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Abstract

We evaluate two common conjectures in er-
ror analysis of NLP models: (i) Morphology
is predictive of errors; and (ii) the importance
of morphology increases with the morphologi-
cal complexity of a language. We show across
four different tasks and up to 57 languages
that of these conjectures, somewhat surpris-
ingly, only (i) is true. Using morphological
features does improve error prediction across
tasks; however, this effect is less pronounced
with morphologically complex languages. We
speculate this is because morphology is more
discriminative in morphologically simple lan-
guages. Across all four tasks, case and gender
are the morphological features most predictive
of error.

1 Introduction

In error analysis, we often blame morphology
(Nivre, 2007; Bender, 2009), i.e., the productive
inflection and derivation of new word forms. Mor-
phology has been argued to be a major source of
error in syntactic parsing (Tsarfaty et al., 2020),
semantic parsing (Şahin and Steedman, 2018), ma-
chine translation (Irvine et al., 2013; Burlot and
Yvon, 2017) and a range of other tasks, in particu-
lar in morphologically complex languages (Bender,
2009; Søgaard et al., 2018; Tsarfaty et al., 2020).
This paper presents a large-scale study showing that
morphology is, as commonly conjectured, an im-
portant source of error across tasks, but somewhat
surprisingly, that morphology is less predictive of
errors in morphologically complex languages.

English is a morphologically simple language,
showing very limited inflection and expressing
most concepts through syntactic structure instead;
it is also the most-represented language at ma-
jor natural language processing (NLP) venues and
that with the largest amount of language resources
available (Bender, 2011; Joshi et al., 2020). This

w
jego
imieniu

3

3

7

POS=NOUN

CASE=LOC

GENDER=NEUT

NUMBER=SING

. . .

Random forest classifier

Predict

Figure 1: Overview of our methodology: We map each
token to a set of morphological features and, based on
this representation, predict whether some NLP system
(e.g., a dependency parser) was correct (3) or made an
error (7) on that token.

makes it easy to ignore morphology when design-
ing model architectures. As a consequence, we
frequently observe that performance of NLP sys-
tems on morphologically more complex languages
lags behind that for English (e.g. Czarnowska et al.,
2019; Tsarfaty et al., 2020).

Complex morphology leads to the occurrence
of rare inflected word forms. Polish nouns, for
example, can inflect for number and seven dif-
ferent cases; this makes it less likely that all of
these inflected word forms appear in the train-
ing data for our NLP models. Consequently, a
model that correctly handles imię ‘name’ (NOM.SG)
might not have seen the less frequent form imion-
ami (INST.PL), potentially resulting in errors. If
the model has generally seen fewer words in instru-
mental case, this can lead to systematic errors on
this class of inflections.

Nowadays, many NLP systems use statistically
learned subword units such as byte-pair encod-
ings (Sennrich et al., 2016) or use characters as
input representations, which could allow a system
to generalize to individual affixes. However, in
practice, these approaches are often found to be in-
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sufficient at capturing morphological structure (Va-
nia and Lopez, 2017; Bostrom and Durrett, 2020;
Klein and Tsarfaty, 2020).

Contributions In this study, we revisit two com-
mon conjectures about the role of morphology that
are made in error analysis of NLP systems. Specif-
ically, we ask whether (i) whether morphology is
generally predictive of errors across tasks and lan-
guages; and (ii) whether the extent to which mor-
phology is predictive depends on the morphologi-
cal complexity of the language in question. These
conjectures are common throughout the literature
(Nivre, 2007; Bender, 2009; Manning, 2011).

Looking at data from four shared tasks on seman-
tic role labeling (Hajič et al., 2009), dependency
parsing (Zeman et al., 2018), verbal multi-word ex-
pression identification (Ramisch et al., 2018), and
quality estimation (Fonseca et al., 2019), we map
each token in the input data to a set of morpho-
logical features. Using only this feature set, and
without using any orthographic or distributional
representation of the input, we train random forest
classifiers to predict whether a system has made
an error on an input token. Figure 1 illustrates this
approach.

Using this methodology, we find that, somewhat
surprisingly, our results only support the first con-
jecture. In other words, (i) while morphology is
helpful in predicting such errors, (ii) the degree to
which morphology helps does not increase with the
morphological complexity of the language. More-
over, we find and discuss task-specific differences
between which morphological features are predic-
tive of error. In general, part of speech, case and
gender are most predictive of error.

The code for obtaining the datasets and running
the experiments is made publicly available.1

2 Background

Morphology is frequently identified as a source of
error during qualitative evaluations of NLP systems.
Honnibal et al. (2010) observe that inflectional vari-
ants cause problems for statistical CCG tagging due
to training data sparseness, and explicit morpho-
logical analysis helps, even for English. For depen-
dency parsing, Seeker and Kuhn (2013) identify
case syncretism as a source of error propagation in
data from Czech, German, and Hungarian. Tsarfaty

1https://github.com/coastalcph/
eacl2021-morpherror

et al. (2020) give a broader overview of the chal-
lenges that rich morphological structure presents
for dependency parsing, and Şahin and Steedman
(2018) discuss the importance of morphology in
semantic parsing.

