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Abstract

Speech disfluencies are prevalent in sponta-
neous speech. The rising popularity of voice
assistants presents a growing need to han-
dle naturally occurring disfluencies. Semantic
parsing is a key component for understanding
user utterances in voice assistants, yet most
semantic parsing research to date focuses on
written text. In this paper, we investigate se-
mantic parsing of disfluent speech with the
ATIS dataset. We find that a state-of-the-art se-
mantic parser does not seamlessly handle dis-
fluencies. We experiment with adding real and
synthetic disfluencies at training time and find
that adding synthetic disfluencies not only im-
proves model performance by up to 39% but
can also outperform adding real disfluencies in
the ATIS dataset.

1 Introduction

Spoken language differs from written language.
Unlike written texts, spontaneous speech frequently
contains disfluencies such as filled pauses, rep-
etitions, repairs, and false starts. These affect
around 6% of words (Kasl and Mahl, 1965; Tree,
1995; Bortfeld et al., 2001) and occur in both
human-human and human-computer interactions
(Oviatt, 1995). While considerable research has
been done on speech disfluencies in syntactic pars-
ing (Johnson and Charniak, 2004; Wang et al.,
2018; Jamshid Lou et al., 2019), semantic parsing
of disfluent speech has received less attention.

Semantic parsing is the task of mapping written
text to a representation of its meaning. In voice as-
sistants, such as Amazon Alexa, Google Assistant,
or Siri, an automated speech recognition (ASR)
component is often followed by a semantic parsing
task that identifies the intent and slots of the tran-
scribed utterance. In voice-based contexts, speech
disfluencies are to be expected, and so a voice as-
sistant must accurately support disfluent speech to

support more natural user interaction. Despite the
growing popularity of voice assistants, semantic
parsing research to date has focused on written lan-
guage. Most popular semantic parsing datasets
only include written forms that were generated
from grammars (Coucke et al., 2018) or crowd-
sourced (Gupta et al., 2018) and do not contain
speech phenomena such as disfluencies.

One approach to parsing disfluent speech is to
detect and remove transcribed disfluencies in a
post-processing step after ASR with a disfluency
detector (Zayats et al., 2016; Jamshid Lou et al.,
2018). Alternatively, some ASR models attempt
to directly produce fluent transcriptions from dis-
fluent inputs (Jamshid Lou and Johnson, 2020) but
have lower performance. We investigate seman-
tic parsing of disfluent utterances directly, without
ASR post-processing, by training a single semantic
parsing model that handles both fluent and disfluent
utterances. Our approach has the advantage of be-
ing simple and easier to implement than approaches
that require multiple models in a pipeline.

We investigate semantic parsing of disfluent
speech using the ATIS semantic parsing dataset
(Price, 1990), which was originally collected as
spontaneous speech. ATIS is a small dataset but
currently the only semantic parsing dataset that con-
tains speech disfluencies. As such, our findings are
limited by dataset size and results may differ given
more data, however, we still find interesting prelim-
inary results. First, we compare performance of a
state-of-the-art semantic parser on disfluent and flu-
ent examples in ATIS and identify a performance
gap of 79%. To address this gap, we experiment
with augmenting the training data with real disflu-
encies, synthetically-generated disfluencies, and
a combination of both. We find that adding syn-
thetic disfluencies adds up to 39% improvement
in exact-match accuracy for disfluent utterances.
We also find that real disfluencies degrade perfor-
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Fluent please find a flight from detroit michigan to st. petersburg arriving before 10 pm

Speech please find a flight <from> <saint> <petersburg> <excuse> <me>
Transcription from detroit michigan to saint petersburg arriving before ten p m

Disfluent please find a flight from st. petersburg excuse me from detroit michigan
to st. petersburg arriving before 10 pm

Table 1: An example of a disfluent utterance transcribed in ATIS

mance on fluent data, while synthetic disfluencies
do not. This demonstrates that adding synthetic but
targeted disfluent training data can be more effec-
tive than adding real but noisier data to improve
model performance on disfluent utterances.

2 ATIS

The Airline Travel Information System (ATIS) cor-
pus (Price, 1990) is a widely used dataset in se-
mantic parsing and spoken language understanding.
ATIS contains human-computer dialogs in Ameri-
can English where speakers asked a computer sys-
tem about hypothetical flight planning scenarios. In
our experiments, we use the ATIS data splits from
Tur et al. (2010)’s All Train setup with 4,978 train-
ing examples (of which 500 are for development)
and 893 test examples selected from the wider cor-
pus as those that are context independent. We use
the target meaning representation format with slots
and intents introduced by Gupta et al. (2018), with
the same modification as Rongali et al. (2020) of
custom end-brackets.

