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Abstract

This paper proposes a new task regarding
event reason extraction from document-level
texts. Unlike the previous causality detection
task, we do not assign target events in the
text but only provide structural event descrip-
tions, and such settings accord more with prac-
tice scenarios. Moreover, we annotate a large
dataset FinReason for evaluation, which pro-
vides Reasons annotation for Financial events
in company announcements. This task is chal-
lenging because the cases of multiple-events,
multiple-reasons, and implicit-reasons are in-
cluded. In total, FinReason contains 8,794
documents, 12,861 financial events and 11,006
reason spans. We also provide the perfor-
mance of existing canonical methods in event
extraction and machine reading comprehen-
sion on this task. The results show a 7 percent-
age point F1 score gap between the best model
and human performance, and existing methods
are far from resolving this problem.

1 Introduction

Why does the event happen? People are always
eager to find the reasons for an event. Automati-
cally extracting the causal explanations of the given
events from texts is useful and important for com-
mon users and downstream applications. For exam-
ple, in the financial domain, returning the reasons
of a concerned financial event in an Information
Retrieval system can free analysts from reading
the enormous company announcements and help
investors make financial decisions.

Previous work on event causality (Do et al.,
2011; Riaz and Girju, 2013; Mirza and Tonelli,
2014; Caselli and Vossen, 2017) mainly focus on
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Figure 1: An example of reason extraction for struc-
tural events from a document. We need to extract the
textual spans from the document as reasons for the
given structurally presented events. Here, we need to
extract Reason 1 and Reason 2 for Event I and Event 2
respectively.

the identification of causal relations between two
given events that are usually presented as event
trigger words. However, in reality, users may
only know a particular event happened but without
knowing its mention or trigger in the documents,
and they just wonder the reasons for it. Therefore,
we propose a new task aiming at extracting the
causal explanations of the given structurally pre-
sented events from document-level texts. Specif-
ically, a Structural Event defined here is a struc-
tural description that contains all necessary roles
for an event type. Such a description can com-
pletely represent a specific happened event in re-
ality. For example, in Figure 1, the PLEDGE event
has four predefined roles NAME, ORG, NUM, BEG
to represent an occurred PLEDGE event. Then, our
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task is to extract the reasons of the structural events
as textual spans from the document.

To investigate the solution for this challenging
task, we construct a large-scale Chinese dataset
FinReason'. Specifically, we automatically col-
lect the formal financial documents with their cor-
responding structural events the same as Yang et al.
(2018). Then, crowd workers are employed to an-
notate the reasons in the documents for each struc-
tural event. In order to guarantee annotation quality
and high inter-annotator agreement (IAA), we set
several annotation principles and define 3 types of
possible causal explanations (MOTIVATION, CAUSE,
ENABLE) as Reasons for the events in company an-
nouncements to guide annotators. Finally, there are
8,794 documents, 12,861 collected financial events,
and 11,006 reason spans in total. The Cohen’s
kappa of annotations is 83.87%.

Moreover, to understand this task’s difficulties,
we regard this task as an Event Extraction (EE) or
a Machine Reading Comprehension (MRC) task.
We also try some canonical models, such as Bil-
SRM+CRF (Ma and Hovy, 2016), and BERT (De-
vlin et al., 2019) on this task and set benchmarks.
Empirical results show that this task is challenging,
and there is still an overall gap of 7pp (percentage
points) in the F1 score between the best model and
human performance.

2 Related Work

Much NLP research has focused on identifying
causality relations from text, including knowledge
bases (WordNet (Miller, 1998), FrameNet (Baker
et al., 1998) and ConceptNet (Speer et al., 2017)),
semantic related evaluations (SemEval-2007 task
04 (Girju et al., 2007), COPA (Roemmele et al.,
2011), RED (Ikuta et al., 2014)), and event-related
systems (Beamer and Girju, 2009; Do et al., 2011;
Riaz and Girju, 2013; Hu and Walker, 2017; Caselli
and Vossen, 2017). These work tried to identify
real-world causality in lexicons or texts from differ-
ent aspects. However, they have found it is difficult
to agree on if a causal relationship exists in reality
due to the ambiguity of causality definition. Our
dataset mitigates this problem by only identifying
contextual causality and do not check with reality.