Many observations of the effect of morphology
come from evaluating machine translation (MT)
systems. Federico et al. (2014) show that mor-
phological errors are common for MT into Ara-
bic and Russian and strongly affect human quality
judgement. For English–Romanian MT, Peter et al.
(2016) find that tense and verb form on the target
side are a common source of error. Klubička et al.
(2017) find that errors in English–Croatian MT
are more common for some morphological cate-
gories, such as case. In a similar vein, Burlot and
Yvon (2017) evaluate morphological competence
of MT systems using contrast pairs and show that
systems have different strengths and weaknesses
for different morphological phenomena. Beyond
parsing and MT, morphology has also been shown
to present a challenge for tasks such as Arabic hand-
writing recognition (Habash and Roth, 2011) or
Russian anaphora resolution (Toldova et al., 2016).

Most of the studies cited above predate contex-
tual embedding models such as BERT (Devlin et al.,
2019), which are now considered state-of-the-art
for many NLP tasks. So far, few studies have ex-
plicitly analysed BERT with regard to morphology.
Edmiston (2020) analyses morphological content
in BERT-style models for five languages and finds
that “[morphological] ambiguity is negatively cor-
related with performance on classification, and to a
significant degree in many cases”, suggesting that
morphology is still a significant source of error
in these models. We go significantly beyond this
work by studying a much larger set of morphologi-
cal variables, across several architectures and tasks,
and across up to 57 languages.

3 Datasets

We collect datasets from shared tasks that (i) pub-
lish system outputs along with their gold annota-
tions, (ii) span a variety of languages, and (iii) cover
different NLP tasks. Based on these criteria, we
pick datasets from the following shared tasks:

• SEM: CoNLL-2009 Shared Task on Semantic
Dependencies (Hajič et al., 2009), covering
semantic role labeling for seven languages.

https://github.com/coastalcph/eacl2021-morpherror
https://github.com/coastalcph/eacl2021-morpherror
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• UDP: CoNLL-2018 Shared Task on Universal
Dependencies Parsing (Zeman et al., 2018),
covering syntactic parsing for 57 languages.

• VMWE: PARSEME 2018 Shared Task on Au-
tomatic Identification of Verbal Multiword Ex-
pressions (MWE; Ramisch et al., 2018), cov-
ering nine languages.

Additionally, we use the following dataset for its
gold annotations:

• MT: WMT 2019 Shared Tasks on Quality Es-
timation (Fonseca et al., 2019), covering word-
level quality estimation for English–German
and English–Russian machine translation.

Here, we are not interested in the system outputs
from the shared task; instead, we use the gold an-
notations for the quality estimation, which give us
token-level error labels for the underlying machine
translation outputs. Section 4.2 describes in detail
how we assign error labels to these datasets.

4 Methodology

We train a classifier to predict errors made by
NLP systems based on morphological features of
the input tokens, in order to then analyze which
morphological features (if any) are most predictive
of such errors. We first describe how we obtain
these features (Sec. 4.1) and how we classify when
an NLP system has made an error (Sec. 4.2), then
describe the classifier itself (Sec. 4.3).

4.1 Feature Extraction
We represent each token in the input data using a
binary feature set. Each individual feature is named
using the convention of {CATEGORY}={VALUE},
where the former is a feature category (such as
POS for “part of speech”) and the latter is a value
within that category (e.g. VERB). We encode these
features in a binary manner, i.e., for each feature
in our inventory, that feature is either present or
not present. Importantly, the classifier itself has
no notion of “feature categories” as it only sees a
single, binary feature vector.

The full feature inventory is summarized in Ta-
ble 1; what follows is a description of these features
and how we derived them.

Morphological features Our morphological fea-
ture inventory consists of (i) Universal Depen-
dencies (UD) features, (ii) lexical features, and
(iii) string-based features.

UD features include the universal part-of-
speech (POS) category and the universal fea-
ture set as defined by Universal Dependencies;
e.g. U:POS=VERB or U:TENSE=PAST.2 The UDP

shared-task gold data already provides this annota-
tion; for the other tasks, we obtain these features
by running UDPipe3 (Straka and Straková, 2017)
with the largest pre-trained model for the language
in question.4

We complement this with the following addi-
tional lexical features: (i) SYNCRETIC specifies
to what extent a token can be representative for
several morphological feature sets: e.g., ask can
be either U:MOOD=IND or U:MOOD=IMP, depend-
ing on context; (ii) AMBIGPOS specifies to what
extent the universal part-of-speech tag of the to-
ken can differ based on context: e.g., book could
be either U:POS=VERB or U:POS=NOUN; and
(iii) AMBIGLEX specifies whether or not the to-
ken belongs to multiple lexemes: e.g., ruling is
a form of both ‘(to) rule’ and ‘(the) ruling’. To
determine these features for a given token, we use
UDLexicons5 (Sagot, 2018); in case a language
is not covered by UDLexicons, we fall back to
UniMorph6 (Kirov et al., 2018).

