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Abstract

Relation schemas are often pre-defined for
each relation dataset. Relation types can be
related from different datasets and have over-
lapping semantics. We hypothesize we can
combine these datasets according to the se-
mantic relatedness between the relation types
to overcome the problem of lack of training
data. It is often easy to discover the con-
nection between relation types based on re-
lation names or annotation guides, but hard
to measure the exact similarity and take ad-
vantage of the connection between the rela-
tion types from different datasets. We pro-
pose to use prototypical examples to represent
each relation type and use these examples to
augment related types from a different dataset.
We obtain further improvement (ACEO0S5) with
this type augmentation over a strong base-
line which uses multi-task learning between
datasets to obtain better feature representa-
tion for relations. We make our implementa-
tion publicly available: https://github.
com/fufrank5/relatedness

1 Introduction

Relation extraction identifies specific semantic re-
lationships between two entities within a single
sentence. For example, there is a Physical.Located
relationship between George Bush and France in
the sentence: George Bush traveled to France on
Thursday for a summit. Relation extraction is a
crucial task for many applications such as knowl-
edge base population.

Relation schemas are mostly pre-defined in ex-
isting datasets. The definition of the relation type
depends on the annotation guide. There is no clear
intrinsic Ontology for relation types. In practice,
relation types can be created based on interests.
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This leaves datasets with similar, related or over-
lapping schemas. For example, the annotation
guides for Automatic Content Extraction (ACE)
03-05 changed from year to year. The later cre-
ated Entities, Relations and Events (ERE) dataset
was similar in the schema, but differs in details.
Because of the difficulty of annotating relations,
these datasets are all small individually and hard
to be utilized together.

It is not an easy task to learn relatedness be-
tween relation schemas across different datasets
since there is no instance-level labels available for
the relatedness. However, we can observe the con-
nections between the relation types from differ-
ent datasets based on relation names or annota-
tion guides. We propose to simplify the related-
ness as binary (related or not) and to use manual
review of relation names to decide the relatedness
labels. This would give the prior knowledge that
one relation type in one dataset may have closer
relationships to some types than the others in an-
other dataset. Then we design a model to rec-
ognize this similarity. We propose to use proto-
typical examples to represent each relation type.
We rank these representations higher for related
types, and lower for unrelated types using a pair-
wise loss function. Our base model is a multi-task
learning model which focuses on learning a strong
encoder using multiple datasets regardless of the
relation schemas. We take the step further to ex-
plore utilizing the relatedness between the relation
types. Experiments on ACEO5 and ERE show that
it can further boost the performance, especially in
the low-resource settings.

2 Related Work

Relation type dependency: There have been a
few ways to model the relationships between types
in a multi-label relation dataset where we can learn
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the similarity or dependency from annotated ex-
amples. Surdeanu et al. (2012) used a two-layer
hierarchical model. The object-level classifier is
able to capture the label dependency, while the
mention-level classifier is focused on multi-label
classification. Riedel et al. (2013) used a neigh-
borhood model to explicitly model the dependency
between the labels in a matrix factorization frame-
work. Both of models are designed to work on
multi-label examples, which require annotation to
capture the dependency between labels. In the re-
cent work of neural methods for relation extrac-
tion, most of the work (Zeng et al., 2015; Lin et al.,
2016; Liu et al., 2017) ignores the multi-label set-
ting and does not explicitly model the label depen-
dency. Ye et al. (2017), on the other hand, ranks
the similarity between feature representation of
the instance and the label embedding. In addition
to ranking the positive classes higher than the neg-
ative ones, it ranks positive classes against each
other to learn the connections between the posi-
tives classes. These methods all require annotated
examples to learn the connections. In the case of
relation types across different datasets, such an-
notation does not exist. We attempt to learn the
similarity nevertheless using prototypes from each
type.

Multi-task learning: Training multiple rela-
tion datasets at the same time could improve the
robustness of the model and reduce annotation
cost for relation extraction. (Fu et al., 2018) pro-
posed to use a shared encoder to learn more gen-
eral feature representation. We use a similar multi-
task learning base model and incorporate the sim-
ilarity between the relation schemas to further im-
prove the performance.

3 Relation Model with Multi-task
Learning

The majority of neural relation models (Zeng
et al., 2014; Nguyen and Grishman, 2015b; Zeng
etal., 2015; Lin et al., 2016) encode a sentence us-
ing a deep architecture to a vector representation
followed by a softmax classifier, while the oth-
ers (dos Santos et al., 2015; Ye et al., 2017) use
a function to compute the score between label em-
bedding and sentence representation. Inspired by
Fu et al. (2018) where the shared encoder helps
in the case of the multi-task learning, we choose
the latter so that all relation types (including from
different datasets) will share the whole model pa-

rameters except the label embeddings. Suppose
we obtain the sentence representation ¢(x) with
a neural architecture. We define the label embed-
ding as W; € RP, a D-dimension vector for each
type. We compute the L; distance between them
and learn a scoring function to estimate the scores
Sp(z) for every type:

S@(x)l =W, |¢($) - VVZ‘ + b07 (D

where W, € RP and b, € R are shared for all
types.