Real Synthetic

Contains Filled Pause(s) 43.1% 73.0%
Contains Repair(s) 68.7% 66.5%
Fluent avg token length 13.6 11.1
Disfluent avg token length 15.4 13.5

Table 2: Description of ATIS disfluencies

Unlike most semantic parsing datasets, the ATIS
corpus contains recorded speech transcribed in de-
tail, which has been used to research characteris-
tics of disfluencies (Shriberg, 1996; Savova and
Bachenko, 2003). However, most semantic parsing
work on ATIS uses a cleaned version of the utter-
ances where disfluencies are removed (Price, 1990).
We use the original ATIS transcriptions to restore
disfluencies to the dataset. We reintroduce deleted
words in repairs, partial words longer than 1 char-
acter, and filled pauses (‘mm’, ‘uh’, ‘ah’, ‘um’).

Utterances identified as disfluent are manually ver-
ified. An example is shown in Table 1 and dataset
statistics about the disfluencies are in Table 2. We
map the disfluent utterances to the target meaning
representation of their fluent counterpart. This re-
sults in 314 disfluent utterances in the train set, 36
in development, and 56 in the test set, accounting
for 6.9% of the dataset.

3 Model Architecture

Hyperparameter Value

Batch Size 1400
Learning Rate 0.05
Epochs 100
Max Seq Length 50
Beam Width 4

Table 3: Hyperparameters used when training semantic
parsing models on the ATIS dataset

Our semantic parsing model architecture is
a reimplementation of the sequence-to-sequence
model with pointer generator network (Vinyals
et al., 2015) proposed by Rongali et al. (2020),
which achieved state-of-the-art performance on
three public datasets including ATIS. We use a
pre-trained RoBERTa language model (Liu et al.,
2019) as the encoder and a transformer based on
Vaswani et al. (2017) as the decoder. The encoder
converts a sequence of words into a sequence of
embeddings. Then at each time step, the decoder
outputs either a symbol from the output vocabu-
lary or uses a pointer generator network to generate
pointers to tokens in the source sequence. A final
softmax layer provides a probability distribution
over all actions, and beam search maximizes the
output sequence probability. We train on a single
Nvidia Tesla v100 16GB GPU with the hyperpa-
rameters shown in Table 3.
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4 Experiments

We run four experiments to evaluate how our se-
mantic parsing model handles speech disfluencies.
Each model is evaluated against three test sets: the
Original ATIS test set of 893 fluent utterances, the
Disfluent subset of 56 disfluent test set utterances
identified in §2, and the Fluent Subset containing
the fluent versions of these 56 utterances. The Flu-
ent and Disfluent subsets are small, however we
train multiple models and report results as the aver-
age exact-match accuracy over 5 runs with standard
deviation. We also calculate slot-match accuracy
for one model per setting on the disfluent subset,
which measures whether the slots in the representa-
tion are correct. Finally, we provide a breakdown
of performance based on disfluency type for a se-
lection of models in Table 5.

4.1 Experiment 1: Are models trained on
fluent data robust to disfluencies?

First, we investigate how a semantic parsing model
trained on fluent data performs on disfluent utter-
ances. We train a model with the original ATIS
dataset and evaluate on all test sets. The results are
in the first row of Table 4. These results show that
our ATIS model is not robust to disfluencies, scor-
ing 79% lower on the disfluent subset compared to
the fluent subset (0.02 vs. 0.81) even though these
are variations of the same utterances. In an error
analysis, we find that most of the errors on the dis-
fluent subset come from incorrect slots rather than
intents, and so we also report the slot accuracy on
the disfluent subset (0.29). Common errors include
repairs within slots where they should be deleted
(e.g. [SL:TolocCityName um washington]), or mis-
labeling filled pauses as airport or state codes.

4.2 Experiment 2: Can we improve
performance on disfluencies with real
disfluent data?

Next we experiment with adding real disfluent ex-
amples to improve model performance. We add
the 314 disfluent examples identified in §2 into the
train set and 36 into the dev set and fully retrain
the model. As shown in the second row of Table
4, adding real disfluent examples improves model
performance on the disfluent subset by 32% exact-
match accuracy and 17% slot accuracy. This is
promising, especially since only 7% of the train set
was disfluent. However, this improvement comes
at a cost: average performance drops by 6% on

the original test set and by 4% on the fluent sub-
set. We see errors where meaningful tokens are
erroneously dropped from slots, such as omitting

“closest” when parsing “which airport is closest to
ontario california”, or “city” from “kansas city”.