In addition, plenty of work also only identify
context-level causal relationships, such as gen-
eral causality detection tasks PDTB (Prasad et al.,

'nttp://www.nlpr.ia.ac.cn/cip/
~liukang/dataset/finreasonl.html

2007) and BECauSE 2.0 (Dunietz et al., 2017),
and emotion causality detection task ECA (Lee
et al., 2010). Some work (Radinsky et al., 2012;
Mirza and Tonelli, 2014; Zhao et al., 2017) also
tries to identify the causal relations between events
at the contextual-level. However, our task is differ-
ent because we focus on extracting the reasons for
well-defined structural events, which is more close
to practice scenarios.

3 Task Description and Data Collection

Task Description Our task is to extract the corre-
sponding causal explanations for given structural
events in a document. The inputs are a document
with corresponding structural events described in it.
The outputs are the causal text spans for the given
events. For a given event in the document, there
may be zero, single, or multiple causal explanations
that need to be identified.

3.1 Data Collection

Event Doc Event Reason Doc Count
Type Count  Count  Count w/ reason
Pledge 4,138 5,379 4,714 2,901 (70.11%)
Oo/u 2,550 4,127 3,565 2,132 (83.61%)
Lawsuit 2,106 3,355 2,727 1,438 (68.28%)
Total 8,794 12,861 11,006 6,471 (73.58%)

Table 1: Statistics of FinReason?.

To construct this dataset, we first collect a corpus
of structural events with their corresponding docu-
ments following Yang et al. (2018). The collected
documents are constrained to company financial
announcements, which are relatively formal doc-
uments. Such a setting could improve annotation
IAA because of the logical consistency and clarity.
In specific, we crawl the public company financial
announcements as documents from sohu.com® and
the structural events from eastmoney.com*. Since
the documents are not in line with their correspond-
ing structural events, we leverage key event items
(see more details in Appendix B) matching to align
them. Same as Yang et al. (2018), we assume that if
the key event items of a structural event appear in a
document, the document mentions the target struc-
tural event. This alignment method has a high pre-
cision of 94.5% as evaluated by Yang et al. (2018).

The statistics are calculated after manual cleaning in the
second step.

*http://q.stock.sohu.com/index.shtml
4http ://choice.eastmoney.com/
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In total, as in Table 5, we align 8,794 documents
with corresponding 12,861 structural events of 3
types in financial domain, namely Pledge of Shares
( Pledge), Overweight and Underweight of Shares
(O/U), Lawsuit and Arbitration ( Lawsuit). To the
best of our knowledge, this is the largest dataset in
the event reason extraction task.

3.2 Event Reason Annotation

Annotation Principles: To construct a correspond-
ing dataset with high IAA, we follow the two prin-
ciples in the annotation. First, we annotate the
event reasons according to the contextual expres-
sions. We do not check with reality, even if it is
obviously a false statement (e.g., the stock market
falls because of intense sunspot activity). Second,
we specifically define 3 types of possible causal
explanations as reasons for the financial events in
announcements following previous work (Trabasso
et al., 1989; Van den Broek, 1990; Dunietz et al.,
2015): MOTIVATION, CAUSE, ENABLE (see details in
Appendix A). This provides a clear guideline to an-
notators to decide what to annotate and what not to.
Because it is also ambitious to differentiate those
reason types from texts (Dunietz et al., 2015), we
do not require the annotators to distinguish them
but just require them to confirm that the reasons
annotated at least belong to one of the 3 types.

