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Abstract

Dialogue State Tracking (DST) forms a core
component of automated chatbot based sys-
tems designed for specific goals like hotel,
taxi reservation, tourist information etc. With
the increasing need to deploy such systems in
new domains, solving the problem of zero/few-
shot DST has become necessary. There has
been a rising trend for learning to transfer
knowledge from resource-rich domains to un-
known domains with minimal need for addi-
tional data. In this work, we explore the
merits of meta-learning algorithms for this
transfer and hence, propose a meta-learner D-
REPTILE specific to the DST problem. With
extensive experimentation, we provide clear
evidence of benefits over conventional ap-
proaches across different domains, methods,
base models and datasets with significant (5-
25%) improvement over the baseline in low-
data setting. Our proposed meta-learner is ag-
nostic of the underlying model and hence any
existing state-of-the-art DST system can im-
prove its performance on unknown domains
using our training strategy.

1 Introduction

Task-Oriented Dialogue (TOD) systems are auto-
mated conversational agents built for a specific goal
(for example hotel reservation). Many businesses
from wide-variety of domains (like hotel, restau-
rant, car-rental, payments etc) have adopted these
systems to cut down their cost on customer sup-
port services. Almost all such systems have a Dia-
logue State Tracking (DST) module which keeps
track of values for some predefined domain-specific
slots (example hotel-name, restaurant-rating etc)
after every turn of utterances from user and system.
These values are then used by Natural Language
Generator (NLG) to generate system responses and
fulfill the user goals.

Many of the recent works (Wu et al., 2019;
Zhang et al., 2019; Goel et al., 2019; Heck et al.,
2020) have proposed various neural models that
achieve good performance for the task but are data
hungry in general. Therefore, adapting to a new
unknown domain (farget domain) requires large
amounts of domain-specific annotations limiting
their use. However, given a wide range of prac-
tical applications, there has been a recent inter-
est in data-efficient approaches. Lee et al. (2019),
Gao et al. (2020) used transformer (Vaswani et al.,
2017) based models which significantly reduce
data dependence. Further, Gao et al. (2020) model
the problem as machine reading comprehension
task and benefit from its readily available external
datasets and methods. Wu et al. (2019) were first to
propose transferring knowledge from one domain
to another. Since, many domains like restaurant
and hotel share a lot of common slots like name,
area, rating, etc and hence such a transfer proved
to be effective for a low-resource domain. More
recently, Campagna et al. (2020) aimed at zero-shot
DST using synthetic data generation for the farget
domain imitating data from other domains.

Recent meta-learning methods like MAML
(Finn et al., 2017), REPTILE (Nichol et al., 2018)
have proven to be very successful in efficient and
fast adaptations to new tasks with very few labelled
samples. These methods specifically aim at the
setting where there are many similar tasks but very
small amount of data for each task. Agnostic of the
underlying model, these meta-learning algorithms
spit out initialization for its parameters which when
fine-tuned using low-resource target task achieves
good performance. Following their widespread
success in few-shot image classification, there has
been a lot of recent work on their merit in natural
language processing tasks. Huang et al. (2018); Gu
et al. (2018); Sennrich and Zhang (2019); Bansal
et al. (2019); Dou et al. (2019); Yan et al. (2020)
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attempt at using meta-learning for efficient trans-
fer of knowledge from high-resource tasks to a
low-resource task. Further, some of the more re-
cent works (Dai et al., 2020; Qian and Yu, 2019)
have shown meta-learners can be used for system
response generation in TOD systems which is gen-
erally downstream task for our DST task.

