indicated by a chance accuracy of 0.5.
Because it is not learning anything, the model would arrive
at its maximum accuracy before having seen any examples,
resulting in a data efficiency of 0.
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Figure 5: The LMs performance on different licensing contexts for the first two epochs of training. We obtained
these curves by evaluating all models at all 730 training-checkpoints on the evaluation task.

all other NPI contexts, and the more the model
leveraged from these contexts. The learning curves
of all contexts, along with an illustration of the
AbC-measure, can be found in Figure 5.

As a first interesting observation, we see that
for seven of the nine contexts, the all-contexts
model learns faster and achieves higher final per-
formance.7 Both frequent and infrequent contexts
thus benefit from information acquired by other
licensing contexts, in terms of both data-efficiency
and final accuracy.

This positive transfer can also be seen in Fig-
ure 6, where we plot the AbC for all licensing
contexts against their frequency. This plot also
confirms the relationship found in our previous ex-
periments: the less frequent a context is, the more
it benefits from other NPIs (r = .76, p < .05).

7A one-sided Welch’s test confirms that the calculated
AbCs are overall different from zero: t = 2.61, p < .05.
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Figure 6: Normalised AbC for all licensing contexts un-
til convergence of both contexts to 95% accuracy. AbC
> 0 indicates a better performance of the all-context
model and vice versa.

5 Discussion

In this paper, we studied language modelling as a
multi-task problem. We show that neural language
models can find and exploit similarity between the
different language construction rules that we de-
duced from linguistic theory and that their transfer
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behaviour mirrors the generalisation behaviour in
traditionally constructed MTL settings. In this sec-
tion, we now reflect on how our setup and results
contribute to the three different areas that we men-
tioned in the introduction: MTL, linguistics and
interpretability research.

5.1 Multi-task learning research
Studying LMs as multi-task learners, we observe
several phenomena known from traditional MTL:
when trained in parallel, similar (sub)tasks are
learned more efficiently (compare Collobert et al.,
2011; Kaiser et al., 2017), and with higher accuracy
(Collobert and Weston, 2008; Kaiser et al., 2017),
and this effect is stronger for less frequent tasks
(Benton et al., 2017; Kaiser et al., 2017).

Our study differs in one crucial aspect from pre-
vious research on MTL: it looks at learning dy-
namics within one, larger, natural task instead of
between tasks defined by the modeller. As a con-
sequence, the learning process itself is not con-
strained through a priori decisions concerning task
selection, or how tasks should be optimised to-
gether. In our scenario, contrary to traditional MTL,
we use tasks and their hypothesised similarity only
to analyse the learning process of the language
model, not to inform its training. As such, our
natural setting allows to study traditional MTL phe-
nomena, such as data amplification, eavesdropping,
and attention focusing, independent of arbitrary de-
cisions regarding task selection and optimisation.
This knowledge can then be transferred to scenarios
in which more control over the selection of tasks
may be required.

5.2 Interpretability research
A second field where we believe studying language
models as multi-task learners can contribute, is the
field of interpretability. On a more basic level, our
paper confirms previous findings in interpretabil-
ity that LMs are able to adequately model NPIs
(Jumelet and Hupkes, 2018; Wilcox et al., 2019;
Marvin and Linzen, 2018). We add to this litera-
ture by explicitly showing that LMs are connecting
different types of contexts together through their
learning behaviour. Contrary to previous work, we
are tapping the learning process itself as a source of
information to better understand the inner workings
of these models.

Traditional concepts from MTL, such as the ear-
lier mentioned explanations of Caruana (1993) and
Ruder (2017) (§ 2.1) are valuable to better under-

standing what models are learning and how. For
instance, when we observe that the solution of mod-
els improves when more varied NPI material is
presented (our single- versus all-context experi-
ment), MTL can aid to formulate concrete hypothe-
ses about why this is the case. This, in turn, can
help us improve our understanding of the solutions
that are learned by the model. For instance, we find
that the single-context models usually level-off on
a lower accuracy-level than the all-context model
(see Figure 5). This is not merely explainable by
the amount of data, as we continue to add training
examples in either case. The difference between
models instead appears to be due to the variety of
the training data. The idea of attention focusing
(Caruana, 1993, 1997; Ruder, 2017) helps us to
understand what is going on: by being trained on
more varied NPI material, the model can better
sort out which features are relevant and which ones
are instead idiosyncrasies correlated with specific
contexts. Such hypotheses can then help inform
further experiments, that investigate – for exam-
ple – which features specifically are better learned
through attention focusing.