4.3 Experiment 3: Can we improve
performance on disfluencies with
synthetic data?

Adding disfluent examples improved performance
on the disfluent subset, but real disfluencies can
be sparse and costly to collect with target labels,
requiring expert annotators familiar with the mean-
ing representation. Additionally, real examples
can be complex with multiple disfluencies (e.g.

“beginning on april thirtieth and returning no
beginning on april twenty fifth and
beginning on may sixth returning on may sixth”.
The drop in performance on fluent examples
observed in §4.2 could suggest that adding real
disfluencies caused the model to overfit to noisier
signals, thus leading to worse performance. We
hypothesize that adding simpler and more targeted
synthetic disfluencies may improve model perfor-
mance. Previous studies have also illustrated the
benefits of augmenting training data with generated
synthetic data for disfluency detection and removal
(Bach and Huang, 2019; Dong et al., 2019; Wang
et al., 2019). And so our third experiment evaluates
whether synthetically-generated disfluencies can
improve model performance.

We generate synthetic disfluencies for each flu-
ent utterance in the ATIS train and dev set. While
real disfluencies can be affected by several factors,
such as sentence length (Shriberg, 1994), word fre-
quency (Hartsuiker and Notebaert, 2009; De Jong,
2016), and cognitive load (Oviatt, 1995), we try
to generate disfluencies with a simple method.
This lets us generate disfluencies quickly, and also
makes our generation process easy to replicate and
transfer to new domains and languages. We leave
research on the generation of more complex and
linguistically-guided disfluencies for future work.

For each fluent utterance u we randomly generate
one of 3 disfluent variations:

1 Filled Pause: Add 1 random filled pause per
10 words inserted after a random token in u.
Example: “um show me flights from denver”

2 False start repair: Select a random second
utterance u2. Take the first n tokens of u2
(where n is a random number between 1 and
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Dataset sizes Exact match accuracy Slot accuracy
Train Dev Original Fluent Disfluent Disfluent

ATIS 4478 500 0.85 ± 0.01 0.81 ± 0.01 0.02 ± 0.02 0.29

+ real 4792 536 0.79 ± 0.03 0.77 ± 0.04 0.34 ± 0.02 0.46

+ 1% synth 4523 505 0.85 ± 0.01 0.80 ± 0.02 0.20 ± 0.05 0.47
+ 5% synth 4702 525 0.85 ± 0.01 0.80 ± 0.02 0.31 ± 0.03 0.50
+ 10% synth 4926 550 0.85 ± 0.01 0.80 ± 0.01 0.34 ± 0.02 0.52
+ 25% synth 5598 625 0.85 ± 0.01 0.78 ± 0.01 0.37 ± 0.03 0.60
+ 50% synth 6717 750 0.85 ± 0.01 0.79 ± 0.02 0.39 ± 0.02 0.61
+ 100% synth 8956 1000 0.86 ± 0.01 0.79 ± 0.02 0.40 ± 0.04 0.64
100% synth 4478 500 0.79 ± 0.01 0.73 ± 0.01 0.41 ± 0.01 0.64

+ real + 1% synth 4837 541 0.78 ± 0.01 0.78 ± 0.02 0.33 ± 0.02 0.46
+ real + 5% synth 5016 561 0.79 ± 0.01 0.78 ± 0.02 0.33 ± 0.02 0.47
+ real + 10% synth 5240 586 0.79 ± 0.00 0.76 ± 0.03 0.32 ± 0.00 0.47
+ real + 25% synth 5912 661 0.78 ± 0.02 0.77 ± 0.03 0.33 ± 0.03 0.47
+ real + 50% synth 7031 786 0.79 ± 0.01 0.76 ± 0.03 0.30 ± 0.02 0.46
+ real + 100% synth 9270 1036 0.76 ± 0.03 0.73 ± 0.05 0.33 ± 0.02 0.54

Table 4: Results reported as averages over 5 runs ± the standard deviation. ATIS refers to fluent examples. Orig-
inal is the original test set of 893 utterances. Fluent and Disfluent are the 56 fluent/disfluent counterparts from
transcriptions. Slot Accuracy is the accuracy of predicted slots.

