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Abstract

This paper presents a novel framework for re-
constructing multi-hop explanations in science
Question Answering (QA). While existing ap-
proaches for multi-hop reasoning build expla-
nations considering each question in isolation,
we propose a method to leverage explanatory
patterns emerging in a corpus of scientific ex-
planations. Specifically, the framework ranks
a set of atomic facts by integrating lexical rel-
evance with the notion of unification power,
estimated analysing explanations for similar
questions in the corpus.

An extensive evaluation is performed on the
Worldtree corpus, integrating k-NN clustering
and Information Retrieval (IR) techniques. We
present the following conclusions: (1) The
proposed method achieves results competitive
with Transformers, yet being orders of magni-
tude faster, a feature that makes it scalable to
large explanatory corpora (2) The unification-
based mechanism has a key role in reducing
semantic drift, contributing to the reconstruc-
tion of many hops explanations (6 or more
facts) and the ranking of complex inference
facts (+12.0 Mean Average Precision) (3) Cru-
cially, the constructed explanations can sup-
port downstream QA models, improving the
accuracy of BERT by up to 10% overall.

1 Introduction

Answering multiple-choice science questions has
become an established benchmark for testing natu-
ral language understanding and complex reasoning
in Question Answering (QA) (Khot et al., 2019;
Clark et al., 2018; Mihaylov et al., 2018). In par-
allel with other NLP research areas, a crucial re-
quirement emerging in recent years is explainabil-
ity (Thayaparan et al., 2020; Miller, 2019; Biran
and Cotton, 2017; Ribeiro et al., 2016). To boost
automatic methods of inference, it is necessary not
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only to measure the performance on answer predic-
tion, but also the ability of a QA system to provide
explanations for the underlying reasoning process.

The need for explainability and a quantitative
methodology for its evaluation have conducted to
the creation of shared tasks on explanation recon-
struction (Jansen and Ustalov, 2019) using corpora
of explanations such as Worldtree (Jansen et al.,
2018, 2016). Given a science question, explanation
reconstruction consists in regenerating the gold ex-
planation that supports the correct answer through
the combination of a series of atomic facts. While
most of the existing benchmarks for multi-hop QA
require the composition of only 2 supporting sen-
tences or paragraphs (e.g. QASC (Khot et al.,
2019), HotpotQA (Yang et al., 2018)), the explana-
tion reconstruction task requires the aggregation of
an average of 6 facts (and as many as≈20), making
it particularly hard for multi-hop reasoning models.
Moreover, the structure of the explanations affects
the complexity of the reconstruction task. Explana-
tions for science questions are typically composed
of two main parts: a grounding part, containing
knowledge about concrete concepts in the ques-
tion, and a core scientific part, including general
scientific statements and laws.

Consider the following question and answer pair
from Worldtree (Jansen et al., 2018):

• q: what is an example of a force producing
heat?
a: two sticks getting warm when rubbed to-
gether.

An explanation that justifies a is composed using
the following sentences from the corpus: (f1) a
stick is a kind of object; (f2) to rub together means
to move against; (f3) friction is a kind of force; (f4)
friction occurs when two objects’ surfaces move
against each other; (f5) friction causes the tem-
perature of an object to increase. The explanation
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contains a set of concrete sentences that are concep-
tually connected with q and a (f1,f2 and f3), along
with a set of abstract facts that require multi-hop
inference (f4 and f5).

Previous work has shown that constructing
long explanations is challenging due to seman-
tic drift – i.e. the tendency of composing out-of-
context inference chains as the number of hops
increases (Khashabi et al., 2019; Fried et al., 2015).
While existing approaches build explanations con-
sidering each question in isolation (Khashabi et al.,
2018; Khot et al., 2017), we hypothesise that se-
mantic drift can be tackled by leveraging explana-
tory patterns emerging in clusters of similar ques-
tions.

In Science, a given statement is considered
explanatory to the extent it performs unifica-
tion (Friedman, 1974; Kitcher, 1981, 1989), that
is showing how a set of initially disconnected phe-
nomena are the expression of the same regularity.
An example of unification is Newton’s law of uni-
versal gravitation, which unifies the motion of plan-
ets and falling bodies on Earth showing that all
bodies with mass obey the same law. Since the
explanatory power of a given statement depends on
the number of unified phenomena, highly explana-
tory facts tend to create unification patterns – i.e.
similar phenomena require similar explanations.
Coming back to our example, we hypothesise that
the relevance of abstract statements requiring multi-
hop inference, such as f4 (“friction occurs when
two objects’ surfaces move against each other”),
can be estimated by taking into account the unifica-
tion power.