Quality Control: Besides the aforementioned 2
principles, we adopt several more rules to control
data quality as follows. (1) Each member should
find as many reasons for a target event as possible.
(2) Each reason annotated should be as short as pos-
sible but with complete expressivity. (3) When ex-
plicit causal relation terms such as B 4 (because),
AT (in order to) are mentioned, they should be
included in the annotated reasons. (4) For each rea-
son annotated, the annotator should confirm it by
doing a why test (Grivaz, 2010), which means the
reason should answer the question why the event
happened.

Then, we employ crowdsourcing to annotate the
reasons for each event. Specifically, 9 workers are
divided into 3 teams to annotate each event type
separately. Each team is trained to acquire the do-
main knowledge of the target event type so they
can figure out the possible reasons for the events.
Within each team, 2 members are responsible for
annotating the reasons independently, and the 3rd
member will be activated to make a judgment when
2 annotators have inconsistent annotations. Be-

cause the alignment in the first step may not be
perfectly accurate, annotators are also responsi-
ble for removing those wrongly aligned cases in
the annotation to maintain data quality. Finally, as
shown in Table 5, there are totally 8,794 documents,
12,861 collected financial events and 11,006 anno-
tated event reason. And, approximately 73.58%
of the documents are annotated with event reason.
The Cohen’s kappa of IAA is 83.87%.

3.3 Task Challenges

Event Multi-event Multi-reason  Implicit-reason
Type Doc Count Doc Count Doc Count
Pledge 796 (19.24%) 461 (11.14%) 2,845 (68.75%)
O/U  635(24.90%) 483 (18.94%) 2,030 (79.61%)
Lawsuit 387 (18.38%) 221 (10.49%) 1,434 (68.09%)
Total 1,818 (20.67%) 1,165 (13.25%) 6,309 (71.74%)

Table 2: Three types of challenges in FinReason.

From the annotation results, we could briefly
conclude that extracting the reasons for given struc-
tural events in a document is not an easy task. First,
a document may mention multiple events like the
2 events in the example of Figure 1. As in Ta-
ble 5, approximately 20.67% documents mention
more than one events. Without event mention as-
signment, discriminating the corresponding rea-
sons for different events within the same document
is difficult. Second, about 13.25% of documents
mention multiple reasons for an event. Finding all
reasons out is also not easy. Thirdly, 71.74% of
the documents mention the reason for the events
in an implicit way. There are only 28.26% rea-
sons mentioned with explicit modifiers, like
A (because), 8 T (since),/& H (cause), # (in order
to), B & (aims to), etc. Such implicitly mentioned
reasons are harder to be identified because they
do not have any syntactic clue and require deep
reasoning.

We regard the average performance of the two
annotators with respect to the final golden stan-
dard in the test set as human performance®. We
can see in Table 2, the human performance on
the test set is in line with intuition. Compared
with simple cases (Single-Event, Single-Reason,
Explicit-Reason), identifying reasons in multiple-
event, multiple-reason, and implicit-reason cases
are more challenging.

>This setting may overestimate the actual human perfor-
mance but acceptable as a performance upper bound.
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4 Benchmark Settings

4.1 Evaluation Criterion

To evaluate the solution on this task, we follow a
similar paradigm of SQuAD 2.0 (Rajpurkar et al.,
2018) but also with several differences. In general,
we get precision/recall/fl scores of every event
in the test set and calculate the macro-average of
all events as the overall performance. However,
there are multiple reason cases in FinReason, and
we try to evaluate the ability of multiple reasons
identification. As a result, we do not fully follow
SQuAD-style evaluation by selecting the best pre-
diction but considering all predictions to avoid the
systems cheating by predicting all possible causal
expressions in the text. For each case, we compute
the scores as follows. 1) When there is no reason
annotated for an event, the prediction should be
Null string so as to get precision/recall/fl scores
of all 1; otherwise, all scores will be assigned O.
2) When there is only one reason annotated for an
event, we calculate the precision/recall/fl scores
based on the overlapping strings of prediction and
ground truth. 3) When there are multiple reasons
for a target event, we first calculate each reason’s
scores with corresponding predictions as in situa-
tion 2 and then calculate the macro-average of all
reasons as the final scores for the target event.