Finally, we define purely string-based features
based on comparing the token with its lemma.
We perform character-based string alignment us-
ing Edlib (Šošić and Šikić, 2017) and derive the
following features: (i) EDIT=PRE and EDIT=SUF

when there is an edit at the beginning or the end
of the sequence, respectively; (ii) EDIT=IN when
there is an edit in the middle of the sequence; and
(iii) EDIT=FULL when there is no character align-
ment between the strings. These features are in-
tended to approximate prefixation, suffixation, in-
fixation or other word-internal processes, and sup-
pletion, respectively.

Control features To estimate the relative impor-
tance of our morphological features for the error
prediction task, we additionally introduce a set of
control features that are not morphologically mo-
tivated (cf. Tab. 1). These are (i) string length fea-

2The U: prefix serves to distinguish them from the other
features we define. For the full feature set, see: https:
//universaldependencies.org/u/feat/

3http://ufal.mff.cuni.cz/udpipe
4The VMWE task only provides POS and morphology an-

notation for a subset of its languages, so for consistency, we
choose to run UDPipe for all languages in this task as well.

5http://pauillac.inria.fr/~sagot/index.
html#udlexicons

6https://unimorph.github.io/

https://universaldependencies.org/u/feat/
https://universaldependencies.org/u/feat/
http://ufal.mff.cuni.cz/udpipe
http://pauillac.inria.fr/~sagot/index.html#udlexicons
http://pauillac.inria.fr/~sagot/index.html#udlexicons
https://unimorph.github.io/
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Feature Definition

Morphological features

U:POS={VALUE} universal part-of-speech tag, e.g. U:POS=VERB
U:{FEAT}={VALUE} universal feature according to the UD specification, e.g. U:TENSE=PAST

AMBIGPOS=NO |Pt| = 1 where Pt is the set of all observed universal POS tags for t
AMBIGPOS=YES 1 < |Pt| < 5
AMBIGPOS=HIGH |Pt| ≥ 5

AMBIGLEX=NO |Lt| = 1 where Lt is the set of all observed lemmata for t
AMBIGLEX=YES |Lt| > 1

SYNCRETIC=NO |Mt| = 1 where Mt is the set of all observed morphological feature combinations for t
SYNCRETIC=YES 1 < |Mt| < 5
SYNCRETIC=HIGH |Mt| ≥ 5

EDIT=PRE x0 6= MATCH where [x0, . . . , xn] is the sequence of edit alignments between t and l,
EDIT=SUF xn 6= MATCH xi ∈ {MATCH, MISMATCH, GAP}
EDIT=IN ∃i, j, k : i < j < k

∧xi = MATCH
∧xj 6= MATCH
∧xk = MATCH

EDIT=FULL ∀i : xi 6= MATCH

Control features

LEN=1-3 1 ≤ |t| ≤ 3 where |t| is the string length of t
LEN=4-6 4 ≤ |t| ≤ 6
LEN=7-9 7 ≤ |t| ≤ 9
LEN=10+ |t| ≥ 10

FREQ=99 P99 ≤ f(t) where f(t) is the absolute frequency count of t
FREQ=98 P98 ≤ f(t) < P99 and Pn is the n-th percentile of the frequency distribution
FREQ=95 P95 ≤ f(t) < P98

FREQ=90 P90 ≤ f(t) < P95

FREQ=UNCOMMON 4 ≤ f(t) < P90

FREQ=RARE f(t) < 4

Table 1: Inventory of extracted features (cf. Sec. 4.1). t always denotes the token, l its lemma.

tures, where each token is assigned exactly one
such feature depending on its length; and (ii) token
frequency bins. For the latter, we count token fre-
quencies in the Universal Dependencies treebanks
and assign each token a frequency feature. These
features are based on frequency bins that we man-
ually curated to provide a roughly balanced distri-
bution of tokens to bins: e.g., FREQ=99 denotes a
token that is in the 99th percentile of the frequency
distribution of all types, while FREQ=RARE de-
notes a token occurring less than four times overall
(see Table 1 for all definitions).

Pruning and statistics Since very rare features
are not very informative, for any given dataset, we
remove features that occur less than 10 times in
that dataset. Depending on the task and language,
we generate between 17 and 120 unique features
this way, with an average of 68.