5.3 Linguistics research

Finally, we believe that studying language models
as multi-task learners can also contribute to the
field of linguistics. In our study, we show that LMs
can find and exploit similarities between linguis-
tically defined concepts. Turning things around,
this generalisation behaviour of models can also be
seen as a confirmation of the linguistic task hierar-
chy that we assumed from the start. The language
modelling objective is unconstrained by linguistic
theory and therefore does not necessarily have to
find the same solutions as linguistics. Similarity
derived from the learning behaviour of language
models might therefore be used as a tool to work
on more disputed ideas in linguistics and to form
new hypotheses in linguistic theory. While the lin-
guistic insights that can be drawn from the current
study are relatively limited, they do provide a proof
of concept for future work: we show that domain
knowledge and learning behaviour of neural mod-
els can be connected.

6 Conclusion

In the current study we explored the possibility to
use multi-task learning as a framework to study
learning behaviour within a task. To this end we
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considered LMs as multi-task learners and inves-
tigated how they learn the task-cluster of NPI-
licensing. We find that LMs pick up on similarities
that we assume from linguistic theory and exploit
them to learn similar language constructions with
less data and to a higher accuracy. Especially less
frequent tasks benefit from this effect.

These results resemble positive transfer in ‘tra-
ditional’ MTL. We lined out the possible benefits
that our study may have for MTL research, inter-
pretability and linguistics. From here there are
many directions for future work: targeting less
comprehensively researched areas in linguistics to
add empirical data to otherwise usually theoretical
linguistic discussions, investigating the change of
internal representations in place of the behavioural
measure used here to more precisely describe the
learning process, or applying the approach to other
high-level tasks in other modalities obeying other
knowledge domains are just few of theses possibil-
ities.
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A List of NPIs

We here present the full list of 160 NPIs that has been used for modifying the corpora:

• a bed of roses
• a care in the world
• a chance in hell
• a damn
• a damn thing
• a day goes by
• a day over
• a ghost of a
• a hair out of place
• a living soul
• a moment of your

time
• a moment too soon
• a shadow of a doubt
• a single soul
• all that much
• all that many
• any
• any longer
• any old
• any time soon
• anybody
• anymore
• anyone
• anything
• anything like
• anytime soon
• anywhere
• anywhere close
• anywhere near
• as of yet
• as yet
• at all
• avail
• bat an eye
• be any time
• be anything like
• beat around the bush
• by a long sho
• by any chance
• by any means

• by any stretch
• by miles
• by much
• can be bothered
• can compare to
• can hold a candle to
• can make of
• can possibly
• chance in hell
• come at a worse time
• come cheap
• could care less
• could possibly
• cut the mustard
• even once
• ever
• far wrong
• for much longer
• for shit
• for the life of
• for the soul of
• give a crap
• give a damn
• give a fuck
• give a shit
• half a chance
• half bad
• have a clue
• have any of
• hold a candle to
• hold water
• in a blue moon
• in a hundred years
• in a long time
• in a million years
• in ages
• in all of history
• in any
• in any manner
• in any way
• in centuries

• in days
• in decades
• in his right mind
• in hours
• in living memory
• in minutes
• in months
• in recent memory
• in the least
• in the least bit
• in the slightest
• in weeks
• in years
• just any
• just yet
• know the first thing
• know the first thing

about
• know the half of it
• least of all
• let alone
• lift a finger
• make a sound
• make head or tail of
• make much differ-

ence
• mean a thing
• mean feat
• miss a beat
• much care
• much help
• much of a
• much of anything
• much to look at
• much to lose
• nor
• on speaking terms
• on your life
• one single thing
• or anything
• rhyme or reason

• say much
• see eye to eye
• set foot
• set foot in
• set foot on
• sit right with
• sit well
• sit well with
• small feat
• so much as
• square with
• squat
• stand a chance
• strong suit
• such thing
• sweat it
• take his eyes off
• take kindly to
• take lightly
• take no for an an-

swer
• that many
• that much
• that often
• the ghost of
• the half of
• the half of it
• the least bit
• the like of which
• the likes of which
• the slightest
• the slightest bit
• think much of
• to be taken lightly
• whatever
• whatsoever
• with a barge pole
• worth a damn
• worth his salt
• worth its salt
• yet