Following these observations, we present a
framework that ranks atomic facts through the com-
bination of two scoring functions:

• A Relevance Score (RS) that represents the
lexical relevance of a given fact.

• A Unification Score (US) that models the ex-
planatory power of a fact according to its fre-
quency in explanations for similar questions.

An extensive evaluation is performed on the
Worldtree corpus (Jansen et al., 2018; Jansen and
Ustalov, 2019), adopting a combination of k-NN
clustering and Information Retrieval (IR) tech-
niques. We present the following conclusions:

1. Despite its simplicity, the proposed method
achieves results competitive with Transform-
ers (Das et al., 2019; Chia et al., 2019), yet

being orders of magnitude faster, a feature that
makes it scalable to large explanatory corpora.

2. We empirically demonstrate the key role of
the unification-based mechanism in the re-
construction of many hops explanations (6 or
more facts) and explanations requiring com-
plex inference (+12.0 Mean Average Preci-
sion).

3. Crucially, the constructed explanations can
support downstream question answering mod-
els, improving the accuracy of BERT (Devlin
et al., 2019) by up to 10% overall.

To the best of our knowledge, we are the first
to propose a method that leverages unification pat-
terns for the reconstruction of multi-hop explana-
tions, and empirically demonstrate their impact on
semantic drift and downstream question answering.

2 Related Work

Explanations for Science Questions. Recon-
structing explanations for science questions can be
reduced to a multi-hop inference problem, where
multiple pieces of evidence have to be aggregated
to arrive at the final answer (Thayaparan et al.,
2020; Khashabi et al., 2018; Khot et al., 2017;
Jansen et al., 2017). Aggregation methods based on
lexical overlaps and explicit constraints suffer from
semantic drift (Khashabi et al., 2019; Fried et al.,
2015) – i.e. the tendency of composing spurious
inference chains leading to wrong conclusions.

One way to contain semantic drift is to lever-
age common explanatory patterns in explanation-
centred corpora (Jansen et al., 2018). Transform-
ers (Das et al., 2019; Chia et al., 2019) represent
the state-of-the-art for explanation reconstruction
in this setting (Jansen and Ustalov, 2019). However,
these models require high computational resources
that prevent their applicability to large corpora. On
the other hand, approaches based on IR techniques
are readily scalable. The approach described in
this paper preserves the scalability of IR methods,
obtaining, at the same time, performances competi-
tive with Transformers. Thanks to this feature, the
framework can be flexibly applied in combination
with downstream question answering models.

Our findings are in line with previous work in
different QA settings (Rajani et al., 2019; Yadav
et al., 2019), which highlights the positive impact
of explanations and supporting facts on the final
answer prediction task.



202

In parallel with Science QA, the development
of models for explanation generation is being
explored in different NLP tasks, ranging from
open domain question answering (Yang et al.,
2018; Thayaparan et al., 2019), to textual entail-
ment (Camburu et al., 2018) and natural language
premise selection (Ferreira and Freitas, 2020b,a).

Scientific Explanation and AI. The field of Ar-
tificial Intelligence has been historically inspired
by models of explanation in Philosophy of Sci-
ence (Thagard and Litt, 2008). The deductive-
nomological model proposed by Hempel (Hempel,
1965) constitutes the philosophical foundation
for explainable models based on logical deduc-
tion, such as Expert Systems (Lacave and Diez,
2004; Wick and Thompson, 1992) and Explanation-
based Learning (Mitchell et al., 1986). Simi-
larly, the inherent relation between explanation
and causality (Woodward, 2005; Salmon, 1984)
has inspired computational models of causal infer-
ence (Pearl, 2009). The view of explanation as
unification (Friedman, 1974; Kitcher, 1981, 1989)
is closely related to Case-based reasoning (Kolod-
ner, 2014; Sørmo et al., 2005; De Mantaras et al.,
2005). In this context, analogical reasoning plays a
key role in the process of reusing abstract patterns
for explaining new phenomena (Thagard, 1992).
Similarly to our approach, Case-based reasoning
applies this insight to construct solutions for novel
problems by retrieving, reusing and adapting expla-
nations for known cases solved in the past.

3 Explanation Reconstruction as a
Ranking Problem

A multiple-choice science question Q = {q, C}
is a tuple composed by a question q and a set of
candidate answers C = {c1, c2, . . . , cn}. Given
an hypothesis hj defined as the concatenation of
q with a candidate answer cj ∈ C, the task of
explanation reconstruction consists in selecting a
set of atomic facts from a knowledge base Ej =
{f1, f2, . . . , fn} that support and justify hj .