4.2 Classifying errors in system outputs
The target variable for our classifier is a binary
label corresponding to whether or not the shared-

task system has made an error on the input token.
This requires comparing the outputs of a system to
the gold data and classifying each token as either
correct or incorrect. We will also refer to the latter
as the error class. This classification follows the
original evaluation criteria by the shared tasks to
the extent possible.

For SEM, a prediction is classified as “correct”
iff the semantic dependencies and label columns
are an exact match with the gold data. For UDP,
we do the same with the syntactic head and depen-
dency relation columns; this is the same criterion
that underlies the labeled attachment score (LAS)
commonly used to evaluate dependency parsing.
VMWE is a little more challenging since its predic-
tion involves a set of tokens within a sentence. For
each sentence, we match up each gold MWE with
the predicted MWE that has the same label and the
largest token overlap. We then consider a token “in-
correctly” predicted if has a MWE annotation that
does not belong to one of these matched MWEs,
or if it lacks a MWE annotation that it should have
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according to the gold data.
As mentioned before, we treat the MT data a

little differently: here, the gold data provides bi-
nary labels in the form of “OK” and “BAD” tags,
corresponding to the correctness of some machine
translation system. These tags are provided both
for tokens and gaps between tokens (to account for
the deletion/insertion of words in machine transla-
tion). We use the token-level tags from the gold
data directly as our error classification labels.

Appendix A gives an example for the error clas-
sification approach on VMWE and MT.

4.3 Training classifiers

With the extracted features (from Sec. 4.1), we can
now train classifiers to predict the error variable
(from Sec. 4.2). Concretely, we train random for-
est classifiers (Breiman, 2001) as implemented by
Scikit-learn7 (Pedregosa et al., 2011) on each out-
put file provided by each shared task. Random
forests are ensembles of decision trees and are
quick to train: the average training time on our
datasets was 14 seconds on CPU, with no single
run taking longer than five minutes.

As an alternative to random forests, we also ex-
perimented with randomized logistic regression
classifiers followed by stability selection (Mein-
shausen and Bühlmann, 2010) to select predictive
features. In our trials, this approach showed a
worse performance (in terms of F1-score) com-
pared to random forests, while also taking consider-
ably longer to run (averaging 7 minutes per dataset).
We therefore only report results with random forest
classifiers.

5 Analysis

For each shared task (Sec. 3), we ran our classifi-
cation pipeline (Sec. 4) separately for each combi-
nation of (i) system submission and (ii) language
evaluated on. Since random forests are largely in-
terpretable, our analysis focuses on the important
features in our learned models.

First, though, we look at the overall F1-score
of the individual classifiers, which we evaluate
via stratified 5-fold cross-validation on each data
point (Sec. 5.1). Additionally, to better estimate
the importance of morphology, we run our cross-
validation pipeline a second time without the mor-

7We use the default parameters in Scikit-learn 0.23, with
the exception of setting class weights to be “balanced” accord-
ing to their frequencies in the input data.

phological features, i.e., only providing the clas-
sifiers with the “control features” shown in Tab. 1.
We refer to these two feature sets as “full” and
“control” settings, respectively, and analyze their
differences in F1-score (Sec. 5.2).8 Finally, we
analyse the importance of individual morphologi-
cal features (Sec. 5.3).

5.1 How well do the classifiers predict
errors?

To evaluate how well the full classifiers learned
the task, we consider their F1-score for predicting
the “error” class. Across all of our datasets, we ob-
serve a mean F1 of 0.43 with a standard deviation
of ±0.18. Note that our setup is not comparable to
most other NLP classification tasks: we evaluate
a classifier trained to detect the errors of state-of-
the-art systems, which means that (i) the task is
inherently hard, as those systems are optimized to
fix easily detectable errors, and (ii) there is no rea-
son to assume a priori that this task is well learnable
from morphological input features alone. There-
fore, we believe an F1 score of 0.43—albeit with
considerable variance in performance across tasks
and languages—is a strong result.

Error rate There is one important aspect to con-
sider: the frequency of the “error” class depends on
the system performance of the data point we look
at, and as such our class distribution can be highly
imbalanced and varied. Indeed, F1-score and fre-
quency of the error class correlate very strongly
with Pearson’s r = 0.93. Figure 2 plots this rela-
tionship.9 This suggests that the errors introduced
by state-of-the-art NLP systems, unsurprisingly,
become harder and harder to predict the better the
underlying systems perform.

Note that data imbalance is in the nature of the
error prediction task, as we expect errors in state-of-
the-art systems to be rare. Additionally, different

8To complement the results and analyses presented here,
we also provide a detailed table with the results for all
task/language pairs in Appendix B.