To the best of our knowledge, ours is the first
work exploring meta-learning algorithms for the
DST problem. While prior work focused on train-
ing their models with a mixture of data from other
available domains (¢rain domains) followed by fine-
tuning with data from target domain, we identify
that this method of transferring knowledge between
domains is inefficient, particularly in very low-data
setting with just 0, 1, 2, 4 annotated examples from
target domain. We, on the other hand, use train
domains to meta-learn the parameters of the model
used to initialize the fine-tuning process. We hy-
pothesize that though different domains share many
common slots, they can have different complexi-
ties. For some of the domains, it might be easier
to train the model using very few examples while
others may require large number of gradient steps
(based on their different data complexity and train-
ing curves with 1%, 5%, 10% data in Gao et al.
(2020)). Meta-learning takes into account that this
gradient information and share it across domains.
Rather than looking for an initialization that try to
simultaneously minimizes joint loss over all the do-
mains, it looks for a point from which the optimum
parameters of individual domains are reachable in
few (< 5) gradient steps (and hence very few train-
ing examples for these steps). Then the hope is
that the farget domain is similar to at least one of
the train domains (for example hotel & restaurant
or taxi & train) and hence the learned initializa-
tion will achieve efficient fine-tuning with very few
examples for the target domain as well. This di-
rection of limited data is motivated by practical
applicability, where it might be possible for any de-
veloper to manually annotate 4-8 examples before
deploying the chatbot for a new domain.

We highlight the main contributions of our work
below (i) We are the first to explore and reason
about the benefits of meta-learning algorithms
for DST problem (ii) We propose a meta-learner
D-REPTILE that is agnostic to underlying model
and hence has the ability to improve the state of
the art performance in zero/few-shot DST for new
domains. (iii)) With extensive experimentation, we

provide evidence of the benefit of our approach
over conventional methods. We achieve a sig-
nificant 5-25% improvement over the baseline in
few-shot DST that is consistent across different zar-
get domains, methods, base models and datasets.

2 Background

2.1 Dialogue State Tracking

DST refers to keeping track of the state of the
dialogue at every turn. State of dialogue can be
defined as (slot_name,slot_value) pairs that repre-
sents, given a domain-specific slot, the value that
the user provides or system-provided value that
the user accepts. Further, many domains have a
pre-defined ontology that specify the set of values
each slot can take. Note that the number of val-
ues in ontology varies a lot with slots. Some slots
like hotel-stars might have just five different values
(called categorical slots), while those like hotel-
name have hundreds of possible values (called ex-
tractive slots). It might be possible that a slot has
never been discussed in the dialogue sequence and
in that case, model has to predict a None value for
that particular slot.

Various models have been proposed for the
above task, but particularly relevant to this work
is transformer-based model STARC by Gao et al.
(2020). For each slot, they form a question (like
what is the name of the hotel for hotel-name slot)
and then at each turn append the tokens from di-
alogue utterance and the question separated by
[SEP] token. They then pass these sequence of
tokens through a transformer to form token em-
beddings. For the extractive slots, they use token
embeddings to mark the span (start and end po-
sition) of the answer value in the dialogue itself
(called extractive-model). For the categorical slots
with less number of possible values, categorical-
model append embeddings of each possible value
to the foken embeddings and then use a classifier
with softmax layer to predict the correct option.

2.2 Meta-Learning

With advances in model-agnostic meta-learning
framework by Finn et al. (2017); Nichol et al.
(2018), the few-shot problems have been revo-
lutionized. These frameworks define a underly-
ing task-distribution from which both train (7)
and target tasks (r') are sampled. For each
task 7, we are given very few labelled data-
points D" and a loss function £,. Now,
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given a new data point D'* from target task

7', the goal is to learn parameters 6, of any
model M such that L, (Di?St;GM) is mini-
mized. This is achieved by k-steps of gradient
descent using DZ‘”" with learning rate . More

formally, Oy = SGD(’DZM",ET/,H%[WT; k, o)
where SGD(D, L, 0'NIT: k, o) gives ) such that

Therefore, the goal now is to find a good initializa-
tion Gfélv IT for the gradient descent using the data
from train tasks 7. This is achieved by minimizing
the empirical loss as

0" = SGD(DIr*™ L. 0:k,0)  (2)
INIT _ . train, g(k)
01 arg min ZT: L (D7*677) ()

Note that the above optimization is complex
and involve second-order derivatives. For com-
putational benefits, Nichol et al. (2018) proposed
REPTILE and showed that these terms can be ig-
nored without effecting the performance of the
meta-learning algorithm. We refer the reader to
their work for more details.