In this paper, we adopt a methodology that relies
on the existence of a corpus of explanations. A
corpus of explanations is composed of two distinct
knowledge sources:

• A primary knowledge base, Facts KB (Fkb),
defined as a collection of sentences Fkb =
{f1, f2, . . . , fn} encoding the general world
knowledge necessary to answer and explain

science questions. A fundamental and desir-
able characteristic of Fkb is reusability – i.e.
each of its facts fi can be potentially reused to
compose explanations for multiple questions

• A secondary knowledge base, Explanation
KB (Ekb), consisting of a set of tuples
Ekb = {(h1, E1), (h2, E2), . . . , (hm, Em)},
each of them connecting a true hypothesis
hj to its corresponding explanation Ej =
{f1, f2, . . . , fk} ⊆ Fkb. An explanation
Ej ∈ Ekb is therefore a composition of facts
belonging to Fkb.

In this setting, the explanation reconstruction
task for an unseen hypothesis hj can be modelled
as a ranking problem (Jansen and Ustalov, 2019).
Specifically, given an hypothesis hj the algorithm
to solve the task is divided into three macro steps:

1. Computing an explanatory score si =
e(hj , fi) for each fact fi ∈ Fkb with respect
to hj

2. Producing an ordered set Rank(hj) =
{f1, . . . , fk, fk+1, . . . , fn | sk ≥ sk+1} ⊆
Fkb

3. Selecting the top k elements belonging to
Rank(hj) and interpreting them as an expla-
nation for hj ; Ej = topK(Rank(hj)).

3.1 Modelling Explanatory Relevance
We present an approach for modelling e(hj , fi) that
is guided by the following research hypotheses:

• RH1: Scientific explanations are composed of
a set of concrete facts connected to the ques-
tion, and a set of abstract statements express-
ing general scientific laws and regularities.

• RH2: Concrete facts tend to share key con-
cepts with the question and can therefore be
effectively ranked by IR techniques based on
lexical relevance.

• RH3: General scientific statements tend to
be abstract and therefore difficult to rank by
means of shared concepts. However, due to
explanatory unification, core scientific facts
tend to be frequently reused across similar
questions. We hypothesise that the explana-
tory power of a fact fi for a given hypothesis
hj is proportional to the number of times fi
explains similar hypotheses.
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Ekb Explanations Ez

Relevance Score
rs(hj,fi)

RepresentationStored Hypotheses hz

RepresentationTest Hypothesis hj

Representation

hj: What is an example of a force
producing heat? Two sticks getting
warm when rubbed together

Nearest K
sim(hj,hz)

Unification Score
us(hj,fi)

Explanation
Ranking

f2                0.55
f3                0.55
f4                0.43
.
.
.
f1                 0.0

f2: friction is a kind of force
f1: friction causes the temperature of an object to increase

f2               0.85
f1               0.85

.

.

.
f3               0.12
f4               0.12

h1: Which force produces energy as
heat? Friction

h2: When the magnet is moved
away from the object, the magnetic
force on the object will decrease

h1             0.85
.
.
.
.

h2             0.12

f2                0.69
f1                0.42
.
.
.
f3                0.33
f4                0.27

f3: pull is a force
f4: magnetic attraction pulls two objects together

correct explanatory facts
wrong explanatory facts

E1

E2

Fkb Stored Facts fi

f1: friction causes the temperature of 
     an object to increase
f2: friction is a kind of force
f3: pull is a force
f4: magnetic attraction pulls two         
     objects together

Figure 1: Overview of the Unification-based framework for explanation reconstruction.

To formalise these research hypotheses, we
model the explanatory scoring function e(hj , fi)
as a combination of two components:

e(hj , fi) = λ1rs(hj , fi) + (1− λ1)us(hj , fi) (1)

Here, rs(hj , fi) represents a lexical Relevance
Score (RS) assigned to fi ∈ Fkb with respect to hj ,
while us(hj , fi) represents the Unification Score
(US) of fi computed over Ekb as follows:

us(hj , fi) =
∑

(hz ,Ez)∈kNN(hj)

sim(hj , hz)in(fi, Ez) (2)

in(fi, Ez) =

{
1 if fi ∈ Ez

0 otherwise
(3)

kNN(hj) = {(h1, E1), . . . (hk, Ek)} ⊆ Ekb is
the set of k-nearest neighbours of hj belonging
to Ekb retrieved according to a similarity function
sim(hj , hz). On the other hand, in(fi, Ez) verifies
whether the fact fi belongs to the explanation Ez

for the hypothesis hz .
In the formulation of Equation 2 we aim to cap-

ture two main aspects related to our research hy-
potheses:

1. The more a fact fi is reused for explanations
in Ekb, the higher its explanatory power and
therefore its Unification Score;

2. The Unification Score of a fact fi is propor-
tional to the similarity between the hypotheses
in Ekb that are explained by fi and the unseen
hypothesis (hj) we want to explain.