9It might look surprising that many data points have
very high error rates, with some even going above 0.95;
i.e., more than 95% of all predictions in the respective
file are deemed to be “incorrect” according to the crite-
ria in Sec. 4.2. Spot-checking reveals that this is, how-
ever, plausible: for example, in UDP, the average la-
beled attachment score (LAS) on the Thai TH_PUD tree-
bank was only 1.38 (Zeman et al., 2018, Table 15), with
23 systems achieving a LAS of only 0.77 or lower (out
of 100; cf. http://universaldependencies.org/
conll18/results-las.html), which is reflected by an
error rate of ≥99.23% in our data.

http://universaldependencies.org/conll18/results-las.html
http://universaldependencies.org/conll18/results-las.html
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Figure 2: F1-scores of trained error classifiers in rela-
tion to the frequency of error, i.e. the error rate of the
original model (cf. Sec. 4.2).

languages have differently-sized morphological tag
inventories, affecting the total number of input fea-
tures for the classifier. We do not attempt to apply
data balancing techniques to counteract this, since
this would make the task artificially easy and our
results overly optimistic.

5.2 How important is morphology for
predicting errors?

Figure 3 provides an alternative view of the F1-
scores presented in Fig. 2, this time as a letter-value
plot (Hofmann et al., 2017) showing quantiles of
the F1 distribution. Additionally, we compare the
classifier with the full feature set to the control set
where morphological features were not included.

We observe that the classifiers learn best on UDP

followed by SEM, while classifier F1 is relatively
poor on VMWE data. A probable explanation for
this is the generally low error rate in VMWE (cf.
Fig. 2). The other important observation is that
classifiers in the “control” setting score consistently
lower than the classifiers that have access to mor-
phological features.

Importance by language For looking at individ-
ual languages, we restrict ourselves to the UDP data.
Firstly, UDP covers 57 languages—more than any
other task in our comparison—and there are no lan-
guages in the other tasks that are not also contained
in UDP. Secondly, our classifier performance is
generally highest on UDP (cf. Fig. 3), allowing for
a more meaningful interpretation of results, partic-
ularly of selected features.

Furthermore, to factor out the effect of a data
point’s error rate (as discussed in Sec. 5.1), we look
at the difference between the F1-score of the full

SEM UDP VMWE MT
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e

Feature set
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Control only

Figure 3: Quantiles of the F1 distribution by dataset,
and whether the classifiers were trained using the full
feature set from Tab. 1 (blue) or only the control fea-
tures (orange).

classifier and the control classifier trained on the
same data point. In other words, we define

∆F1 = F1(gf ) − F1(gc) (1)

where gf and gc are the classifiers with the full
and the control feature set, respectively. This gives
us a way to judge the importance of morphologi-
cal features relative to the non-morphological ones
while minimizing the effect of the error rate on
the results, since ∆F1 no longer shows a strong
correlation with the error rate (r = 0.29).

Figure 4 (bottom half) shows the quartiles of
∆F1 scores by language in the UDP dataset. They
span a wide range of values, with the median ∆F1

varying gradually between −0.03 (for Turkish,
TUR) and 0.24 (for Nigerian Pidgin, PCM). Mor-
phological features appear to be important for some
languages while being unhelpful, and sometimes
even detrimental, for others.

Morphological complexity Are the differences
in ∆F1 scores (in Fig. 4) somehow related to
the morphological complexity of the languages?
To analyze this relationship more systematically,
we use the measure of morphological feature en-
tropy (MFE) introduced by Çöltekin and Rama
(2018). MFE is sensitive to both the size of a lan-
guage’s morphological feature inventory as well as
its distribution, with a more uniform distribution
of features resulting in a higher MFE. Since MFE
is a treebank measure that relies on the association
between tokens and morphological tags, it is af-
fected by tokenization and annotation choices of
the treebank used to calculate it; therefore, it can
only be considered a rough approximation of the
underlying language’s complexity. Like Çöltekin
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Figure 4: Classifier performance on UDP by language, sorted by median ∆F1, where ∆F1 is the difference in
F1-scores between training with the full and the control feature set (cf. Eq. 1). Bottom half shows the quartiles
of the ∆F1 distribution, top half shows the morphological feature entropy (MFE) for the given language; color
shading is also based on MFE (with darker shade = higher MFE). Full names for all language codes as well as
exact numeric values can be found in Appendix B.

and Rama (2018), we calculate the MFE score for
each language on the UD treebanks.10

The MFE score for each language is shown in
the top half of Fig. 4. Surprisingly, we find a slight,
negative correlation between MFE and ∆F1 (Pear-
son’s r = −0.24). While languages with high MFE
appear across the whole range of the ∆F1 distribu-
tion, a number of languages with low MFE—and
thus deemed to be more morphologically simple,
such as Thai (THA), Japanese (JPN), or Nigerian
Pidgin (PCM)—are found to profit more from the
inclusion of morphological features. One possible
explanation is that the control features are already
very strong, which we will look at more closely in
Sec. 5.3. Another possible factor is that morpholog-
ically complex languages introduce a much larger
set of morphological features; if, for a given lan-
guage, most of them are not relevant for predicting
errors in the UDP task, they might hurt the overall
classifier performance.