FPs Repairs

# of examples 18 34

ATIS 0.06 0.06
+ real 0.72 0.12
+ 50% synth 0.72 0.18
+ 100% synth 0.78 0.24
100% synth 0.78 0.26
+ real + 50% synth 0.72 0.15
+ real + 100% synth 0.78 0.21

Table 5: A breakdown of performance on the disfluent
subset comparing Filled Pauses (FPs) vs. Repairs for
select models. Examples containing both filled pauses
and repairs are excluded.

5, no larger than 60% of the tokens in u2) and
prepend them to u, along with a random in-
terregnum (e.g. ‘sorry’), filled pause, or noth-
ing. Example: “what’s the earliest flight mm
show me flights from denver to philadelphia”

3 Repeat repair: Split u after a random char-
acter, ensuring the final token of the first part
p1 is at least 2 characters long. We repeat
up to 2 of final full tokens in p1 then append
the remainder p2 with the complete token if
split. Example: “show me flights from denver

to phila denver to philadelphia”
Statistics about the synthetic disfluencies are in

Table 2. We incrementally add between 1% to
100% of the disfluent examples into the original
train and dev sets and fully retrain the model. We
also train a model on only synthetic disfluencies.

The results in Table 4 show that adding 10% of
the synthetic disfluencies has comparable perfor-
mance to adding the same number of real disflu-
encies on the disfluent subset and has less degra-
dation on the fluent test sets. A model trained en-
tirely on synthetic disfluencies only achieves 41%
exact-match accuracy and 64% slot accuracy on
the disfluent subset, indicating there is still work to
be done in creating more robust models and better
synthetic disfluencies. The improvements of the
synthetic models on the disfluent subset come at
little to no cost on the fluent test sets. This lack
of degradation supports our hypothesis that real
disfluencies may add more noise at training time
than synthetic disfluencies.

In Table 5, we see that the performance boost
from synthetic examples comes mostly from better
handling of repairs. For disfluent utterances con-
taining filled pauses, real disfluencies alone can
get high exact-match accuracy (72%), while the
addition of synthetic data increases this up to 78%.
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For models trained with either real or synthetic dis-
fluencies, performance for repairs is worse than
for filled pauses, with 12% accuracy with real dis-
fluencies and up to 26% accuracy with synthetic
disfluencies. This suggests that repairs are gener-
ally harder for our semantic parser to handle. Still,
synthetic disfluencies outperform real disfluencies
on repairs by up to 13%. For example, the partial
word “phoe” in “flight between dallas and phoe
phoenix” is correctly dropped by synthetic models,
whereas models trained on fluent or real disfluen-
cies mistake “phoe” for an airport code.

4.4 Experiment 4: Combining real and
synthetic disfluent data

In our final experiment, we investigate whether real
disfluencies contribute alongside synthetic exam-
ples. We combine the fluent ATIS examples with
the real ATIS disfluencies and then incrementally
add between 1% to 100% of the synthetic exam-
ples. The results are in Table 4. These results show
an initial exact-match accuracy advantage on the
disfluent subset from using real and synthetic ex-
amples. Models with real disfluencies and 1% of
the synthetic disfluencies score higher than 1% of
the synthetic disfluencies alone (0.33 vs. 0.20), but
synthetic disfluencies alone outperform after 10%.
Performance on the original test set and fluent sub-
set remain low. These results reveal that even if a
dataset of real disfluencies is available, it can still
be better to add only simpler synthetic disfluencies
to training data to avoid adding noise to the model.

5 Conclusion

In this work, we evaluate semantic parsing of dis-
fluent utterances in the ATIS dataset. We high-
light the importance of considering spoken lan-
guage phenomena when building semantic parsers
by showing that a state-of-the-art semantic pars-
ing model trained on fluent data is not robust to
naturally occurring speech disfluencies. Although
the ATIS dataset is small, we present preliminary
results showing that adding real or synthetic dis-
fluencies at training time can significantly improve
performance by up to 39%. While adding real dis-
fluencies comes with degradation in performance
on fluent utterances, adding synthetic disfluencies
improves performance on disfluent utterances with
almost no degradation on fluent utterances and re-
quires no additional costs for annotations or la-
beling. These findings show that adding simpler,

targeted synthetic disfluencies can be a practical
and effective way to improve a semantic parser’s
performance on disfluent utterances. With the re-
lease of more and larger spoken language semantic
parsing datasets in the future, we hope to replicate
and strengthen our findings in future work.
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