Figure 1 shows a schematic representation of the
Unification-based framework.

4 Empirical Evaluation

We carried out an empirical evaluation on the
Worldtree corpus (Jansen et al., 2018), a subset of
the ARC dataset (Clark et al., 2018) that includes
explanations for science questions. The corpus pro-
vides an explanatory knowledge base (Fkb andEkb)
where each explanation in Ekb is represented as a
set of lexically connected sentences describing how
to arrive at the correct answer. The science ques-
tions in the Worldtree corpus are split into training-
set, dev-set, and test-set. The gold explanations in
the training-set are used to form the Explanation
KB (Ekb), while the gold explanations in dev and
test set are used for evaluation purpose only. The
corpus groups the explanation sentences belong-
ing to Ekb into three explanatory roles: grounding,
central and lexical glue.

Consider the example in Figure 1. To support
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Model Approach Trained MAP

Test Dev

Transformers

Das et al. (2019) BERT re-ranking with inference chains Yes 56.3 58.5
Chia et al. (2019) BERT re-ranking with gold IR scores Yes 47.7 50.9
Banerjee (2019) BERT iterative re-ranking Yes 41.3 42.3

IR with re-ranking

Chia et al. (2019) Iterative BM25 No 45.8 49.7

One-step IR

BM25 BM25 Relevance Score No 43.0 46.1
TF-IDF TF-IDF Relevance Score No 39.4 42.8

Feature-based

D’Souza et al.(2019) Feature-rich SVM ranking + Rules Yes 39.4 44.4
D’Souza et al. (2019) Feature-rich SVM ranking Yes 34.1 37.1

Unification-based Reconstruction

RS + US (Best) Joint Relevance and Unification Score No 50.8 54.5
US (Best) Unification Score No 22.9 21.9

Table 1: Results on test and dev set and comparison with state-of-the-art approaches. The column trained indicates
whether the model requires an explicit training session on the explanation reconstruction task.

q and cj the system has to retrieve the scientific
facts describing how friction occurs and produces
heat across objects. The corpus classifies these
facts (f3, f4) as central. Grounding explanations
like “stick is a kind of object” (f1) link question
and answer to the central explanations. Lexical
glues such as “to rub; to rub together means to
mover against” (f2) are used to fill lexical gaps be-
tween sentences. Additionally, the corpus divides
the facts belonging to Fkb into three inference cat-
egories: retrieval type, inference supporting type,
and complex inference type. Taxonomic knowledge
and properties such as “stick is a kind of object”
(f1) and “friction is a kind of force” (f5) are clas-
sified as retrieval type. Facts describing actions,
affordances, and requirements such as “friction
occurs when two object’s surfaces move against
each other” (f3) are grouped under the inference
supporting types. Knowledge about causality, de-
scription of processes and if-then conditions such
as “friction causes the temperature of an object to
increase” (f4) is classified as complex inference.

We implement Relevance and Unification
Score adopting TF-IDF/BM25 vectors and
cosine similarity function (i.e. 1 − cos(~x, ~y)).
Specifically, The RS model uses TF-IDF/BM25
to compute the relevance function for each fact
in Fkb (i.e. rs(hj , fi) function in Equation 1)
while the US model adopts TF-IDF/BM25 to
assign similarity scores to the hypotheses in Ekb

(i.e. sim(hj , hz) function in Equation 2). For
reproducibility, the code is available at the fol-
lowing url: https://github.com/ai-systems/

unification_reconstruction_explanations.
Additional details can be found in the supplemen-
tary material.

4.1 Explanation Reconstruction

In line with the shared task (Jansen and Ustalov,
2019), the performances of the models are eval-
uated via Mean Average Precision (MAP) of the
explanation ranking produced for a given question
qj and its correct answer aj .

Table 1 illustrates the score achieved by our best
implementation compared to state-of-the-art ap-
proaches in the literature. Previous approaches
are grouped into four categories: Transformers,
Information Retrieval with re-ranking, One-step
Information Retrieval, and Feature-based models.