5.3 What morphological features are most
predictive of errors?

Morphological features provide a helpful signal to
the classifiers, though its overall magnitude differs

10We use UD version 2.5 (Zeman et al., 2019).

by language (cf. Sec. 5.2). Now, we ask which of
the morphological features are particularly relevant
for error prediction. Since plain feature impor-
tances of trained random forest classifiers can be
misleading (Strobl et al., 2007; Parr et al., 2018),
we follow the approach of explicitly removing fea-
tures and retraining (Parr et al., 2018; Hooker and
Mentch, 2019). Unlike the analyses above, we are
not concerned with generalization here, but with
identifying features that are especially predictive
for the error variable on each dataset as a whole.
Therefore, we do not use a cross-validation strat-
egy, but rely on the full dataset for both training
and obtaining feature importances.

Concretely, for each feature category (as intro-
duced in Sec. 4.1), we retrain the model without
features from that category and note the drop in
error-class F1-score compared to the model with
the full feature set. Formally, let Φ be the full
feature set and φc ⊂ Φ the subset of features be-
longing to category c (e.g., c = U:TENSE). The
importance of category c is then defined as

f(c) = F1(CΦ) − F1(CΦ\φc) (2)

whereCX is a random forest classifier trained using
feature setX . Higher values for f(c) mean a higher
importance of category c, while negative values
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Category FI

U:POS 32.65
FREQ 15.51
LEN 11.38
U:CASE 7.25
U:GENDER 6.96
EDIT 6.75
U:NUMBER 3.78
U:NAMETYPE 2.77
U:ANIMACY 2.73
U:ADPTYPE 1.96

(a) SEM

Category FI

U:POS 34.74
FREQ 31.99
LEN 21.79
U:CASE 16.51
U:GENDER 10.98
EDIT 9.01
U:NUMBER 6.47
U:ANIMACY 3.78
U:ASPECT 2.28
SYNCRETIC 2.08

(b) UDP

Category FI

FREQ 38.24
LEN 28.97
U:CASE 12.56
U:POS 12.47
U:GENDER 10.15
EDIT 9.78
U:ANIMACY 7.24
U:NUMBER 7.15
U:ASPECT 5.81
U:TENSE 2.68

(c) VMWE

Category FI

FREQ 29.50
LEN 19.63
U:CASE 12.39
U:POS 10.93
U:GENDER 9.69
EDIT 5.91
U:NUMBER 3.94
U:ASPECT 3.25
SYNCRETIC 2.84
U:ANIMACY 2.30

(d) MT

Table 2: Top 10 feature categories by average feature importance (FI) for each task. All FI scores given ·10−3

mean that including c is actually detrimental to the
F1-score.

Average feature importances Table 2 shows the
top 10 feature categories for each task, averaged
over all languages and datasets. The two control
features, FREQ and LEN, always appear among the
three most important categories, only trumped by
U:POS for the UDP and SEM tasks. Notably, these
three are the only feature categories that are guar-
anteed to appear with every token. It is no surprise
that token frequency is strongly related to the likeli-
hood of errors, while Zipf’s law tells us that token
length is strongly correlated with frequency.

Figure 5 shows the distribution of feature impor-
tances for the top 10 categories of UDP (cf. Tab. 2b).
U:POS spans a much wider range of FI values than
any of the other categories, although the outliers at
the upper end all come from Nigerian Pidgin (PCM).
Moreover, categories with a low average FI (e.g.,
U:ASPECT or SYNCRETIC) do not show outliers,
i.e., are of low importance across languages. This
is also true for the remaining feature categories.

Individual part-of-speech tags Since U:POS is
an important feature category across tasks (cf.
Tab. 2), we also look at feature importances for
individual POS tags. For this, we use the same
approach as for the feature categories (cf. Eq. 2),
except that we now only remove a single U:POS

feature from Φ at a time.
Table 3 shows the average feature importances

for individual U:POS features, though this time
we restrict ourselves to the subset of languages
in UDP that are also covered in SEM.11 This way,
we can better isolate the task-specific differences
in FI scores, without conflating them with the dif-

11These are Catalan, Czech, German, English, Japanese,
Spanish, and Chinese; cf. Appendix B.
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Figure 5: Quartiles of the top 10 feature categories on
UDP by average feature importance (FI).

ferent language-specific distributions of part-of-
speech tags that may affect these results. We find
that adverbs (ADV) are the most important part-
of-speech category for both tasks, while INTJ and
PART are found to be important for predicting er-
rors in UDP, but not in SEM. This aligns with our
intuitions about what is hard in syntactic and se-
mantic parsing, further supporting the validity of
our approach.