3 Methodology

In this work, we propose D-REPTILE, a meta-
learning algorithm specific to DST task. Fol-
lowing what Qian and Yu (2019) did for di-
alogue generation problem, we treat differ-
ent domains as tasks for the meta-learning
algorithm. Let D = {di,ds,...d,} (eg.
{restaurant, taxi, payment, . ..}) be the set of
train domains for which we have annotated data
available. Let pp(.) define a probability distribu-
tion over these domains. Let Dy, , Dy, ... Dy, be
the training data from each of these domains. Let
M be any DST model with parameters 0. Let
m be the task-batch size (number of domains in
a batch in our case), «, 3 be the inner and outer
learning rate respectively, k be the number of gra-
dient steps. Let SGD(.) be the function as defined
in equation 1. Borrowing the meta-learning the-
ory regarding optimizing the objective equation
3 from Nichol et al. (2018), we define the algo-
rithm D-REPTILE in Algorithm 1. The update rule
for initialization (as defined in step 8) is same as
that of REPTILE. We chose REPTILE over other
meta-learning algorithms because of its simplicity
and computational advantages. Nonetheless, its

straight-forward to switch any other initialization
based meta-learner by changing meta-update step.
The novelty of our learner lies in its definition of
the meta-learning tasks that represent different do-
mains of DST problem. This algorithm aims to find
Of\ftv IT \which we use to initialize the model for the
fine-tuning stage with the target domain.

Algorithm 1: D-REPTILE: Meta Learner

for DST
Illpllt: Dd1 y Dd2 RN an
Parameters : M, L, pp(.), o, B, k, m
Result: 9%}[ T

1 Initialize 6y randomly

2 for iterationi =1,2,...do

3 sample m domains D; using pp(.)
4 for domain d; € D; do
5 sample data points D;; from Dy,
6 6%, < SGD(Dij, L, Ops; k, )
7 end
d .
8 | Oar < On+ Bos ST (03 — Om)

9 end
10 return 6 q;

We argue that the meta-learned initialization
are better suited for fine-tuning than conventional
methods. In the hope that joint optimal parame-
ters for train domains lie close to individual do-
mains, Wu et al. (2019) initialize the fine-tuning
stage of the target domain from the joint minimum
of the loss from data from all the frain domains
(called Naive pre-training before Fine-Tuning or
NFT here). More formally, they chose the follow-
ing initialization

n
Gf\leT =arg n%inZL'(de; 0) 4
j=1

Such an initialization tries to simultaneously min-
imize the loss for all the domains which might
be useful if the goal was to perform well on test
data coming from mixture of these domains. How-
ever, here our goal is to perform well on a single
unknown farget domain and no direct relation be-
tween this initialization and the optimal parameters
for the target domain can be seen. Further, as
the number of frain domains increases or training
data for each domain decreases, the joint optimum
can be very far-off from the individual domain-
optimum parameters. Therefore, these methods
perform particularly bad. We show empirical ev-
idence for this hypothesis in Section 4. On the
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other hand, if we optimize equation 3, we will
reach a point in the parameter space from where
all the domain-optimum parameters are reachable
in k-gradient descent steps. Therefore, we can
hope to reach the optimum parameters for the tar-
get domain as well efficiently. This hope is much
larger for DST problem specifically because of sim-
ilarities in different related domains (specifically
related slots as shown in Section 5).