Transformers. This class of approaches em-
ploys the gold explanations in the corpus to train a
BERT language model (Devlin et al., 2019). The
best-performing system (Das et al., 2019) adopts
a multi-step retrieval strategy. In the first step, it
returns the top K sentences ranked by a TF-IDF
model. In the second step, BERT is used to re-
rank the paths composed of all the facts that are
within 1-hop from the first retrieved set. Similarly,
other approaches adopt BERT to re-rank each fact

https://github.com/ai-systems/unification_reconstruction_explanations
https://github.com/ai-systems/unification_reconstruction_explanations


205

Model MAP

All Central Grounding Lexical Glue

RS TF-IDF 42.8 43.4 25.4 8.2
RS BM25 46.1 46.6 23.3 10.7

US TF-IDF 21.6 16.9 22.0 13.4
US BM25 21.9 18.1 16.7 15.0

RS TF-IDF + US TF-IDF 48.5 46.4 32.7 11.7
RS TF-IDF + US BM25 50.7 48.6 30.42 13.4
RS BM25 + US TF-IDF 51.9 48.2 31.7 14.8
RS BM25 + US BM25 54.5 51.7 27.3 16.7

(a) Explanatory roles.

Model MAP

1+ Overlaps 1 Overlap 0 Overlaps

RS TF-IDF 57.2 33.6 7.1
RS BM25 62.2 37.1 7.1

US TF-IDF 17.37 18.0 12.5
US BM25 18.1 18.1 13.1

RS TF-IDF + US TF-IDF 60.2 38.4 9.0
RS TF-IDF + US BM25 62.5 39.5 9.6
RS BM25 + US TF-IDF 61.3 40.6 11.0
RS BM25 + US BM25 64.8 41.9 11.2

(b) Lexical overlaps with the hypothesis.

Model MAP

Retrieval Inference-supporting Complex Inference

RS TF-IDF 33.5 34.7 21.8
RS BM25 36.0 36.1 24.8

US TF-IDF 17.6 12.8 19.5
US BM25 16.8 13.2 20.9

RS TF-IDF + US TF-IDF 38.3 33.2 30.2
RS TF-IDF + US BM25 40.0 35.6 33.3
RS BM25 + US TF-IDF 40.5 33.6 33.4
RS BM25 + US BM25 40.6 38.3 36.8

(c) Inference types.

Table 2: Detailed analysis of the performance (dev-set) by breaking down the gold explanatory facts according to
their explanatory role (2.a), number of lexical overlaps with the question (2.b) and inference type (2.c).

individually (Banerjee, 2019; Chia et al., 2019).

Although the best model achieves state-of-the-
art results in explanation reconstruction, these ap-
proaches are computationally expensive, being lim-
ited by the application of a pre-filtering step to
contain the space of candidate facts. Consequently,
these systems do not scale with the size of the cor-
pus. We estimated that the best performing model
(Das et al., 2019) takes ≈ 10 hours to run on the
whole test set (1240 questions) using 1 Tesla 16GB
V100 GPU.

Comparatively, our model constructs explana-
tions for all the questions in the test set in ≈
30 seconds, without requiring the use of GPUs
(< 1 second per question). This feature makes
the Unification-based Reconstruction suitable for
large corpora and downstream question answer-
ing models (as shown in Section 4.4). Moreover,
our approach does not require any explicit train-
ing session on the explanation regeneration task,
with significantly reduced number of parameters to
tune. Along with scalability, the proposed approach
achieves nearly state-of-the-art results (50.8/54.5
MAP). Although we observe lower performance
when compared to the best-performing approach
(-5.5/-4.0 MAP), the joint RS + US model outper-
forms two BERT-based models (Chia et al., 2019;
Banerjee, 2019) on both test and dev set by 3.1/3.6
and 9.5/12.2 MAP respectively.

Information Retrieval with re-ranking. Chia
et al. (2019) describe a multi-step, iterative re-
ranking model based on BM25. The first step con-
sists in retrieving the explanation sentence that is
most similar to the question adopting BM25 vec-
tors. During the second step, the BM25 vector
of the question is updated by aggregating it with
the retrieved explanation sentence vector through
a max operation. The first and second steps are
repeated for K times. Although this approach uses
scalable IR techniques, it relies on a multi-step
retrieval strategy. Besides, the RS + US model out-
performs this approach on both test and dev set by
5.0/4.8 MAP respectively.