We do not use the dot product (dos Santos et al.,
2015; Ye et al., 2017) as the scoring function be-
cause the L distance works slightly better in the
multi-task learning experiments. The probability
of every class is computed as the softmax output
of the scores. Similar to (Fu et al., 2018), we
jointly train two relation tasks at the same time
with cross-entropy losses.

L= )\Lrl + (1 - )\)Lr2a (2)

where L,; and L, are the cross-entropy losses for
the two relation tasks. A is the hyperparameter to
control the learning speed between the two tasks.
This would give a strong baseline of utilizing the
two datasets together.

3.1 Prototypes of Relation Types for
Learning Similarity

For each relation type, we randomly select &k ex-
amples (S;) from the training set as supporting
examples. We use the mean of the representations
of these examples as the prototype for the relation

type:
re=1 3 () )

These prototypes are inspired by the Prototypical
Networks (Snell et al., 2017). However, in the
training procedure, these supporting examples are
randomly selected for every mini-batch. We have
dynamic prototypes during training.

We define Sy(Z.); as the similarity score to type
c for type . We hypothesize that if the two relation
types are similar in semantics, they should obtain
high similarity score. Within the dataset, if the re-
lation types in the schema are mutually exclusive
to each other, then we would expect a high similar-
ity score to itself and low scores to the other types.
Across the datasets, the prototypes would obtain
high scores for related types and low scores in the
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unrelated types. We use a pair-wise ranking loss
(dos Santos et al., 2015) to learn this relatedness
across the datasets.

Forl € L and ¢ € C, Sy(Z.); gives the score
for the similarity between the type [ in the relation
schema L and the type c in the relation schema C.
Let ¢ € C be aclass related to [ and ¢~ € C be
a class unrelated to [. The similarity scores would
be Sy(z.+); and Sy(Z.-); respectively. We define
the pair-wise ranking loss as:

Ls = log(1 + exp(y(m™ — Sp(Zet )1))

3 - “4)
+log(1 + exp(y(m™ + Sp(Z.-)1))

m™ and m™~ are the margins and + is the scaling
factor. This loss function would push Sy(Z.+);
higher for related type pair between ¢* and [ and
So(Z.-); lower for unrelated type pair between ¢~
and [. We manually create a relatedness matrix to
state whether the two types are related or not be-
tween the types in C' and L based on the definition
of the relation types. For each step of training, we
pick the highest scored ¢~ from unrelated types
and lowest scored ¢ for related types correspond-
ing to type [.

¢ = argmazxSy(Z.); ®)
ceC—

ct = argminSy(z.); (6)
ceCt

where C'~ are types unrelated to [ and C* are
types related to /. In experiments, we use looser
margins (m* = 0.5, m~ = 0.5, v = 1.0)
compared to (dos Santos et al., 2015) as we are
learning the relatedness between types rather than
doing classification for individual instance. The
ranking loss is jointly trained as an auxiliary task
with the main relation tasks:

L= )\Lrl + (1 - )\)LT’Q + ﬁL& (7)

where we use [ to control the weight for learning
the relatedness. If 3 is too large, it could disrupt
the learning of main relation tasks. With appro-
priate weight, it could help augment the label em-
beddings for the relation types by considering the
similarity between them.

4 Experiments

4.1 Datasets

We select two datasets with similar relation
schemas in this experiment. There is overlapping

of relation types between ACEO5 and ERE, but the
annotation guides are different in details (Aguilar
et al., 2014). Thus, we can not combine the train-
ing data directly as the same type. Doing so would
actually lead to worse result as it introduces more
noise than benefit. The multi-task learning would
be a better choice at this setting. We take a step
further and try to learn the similarity between the
types at the same time. There are 6 main seman-
tic types in ACE and 5 in ERE. Manual review
of the relatedness (related or not) is trivial in this
case because the relation names are almost identi-
cal for related relation types. In practice, it may
take a few minutes to review more complicated
relation schemas, but it would cost significantly
less than annotating on the instance-level in text.
For preprocessing the data, we follow previous
work (Gormley et al., 2015; Nguyen and Grish-
man, 2015a; Fu et al., 2017, 2018) on ACEOS5. It
contains 6 domains: broadcast conversation (bc),
broadcast news (bn), telephone conversation (cts),
newswire (nw), usenet (un) and weblogs (wl). We
use newswire as training set (bn & nw), half of
bc as the development set, and the other half of
bc, cts and wl as the test sets. We followed
their split of documents and their split of the rela-
tion types for asymmetric relations (directionality
taken into account expect for physcial and person-
social types). We perform the same preprocessing
for the ERE dataset, which contains documents
from newswire and discussion forums. We follow
the document split from (Fu et al., 2018).