6 Conclusion

We presented a large-scale error analysis focus-
ing on the role of morphology. Our analysis
spans a range of morphological variables, four
NLP tasks, and up to 57 languages. We confirm the
common conjecture that morphological variables—
especially case and gender—are predictive of errors
across NLP tasks and languages. Somewhat sur-
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POS FI (·10−6)

ADV 39.5
INTJ 38.4
PART 26.5
AUX 15.0
PROPN 11.2
CCONJ 5.2
ADP 4.9
SCONJ 3.4
PRON 3.2
SYM 3.1
X 2.0
DET 0.6
VERB -0.3
NUM -1.7
PUNCT -13.8
ADJ -14.7
NOUN -15.9

(a) UDP

POS FI (·10−6)

ADV 9.9
AUX 6.8
X 4.3
ADP 3.7
SCONJ 2.9
SYM 1.7
NOUN -1.2
PRON -1.2
PART -2.6
INTJ -4.3
NUM -4.3
PROPN -5.0
VERB -5.0
DET -6.2
CCONJ -6.8
ADJ -8.1
PUNCT -9.3

(b) SEM

Table 3: Average feature importance (FI) for U:POS fea-
tures on the subset of languages that are both in UDP
and SEM.

prisingly, we found that the usefulness of morpho-
logical variables is negatively correlated with the
morphological complexity of the language in ques-
tion. We speculate this is because morphological
information is more discriminative in morphologi-
cally simple languages.
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2018. On the limitations of unsupervised bilingual
dictionary induction. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 778–
788, Melbourne, Australia. Association for Compu-
tational Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis,
and Torsten Hothorn. 2007. Bias in random forest
variable importance measures: Illustrations, sources
and a solution. BMC Bioinformatics, 8(25).

Svetlana Toldova, Ilya Azerkovich, Alina Ladygina,
Anna Roitberg, and Maria Vasilyeva. 2016. Error
analysis for anaphora resolution in Russian: new
challenging issues for anaphora resolution task in
a morphologically rich language. In Proceedings
of the Workshop on Coreference Resolution Beyond
OntoNotes (CORBON 2016), pages 74–83, San
Diego, California. Association for Computational
Linguistics.

Reut Tsarfaty, Dan Bareket, Stav Klein, and Amit
Seker. 2020. From SPMRL to NMRL: What did
we learn (and unlearn) in a decade of parsing
morphologically-rich languages (MRLs)? In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7396–
7408, Online. Association for Computational Lin-
guistics.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2016–2027, Vancouver,
Canada. Association for Computational Linguistics.
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Urešová, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la

Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wróblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

http://hdl.handle.net/11234/1-3105


1899

7 3 3 3 7 3 3 3 3

To było uczciwe postawienie sprawy – utrzymuje Kurski .
GOLD: 1 1

SYS: 1 1

(a) VMWE example from Polish

3 3 7 3 3 7 3

ersetzt die Standardglyphen durch die Glyphenglyphenglyphen .
GOLD: OK OK OK OK OK BAD OK OK OK OK OK BAD OK OK OK

(b) MT example from German

Table 4: Examples for how tokens are classified as correct (3) or incorrect (7) in our experiments. GOLD shows
gold annotations, SYS shows output from an NLP system participating in the respective shared task.

A Examples for error classification

Table 4a shows an example for how we classify
errors (cf. Sec. 4.2) in the VMWE dataset on ver-
bal multi-word expression (MWE) identification.
In the gold data, a single MWE (‘postawienie
sprawy’) is annotated, while the NLP system has
incorrectly identified the MWE as being ‘to . . .
postawienie’. The annotation “1” here is an ID in
case there are multiple MWEs within the same sen-
tence. We annotate both ‘to’, which was mistakenly
identified as part of the MWE, as well as ‘sprawy’,
which was mistakenly left out, as an error (7). All
remaining tokens are marked as correct (3).

Table 4b shows an example from the MT dataset
on quality estimation for machine translation (MT).
Here, the gold data provides us with “OK” and
“BAD” labels for the individual tokens of the
machine-generated translation as well as for the
gaps between the tokens. The latter is done to
be able to annotate missing passages in the ma-
chine translation output; i.e., a gap between tokens
would be labelled “BAD” if the MT system should
have produced more output at a given position in
a sentence than it did. Since it is unclear to which
(existing) tokens these “gap annotations” should be
ascribed to, we do not consider them for the error
classification, and only consider “OK/BAD” labels
for the tokens that do appear in the data.