One-step Information Retrieval. We compare
the RS + US model with two IR baselines. The
baselines adopt TF-IDF and BM25 to compute the
Relevance Score only – i.e. the us(q, cj , fi) term in
Equation 1 is set to 0 for each fact fi ∈ Fkb. In line
with previous IR literature (Robertson et al., 2009),
BM25 leads to better performance than TF-IDF.
While these approaches share similar characteris-
tics, the combined RS + US model outperforms
both RS BM25 and RS TF-IDF on test and dev-set
by 7.8/8.4 and 11.4/11.7 MAP. Moreover, the joint
RS + US model improves the performance of the
US model alone by 27.9/32.6 MAP. These results
outline the complementary aspects of Relevance
and Unification Score. We provide a detailed anal-
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(a) MAP vs Explanation length. (b) Precision@K.

Figure 2: Impact of the Unification Score on semantic drift (3.a) and precision (3.b). RS + US (Blue Straight), RS
(Green Dotted), US (Red Dashed).

K-nearest neighbours

M
A

P

45
46
47
48
49
50
51
52
53
54
55
56

k = 0 k = 10 k = 20 k = 40 k = 80 k = 100 k = 200

Figure 3: Impact of the k-NN clustering on the final
MAP score. The value k represents the number of sim-
ilar hypotheses considered for the Unification Score.

ysis by performing an ablation study on the dev-set
(Section 4.2).

Feature-based models. D’Souza et al. (2019)
propose an approach based on a learning-to-rank
paradigm. The model extracts a set of features
based on overlaps and coherence metrics between
questions and explanation sentences. These fea-
tures are then given in input to a SVM ranker mod-
ule. While this approach scales to the whole corpus
without requiring any pre-filtering step, it is signifi-
cantly outperformed by the RS + US model on both
test and dev set by 16.7/17.4 MAP respectively.

4.2 Explanation Analysis

We present an ablation study with the aim of under-
standing the contribution of each sub-component
to the general performance of the joint RS + US
model (see Table 1). To this end, a detailed eval-
uation on the development set of the Worldtree
corpus is carried out, analysing the performance in
reconstructing explanations of different types and
complexity. We compare the joint model (RS + US)

with each individual sub-component (RS and US
alone). In addition, a set of qualitative examples
are analysed to provide additional insights on the
complementary aspects captured by Relevance and
Unification Score.

Explanatory categories. Given a question qj
and its correct answer aj , we classify a fact fi be-
longing to the gold explanation Ej according to its
explanatory role (central, grounding, lexical glue)
and inference type (retrieval, inference-supporting
and complex inference). In addition, three new cat-
egories are derived from the number of overlaps
between fi and the concatenation of qj with aj (hj)
computed by considering nouns, verbs, adjectives
and adverbs (1+ overlaps, 1 overlap, 0 overlaps).

Table 2 reports the MAP score for each of the
described categories. Overall, the best results are
obtained by the BM25 implementation of the joint
model (RS BM25 + US BM25) with a MAP score
of 54.5. Specifically, RS BM25 + US BM25
achieves a significant improvement over both RS
BM25 (+8.5 MAP) and US BM25 (+32.6 MAP)
baselines. Regarding the explanatory roles (Table
2a), the joint TF-IDF implementation shows the
best performance in the reconstruction of ground-
ing explanations (32.7 MAP). On the other hand,
a significant improvement over the RS baseline is
obtained by RS BM25 + US BM25 on both lexical
glues and central explanation sentences (+6.0 and
+5.6 MAP over RS BM25).

Regarding the lexical overlaps categories (Table
2b), we observe a steady improvement for all the
combined RS + US models over the respective
RS baselines. Notably, the US models achieve
the best performance on the 0 overlaps category,
which includes the most challenging facts for the
RS models. The improved ability to rank abstract
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Question Answer Explanation Fact Most Similar Hypotheses in Ekb RS RS + US

If you bounce a rubber ball
on the floor it goes up and
then comes down. What
causes the ball to come
down?

gravity gravity; gravitational force
causes objects that have mass;
substances to be pulled down; to
fall on a planet

(1) A ball is tossed up in the air and it comes
back down. The ball comes back down be-
cause of - gravity (2) A student drops a ball.
Which force causes the ball to fall to the
ground? - gravity

#36 #2 (↑34)

Which animals would most
likely be helped by flood in
a coastal area?

alligators as water increases in an environ-
ment, the population of aquatic
animals will increase

(1) Where would animals and plants be most
affected by a flood? - low areas (2) Which
change would most likely increase the num-
ber of salamanders? - flood

#198 #57 (↑141)

What is an example of a
force producing heat?

two sticks getting
warm when rubbed
together

friction causes the temperature
of an object to increase

(1) Rubbing sandpaper on a piece of wood
produces what two types of energy? - sound
and heat (2) Which force produces energy
as heat? - friction

#1472 #21 (↑1451)

Table 3: Impact of the Unification Score on the ranking of scientific facts with increasing complexity.

explanatory facts contributes to better performance
for the joint models (RS + US) in the reconstruction
of explanations that share few terms with question
and answer (1 Overlap and 0 Overlaps categories).
This characteristic leads to an improvement of 4.8
and 4.1 MAP for the RS BM25 + US BM25 model
over the RS BM25 baseline.