4.2 Baselines

FinReaon is a new task but similar to several exist-
ing tasks, such as event extraction (EE) or machine
reading comprehension (MRC). So we apply exist-
ing canonical methods for those similar tasks on
FinReason as benchmarks for future research. The
selected baselines are as followed (see more details
in Appendix C):

Regular Expressions (RegExp): In this setting,
we regard the FinReason task as a causal sen-
tence detection problem and employ some ad-hoc
regular expressions to solve it. Specifically, we
use five modifiers (B % (because), & T (since), /&
(cause), 7 (in order to), B J(aims to)) as causal
clues to detect the sentence as the reasons for an
event.

BiLSTM-CRF (BiLSTM): We can take the rea-
sons as one part of the event description and regard
the task as an EE task. Similar to Yang et al. (2018),
we employ a BILSTM-CRF (Ma and Hovy, 2016)
to predict the start and end positions of each reason.
Specifically, We simply get the event participants
in the documents via string matching between the

documents and the given structural events. Such
information is used as features in a BIO tagging
format.

BERT-QA: We can take this task as an MRC prob-
lem if the structural event is regarded as a query
and the target reason as the answer. In particular,
we use templates to turn each structural event into a
why-question and employ BERT-QA (Devlin et al.,
2019) model to find the corresponding reasons.

Type RegExp BILSTM BERT-QA  Human
Pledge  19/21/20 76/86/81  76/70/73  93/94/93
o/u 20/27/23  90/94/92  90/89/89  99/99/99
Lawsuit  20/24/22  73/73/73  73/72/72  74/78/76
All 20/24/22  80/84/82  80/77/78  89/90/89

Table 3: Performance of baselines and human beings
on FinReason (precision/recall/f1, %).

Challenges  RegExp BiLSTM BERT-QA Human
Single-event  16/21/18 86/90/88 84/81/82 90/92/91
Multi-event  25/28/26 73/77/75 74/72/73 87/88/87
Single-reason 23/26/24 85/86/85 86/84/85 91/92/91
Multi-reason  8/13/10 53/81/64 43/41/42 76/85/80
Explicit-reason 29/32/30 85/87/86 85/83/84 90/90/90
Implicit-reason ~ 2/4/3  54/65/59 61/58/59 85/90/87

Table 4: Performance for the three challenges (preci-
sion/recall/fl, %).

Results We split the dataset into train/dev/test sets
with a ratio of 8:1:1 for experiments. From the re-
sults in Table 2, we can see that there is still an av-
erage of 7pp (82% vs. 89%) F1 score gap between
the best model (BiLSTM) and human performance.
Besides, we can see that human performance is rel-
atively low for Lawsuit. This is because the reason
for a lawsuit usually lies in a whole story between
the plaintiff and the defendant, and it is hard to
agree on the boundaries of the span. Furthermore,
the BiLSTM model generally performs better than
BERT-QA. The reason may be that the BiILSTM
model knows the positions of event mentions by
using the event BIO features, but BERT-QA only
uses the structural event as the query. So it may be
easier for BILSTM to locate the correct reasons.
Besides, we also evaluate the 3 challenges on
the whole test set. As from Table 2, the average
F1 gap between the best model and human for the
3 challenges are 12pp, 16pp, 28pp, respectively,
which is much larger than the overall average gap of
7pp. This demonstrates that the challenges are also
the bottlenecks of the models to reach comparable
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human performance, especially the implicit cases.

5 Conclusion

In this work, we propose a dataset FinReason for
a new event causality extraction task. Our experi-
ments show that this task is still challenging for cur-
rent models. Future work may consider breaking
the challenging cases (multiple-events, multiple-
reasons, and implicit-reasons) to achieve a more
satisfying performance.
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Appendices
Appendix A: Event Causality Types

We define the Event Causality Types referring
to some previous work. Trabasso et al. (1989)
and Van den Broek (1990) defined 4 types of narra-
tive causality relations between events.

o PHYSICAL: Event A physically causes event B
to happen.

o MOTIVATIONAL: Event A happens with B as a
motivation.

e PSYCHOLOGICAL: Event A brings about emo-
tions expressed in event B.

e ENABLING: Event A creates a state or condition
for B to happen.