B Statistics and classifier results

Table 5 presents statistics and classifier results, cor-
responding to the analyses in Secs. 5.1 and 5.2,
for each task/language pair. The column “Avg. er-
ror rate” corresponds to the error rates plotted in
Fig. 2, while the “MFE” column shows the mor-

phological feature entropy (cf. Sec. 5.2) for the re-
spective language. “Avg. F1” shows the average
F1-score after stratified 5-fold cross-validation (cf.
Sec. 5.1), while “Avg. ∆F1” corresponds to the
∆F1-measure defined in Eq. (1).
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Dataset Language (ISO 639-3 + Name) Avg. Error Ratio MFE Avg. F1 Avg. ∆F1

SEM CAT Catalan 0.15 5.41 0.39 0.13
CES Czech 0.31 9.47 0.63 0.08
DEU German 0.03 6.65 0.11 0.03
ENG English 0.19 4.52 0.42 0.08
JPN Japanese 0.23 0.00 0.57 0.09
SPA Spanish 0.16 5.62 0.40 0.12
ZHO Chinese 0.21 0.38 0.39 0.05

UDP AFR Afrikaans 0.20 5.16 0.40 0.02
ARA Arabic 0.26 6.10 0.44 0.03
BRE Breton 0.84 4.63 0.83 0.18
BUL Bulgarian 0.14 7.80 0.31 0.02
BXR Russia Buriat 0.87 5.18 0.85 -0.01
CAT Catalan 0.13 5.41 0.31 0.04
CES Czech 0.16 9.47 0.29 0.03
CHU Church Slavic 0.32 9.06 0.50 0.06
DAN Danish 0.22 6.55 0.35 0.01
DEU German 0.27 6.65 0.44 0.07
ELL Modern Greek (1453-) 0.16 7.68 0.33 0.02
ENG English 0.22 4.52 0.41 0.06
EST Estonian 0.22 6.46 0.34 -0.00
EUS Basque 0.25 6.99 0.41 0.06
FAO Faroese 0.68 5.89 0.71 0.07
FAS Persian 0.18 2.66 0.35 0.01
FIN Finnish 0.21 7.41 0.32 -0.01
FRA French 0.22 4.80 0.40 0.04
FRO Old French (842-ca. 1400) 0.23 2.74 0.40 0.02
GLE Irish 0.36 5.98 0.55 0.01
GLG Galician 0.26 2.39 0.50 0.09
GOT Gothic 0.37 8.51 0.55 0.07
GRC Ancient Greek (to 1453) 0.35 8.42 0.49 0.01
HEB Hebrew 0.29 5.48 0.48 0.02
HIN Hindi 0.11 5.67 0.29 0.02
HRV Croatian 0.18 7.55 0.32 0.02
HSB Upper Sorbian 0.72 7.83 0.72 0.05
HUN Hungarian 0.30 8.01 0.46 0.04
HYE Armenian 0.76 10.15 0.73 0.01
IND Indonesian 0.24 1.81 0.38 0.01
ITA Italian 0.20 5.18 0.39 0.03
JPN Japanese 0.42 0.00 0.55 0.11
KAZ Kazakh 0.78 6.35 0.80 0.03
KMR Northern Kurdish 0.77 6.66 0.75 0.06
KOR Korean 0.22 0.00 0.39 0.02
LAT Latin 0.35 8.67 0.46 0.02
LAV Latvian 0.26 9.17 0.36 -0.01
NLD Dutch 0.20 4.13 0.38 0.03
NOR Norwegian 0.25 6.29 0.38 0.07
PCM Nigerian Pidgin 0.84 0.00 0.79 0.24
POL Polish 0.13 9.86 0.25 0.00
POR Portuguese 0.16 3.97 0.32 0.04
RON Romanian 0.18 8.03 0.32 -0.01
RUS Russian 0.27 8.07 0.39 0.04
SLK Slovak 0.20 9.54 0.37 0.02
SLV Slovenian 0.35 7.98 0.47 0.03
SME Northern Sami 0.44 6.56 0.53 0.00
SPA Spanish 0.14 5.62 0.31 0.03
SRP Serbian 0.17 7.47 0.30 -0.01
SWE Swedish 0.23 6.61 0.41 0.07
THA Thai 0.93 0.31 0.83 0.04
TUR Turkish 0.41 7.74 0.48 -0.03
UIG Uighur 0.41 4.91 0.60 -0.01
UKR Ukrainian 0.21 8.35 0.36 0.02
URD Urdu 0.21 5.28 0.42 0.01
VIE Vietnamese 0.51 0.00 0.58 0.05
ZHO Chinese 0.31 0.38 0.47 0.02

VMWE ELL Modern Greek (1453-) 0.01 7.68 0.11 0.06
ENG English 0.06 4.52 0.26 0.10
EUS Basque 0.03 6.99 0.17 0.07
FAS Persian 0.03 2.66 0.11 0.03
HEB Hebrew 0.01 5.48 0.05 0.01
HUN Hungarian 0.10 8.01 0.15 0.07
POL Polish 0.02 9.86 0.16 0.11
POR Portuguese 0.07 3.97 0.15 0.06
SPA Spanish 0.02 5.62 0.24 0.17

MT DEU German 0.12 6.65 0.26 0.00
RUS Russian 0.11 8.07 0.22 -0.00

Table 5: Statistics and classifier results averaged over each task/language pair.