Similar results are achieved on the inference
types categories (Table 2c). Crucially, the largest
improvement is observed for complex inference sen-
tences where RS BM25 + US BM25 outperforms
RS BM25 by 12.0 MAP, confirming the decisive
contribution of the Unification Score to the ranking
of complex scientific facts.

Semantic drift. Science questions in the
Worldtree corpus require an average of six facts
in their explanations (Jansen et al., 2016). Long
explanations typically include sentences that share
few terms with question and answer, increasing the
probability of semantic drift. Therefore, to test the
impact of the Unification Score on the robustness
of the model, we measure the performance in the
reconstruction of many-hops explanations.

Figure 2a shows the change in MAP score for
the RS + US, RS and US models (BM25) with
increasing explanation length. The fast drop in per-
formance for the Relevance Score reflects the com-
plexity of the task. This drop occurs because the RS
model is not able to rank abstract explanatory facts.
Conversely, the US model exhibits increasing per-
formance, with a trend that is inverse. Short expla-
nations, indeed, tend to include question-specific
facts with low explanatory power. On the other
hand, the longer the explanation, the higher the
number of core scientific facts. Therefore, the de-
crease in MAP observed for the RS model is com-
pensated by the Unification Score, since core scien-
tific facts tend to form unification patterns across

similar questions. This results demonstrate that the
Unification Score has a crucial role in alleviating
the semantic drift for the joint model (RS + US),
resulting in a larger improvement on many-hops
explanations (6+ facts).

Similarly, Figure 2b illustrates the Precision@K.
As shown in the graph, the drop in precision for the
US model exhibits the slowest degradation. Simi-
larly to what observed for many-hops explanations,
the US score contributes to the robustness of the
RS + US model, making it able to reconstruct more
precise explanations. As discussed in section 4.4,
this feature has a positive impact on question an-
swering.

k-NN clustering. We investigate the impact of
the k-NN clustering on the explanation reconstruc-
tion task. Figure 3 shows the MAP score obtained
by the joint RS + US model (BM25) with different
numbers k of nearest hypotheses considered for
the Unification Score. The graph highlights the im-
provement in MAP achieved with increasing values
of k. Specifically, we observe that the best MAP is
obtained with k = 100. These results confirm that
the explanatory power can be effectively estimated
using clusters of similar hypotheses, and that the
unification-based mechanism has a crucial role in
improving the performance of the relevance model.

4.3 Qualitative analysis.
To provide additional insights on the complemen-
tary aspects of Unification and Relevance Score,
we present a set of qualitative examples from the
dev-set. Table 3 illustrates the ranking assigned
by RS and RS + US models to scientific sentences
of increasing complexity. The words in bold indi-
cate lexical overlaps between question, answer and
explanation sentence. In the first example, the sen-
tence “gravity; gravitational force causes objects
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that have mass; substances to be pulled down; to
fall on a planet” shares key terms with question
and candidate answer and is therefore relatively
easy to rank for the RS model (#36). Nevertheless,
the RS + US model is able to improve the rank-
ing by 34 positions (#2), as the gravitational law
represents a scientific pattern with high explana-
tory unification, frequently reused across similar
questions. The impact of the Unification Score is
more evident when considering abstract explana-
tory facts. Coming back to our original example
(i.e. “What is an example of a force producing
heat?”), the fact “friction causes the temperature
of an object to increase” has no significant over-
laps with question and answer. Thus, the RS model
ranks the gold explanation sentence in a low posi-
tion (#1472). However, the Unification Score (US)
is able to capture the explanatory power of the fact
from similar hypotheses in Ekb, pushing the RS +
US ranking up to position #21 (+1451).