4.2 Multi-task Learning Baseline

Following previous work (Nguyen and Grishman,
2015a; Fu et al., 2018), We use a similar encoder
to obtain the feature representation ¢(x) as our
baseline. The input layer is the concatenation
of word embedding, entity embedding and posi-
tion embeddings. We use pretrained word2vec
(Mikolov et al., 2013) as the word embedding with
embedding size d,,. The entity embedding and po-
sition embeddings are randomly initialized vectors
according to the entity type of the token and rela-
tive distance to the two arguments of the relation.
The embedding sizes are d. and d,, respectively.
We follow previous work for these input embed-
ding sizes as d,d.,d, = 300,50,50. It is fol-
lowed by Bidirectional RNN with attention and a
fully connected layer to match the size for the la-
bel embedding. We use 150 for the RNN state size
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ACE05
Method be wl cts avg
Single-task 60.22 | 53.77 | 52.01 | 55.33
Multi-task 60.60 | 56.20 | 56.72 | 57.84
+ Relatedness 62.05 | 56.10 | 59.12 | 59.08
(Fuetal., 2018) | 61.67 | 55.03 | 56.47 | 57.72
+ Regularization | 62.24 | 55.30 | 56.27 | 57.94

Table 1: Learning the relatedness between types (full

training set).

ACE05
Method bc wl cts avg
Single-task 54.80 | 47.27 | 48.42 | 50.17
Multi-task 56.67 | 51.39 | 55.23 | 54.43
+ Relatedness 58.31 | 53.13 | 56.50 | 55.98
(Fuetal.,2018) | 57.39 | 51.44 | 54.28 | 54.37
+ Regularization | 57.73 | 52.30 | 54.63 | 54.89

Table 2: Learning the relatedness between types (50%
training).

and 200 for the label embedding size. The output
of this encoder is ¢(z). Then we can perform clas-
sification using the scores obtained from Equation
1.

In a mini-batch of training step, we randomly
select examples from both datasets proportionally
according to the dataset size so that the model can
finish reading both datasets at the same time after
every epoch. Because the difference of the num-
ber of examples for the two datasets in the batch,
we set A\ = /\d%, where |D1| and | D3| are
the number of examples for each dataset in a sin-
gle batch. In a special case where the two datasets
are actually split from one original dataset, we can
set Aq = 1.0, and then the two datasets are go-
ing to be learned at the same speed. In our case,
we use A = (.8 so that the two relation tasks are
roughly learning at the same speed. As the re-
sult, our multi-task model using label embedding
is comparable to (Fu et al., 2018) (Table 1), which
serves as a strong baseline since it is already bet-
ter than training a single relation task. We obtain
all our scores as the average of 10 runs to report
stable results.

4.3 Learning the Relatedness between Two
Relation Schemas

By learning the relatedness at the same time
(Equation 4,7, 8 = 0.001), we obtain better re-
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Figure 1: Low-resource setting with N examples for
each positive relation type on ACEOS.

sults at the full training set (Table 1). The im-
provement is more obvious with a smaller train-
ing set (Table 2 at 50%). The regularization in the
previous work does not take the relatedness on the
type-specific basis into account, which fails to ob-
tain clear improvement over the multi-task base-
line. Our method is more effective in incorporat-
ing additional knowledge from multiple sources.
We also set up a low-resource setting where we
only have N examples for each relation type (Fig-
ure 1 at N = [10, 20, 30, 40, 50]). The negatives
are randomly selected according to the pos/neg ra-
tio. We can observe larger improvement with less
training data. This is also to consider the skewed
data distribution in the dataset where there are far
more examples for some types than the others.
The k supporting prototype examples are drawn
randomly at every step. We use k = 50 for the
experiments and £ = N for the low-resource set-
tings. Overall, the improvement is impressive, es-
pecially for the low-resource settings. It is also
worth to note that the single task models for these
low-resource settings obtain virtually zero scores
without multi-task learning as there is not enough
data to train the encoder. The multi-task learning
between two relation tasks is better than training
on a single task and more effective for a smaller
training set. We now show that learning the re-
latedness between the types could further improve
the model.

5 Conclusion

We use prototypes of relation types to learn the
relatedness between them in a multi-task learn-
ing framework. With prior knowledge of relat-
edness between relation types, the model obtains
further improvement in addition to sharing the en-
coder of the sentence. The prior knowledge is ob-
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tained through manual review of relation names,
which costs significantly less than annotating on
the instance-level in text. In this paper, we sim-
plify the relatedness as binary. It would be inter-
esting to further explore the relationships between
relation types as a more dynamic metric.
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