Dunietz et al. (2015) also defined 4 types of causal
languages in texts:

o CONSEQUENCE: The cause naturally leads to
the effect via some chain of events.

e MOTIVATION: Some agent perceives the cause,
and therefore consciously thinks, feels, or
chooses something.

e PURPOSE: An agent chooses the effect out of a
desire to make the cause true.

e INFERENCE: Present the cause as evidence or
justification for the effect.

However, we refer to those previous definitions, but
we only define 3 types of causal explanations as
Reasons according to our specific task and appli-
cation domain. These causality types are the most
common reasons for the financial events described
in company announcements.

e MOTIVATION: The event happens with the ex-
planation as a motivation or purpose. e.g., He
pledged the stocks aiming at providing a guaran-
tee for self-financing.

e CAUSE: The cause in the explanation naturally
leads to the occurring of the event. e.g., He sued
the company because of loan disputes.

e ENABLE: The explanation creates a condition or
state for the event’s occurrence. e.g., He reduced
his shares according to the contract.

The reasons annotated should at least belong to one
of the 3 types. However, we do not require the
annotators to distinguish specific types because it
is ambitious to differentiate them (Dunietz et al.,
2015).

Appendix B: Event-Document Alignment

Following Yang et al. (2018), we assume that if
the key items of a structured event appear in a
document, then the document mentions the event.
We first group those events and documents with the
same Announcement Date (DATE®) and then use
the following key items to align them:

e Pledge: Number of Shares (NUM), Name of
Shareholder (NAME), Pledge Institution (ORG).

The event item abbreviations are used in the corpus.
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e O/U: Number of Shares (NUM), Name of Share-
holder (NAME), Name of Shares (STOCK).

e Lawsuit: Plaintiff (OBG), Defendant (NAME),
Court Name (ORG).

Appendix C: Model Settings

We build our baselines based on the open sources
of the BILSTM’ and BERT-QA®. We do not do
hyperparameter search and mainly use the default
settings. Common parameters are in the Table 5:

Batch  Learning Max

Models Size Rate Epochs Optimizer
BiLSTM 20 le™3 30 Adam
BERT-QA 16 5¢~° 30 BERTAdam

Table 5: Parameters Settings.

Specifically, for BILSTM, we use the 100-dim
character embeddings® trained with on Chinese
WiKi corpus as initial word features. For structural
event embeddings, we first label back the event
items to corresponding documents by string match-
ing with BIO schema, then use the 100-dim random
vectors as initial BIO features. Besides, the hidden
dimension and dropout rate of the LSTM are set
as 100 and 0.5, respectively. For BERT-QA, we
use the bert-base-chinese version and choose the
maximum sequence length as 512, the document
stride as 128, the max query length as 64, and the
max answer length as 30. We train them on two
Nvidia GEFORCE GTX 1080Ti GUPs.

Moreover, we need the models to deal with the
multiple-event cases. For the RegExp method, we
cannot distinguish different events, so we just re-
gard all the extracted reasons as explanations for
all the events indiscriminately. For BiLSTM, we
create different samples for different events from
the same documents to ensure one sample just have
one document with at most one event. The BERT-
QA regards events as queries so it can naturally
adapt to it.

Even for one event, there may be multiple rea-
sons for it, and our models need adaptation. The
RegExp is the same as before. The BiLSTM can la-
bel multiple pairs of start and end for textual spans,
so it naturally adapts to multiple-reason cases. The
BERT-QA can return the top k answers as reasons
from the documents, and in practice, we get the

best result when setting k as 1.

"https://github.com/zjy-ucas/
ChineseNER.

$https://github.com/huggingface/
transformers/tree/master/examples/
\question-answering.

’https://github.com/zjy-ucas/
ChineseNER/blob/master/wiki_100.utf8
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