4.4 Question Answering

To understand whether the constructed explana-
tions can support question answering, we compare
the performance of BERT for multiple-choice QA
(Devlin et al., 2019) without explanations with the
performance of BERT provided with the top K ex-
planation sentences retrieved by RS and RS + US
models (BM25). BERT without explanations op-
erates on question and candidate answer only. On
the other hand, BERT with explanation receives
the following input: the question (q), a candidate
answer (ci) and the explanation for ci (Ei). In this
setting, the model is fine-tuned for binary classifi-
cation (bertb) to predict a set of probability scores
P = {p1, p2, ..., pn} for each candidate answer
in C = {c1, c2, ..., cn}:

bertb([CLS] || q||ci || [SEP] || Ei) = pi (4)

The binary classifier operates on the final hidden
state corresponding to the [CLS] token. To an-
swer the question q, the model selects the candidate
answer ca such that a = argmaxi pi.

Table 4 reports the accuracy with and without
explanations on the Worldtree test-set for easy
and challenge questions (Clark et al., 2018). No-
tably, a significant improvement in accuracy can
be observed when BERT is provided with expla-
nations retrieved by the reconstruction modules
(+9.84% accuracy with RS BM25 + US BM25
model). The improvement is consistent on the easy

Model Accuracy

Easy Challenge Overall

BERT (no explanation) 48.54 26.28 41.78

BERT + RS (K = 3) 53.20 40.97 49.39
BERT + RS (K = 5) 54.36 38.14 49.31
BERT + RS (K = 10) 32.71 29.63 31.75

BERT + RS + US (K = 3) 55.46 41.97 51.62
BERT + RS + US (K = 5) 54.48 39.43 50.12
BERT + RS + US (K = 10) 48.66 37.37 45.14

Table 4: Performance of BERT on question answering
(test-set) with and without the explanation reconstruc-
tion models.

split (+6.92%) and particularly significant for chal-
lenge questions (+15.69%). Overall, we observe a
correlation between more precise explanations and
accuracy in answer prediction, with BERT + RS
being outperformed by BERT + RS + US for each
value of K. The decrease in accuracy occurring
with increasing values of K is coherent with the
drop in precision for the models observed in Fig-
ure 2b. Moreover, steadier results adopting the RS
+ US model suggest a positive contribution from
abstract explanatory facts. Additional investigation
of this aspect will be a focus for future work.

5 Conclusion

This paper proposed a novel framework for multi-
hop explanation reconstruction based on explana-
tory unification. An extensive evaluation on the
Worldtree corpus led to the following conclusions:
(1) The approach is competitive with state-of-the-
art Transformers, yet being significantly faster
and inherently scalable; (2) The unification-based
mechanism supports the construction of complex
and many hops explanations; (3) The constructed
explanations improves the accuracy of BERT for
question answering by up to 10% overall. As a fu-
ture work, we plan to extend the framework adopt-
ing neural embeddings for sentence representation.
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A Supplementary Material

A.1 Hyperparameters tuning

The hyperparameters of the model have been tuned
manually. The criteria for the optimisation is the
maximisation of the MAP score on the dev-set.
Here, we report the values adopted for the experi-
ments described in the paper.

The Unification-based Reconstruction adopts
two hyperparameters. Specifically, λ1 is the weight
assigned to the relevance score in equation 1, while
k is the number of similar hypotheses to consider



211

for the calculation of the unification score (equa-
tion 2). The values adopted for these parameters
are as follows:

1. λ1 = 0.83 (1− λ1 = 0.17)

2. k = 100

A.2 BERT model
For question answering we adopt a BERTBASE

model. The model is implemented using PyTorch
(https://pytorch.org/) and fine-tuned using 4
Tesla 16GB V100 GPUs for 10 epochs in total with
batch size 32 and seed 42. The hyperparameters
adopted for BERT are as follows:

• gradient accumulation steps = 1

• learning rate = 5e-5

• weight decay = 0.0

• adam epsilon = 1e-8

• warmup steps = 0

• max grad norm = 1.0

A.3 Data and code
The experiments are carried out on the TextGraphs
2019 version (https://github.com/umanlp/
tg2019task) of the Worldtree corpus. The full
dataset can be downloaded at the following URL:
http://cognitiveai.org/dist/worldtree_

corpus_textgraphs2019sharedtask_

withgraphvis.zip.
The code to reproduce the experiments de-

scribed in the paper is available at the follow-
ing URL: https://github.com/ai-systems/

unification_reconstruction_explanations

https://pytorch.org/
https://github.com/umanlp/tg2019task
https://github.com/umanlp/tg2019task
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
http://cognitiveai.org/dist/worldtree_corpus_textgraphs2019sharedtask_withgraphvis.zip
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