Let us consider the following example, let restau-
rant and taxi be two of the frain domains. Optimiz-
ing equation 3, we might reach a point which is
closer to optimum parameters of restaurant domain
than taxi domain if we have have smaller gradi-
ent values for restaurant data but large for taxi.
However notably, both the optimum-parameters
are reachable in k-gradient steps. Now if target
domain is hotel (similar to restaurant domain with
common slots like rating, name, etc), we will al-
ready be close to its optimum parameters. Also if
the rarget domain is bus (similar to taxi domain
with common slots like time, place, etc), we will
have larger gradients in fine-tuning stage and thus
will reach the optimum parameters for bus as well.
This might not have been possible with equation 4
as the optimum parameters for joint of restaurant
and taxi data might be very far from both the indi-
vidual frain domains and will also have no specific
gradient properties for faster adaptation for any of
hotel or bus target domains.

4 Experiments

4.1 Datasets

We used two different DST datasets for our ex-
periments. (i) MultiWoz 2.0 (Budzianowski et al.,
2018), 2.1 (Eric et al., 2019) (ii) DSTCS8 (Rastogi
et al., 2019). The former is manually annotated
complex dataset with mostly 5 different domains,
8438 dialogues while the latter is relatively simple
synthetically generated dataset with 26 domains
and 16142 dialogues. Both the datasets contains
dialogues spanning multiple domains. Following
the setting from Wu et al. (2019), for extracting
data of a particular domain from the dataset, we
consider all the dialogues in which that domain is
present and ignore slots from other domains both
in train and test set. Further, as shown by Gao
et al. (2020), we use external datasets from Ma-
chine Reading for Question Answering (MRQA)
2019 shared task (Fisch et al., 2019), DREAM (Sun
et al., 2019), RACE (Lai et al., 2017) to pre-train

our transformer in our experiments and label it with
suffix *-RC’ to distinguish it from ’-base’ model.

4.2 Evaluation Metric

Based on the objective in DST, there is a well es-
tablished metric Joint Goal Accuracy (JGA). JGA
is the fraction of total turns across all dialogues for
which the predicted and ground truth dialogue state
matches for all slots. Following Wu et al. (2019),
for testing for a single farget domain in a multi-
domain dialogue, we only consider slots from that
domain in metric computation. Note that in some
of our experiments (where explicitly mentioned),
we further restrict the slots to only extractive or
only categorical slots. Also, as it happens most of
the times, whenever a slot is not mentioned in any
turn, the ground truth value for that slot is None.
For analysis, we further use the metric Active Slot
Accuracy which is the fraction of predicted values
of a particular slot that were correct whenever the
ground truth value was not none.

4.3 Experimental Setting

For all our experiments, both D-REPTILE and
baseline (NFT (Sec. 3)) uses STARC (Sec. 2)
as base model M. This ensures that all the gains
achieved in our experiments are only due to meta-
learning. In our implementation !, we use pre-
trained word embeddings Roberta-Large (Liu et al.,
2019), Adam optimizer (Kingma and Ba, 2014)
for gradient updates in both inner and outer loop,
a=5e B=1,m=4,k=>5, pp(i) < |Dy,|
(chosen using dev-set experiments as explained in
Section 5). As shown recently (Mosbach et al.,
2020), the fine-tuning of transformer based model
is unstable, therefore, we run fine-tuning multiple
times and report the mean and the standard devi-
ation of the performance. Also, the performance
varies with the choice of training data from tar-
get domain used for fine-tuning. However, for our
experiments, we chose these dialogues based on
number of active slots (not None) and use the same
dialogue for both D-REPTILE and baseline. Since,
we use very little data (0, 1, or 2 examples) from
target domain, we obviously would like to have
dialogues that at-least have all the slots being dis-
cussed in the utterances. In practical scenarios,
where a developer might be creating 1 or 2 ex-
amples for a new domain, it is always possible to
include all the slots in the dialogue utterances.

"https://github.com/saketdingliwal/Few-Shot-DST
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4.4 Results

In our experiments, we are able to achieve signifi-
cant improvement over the baseline method under
low-data setting (< 32 dialogues). Note that the
choice of low-data setting is guided by the practical
applications of the method. It also validates our
hypothesis that the initialization chosen by meta-
learning is closer to optimal parameters of the tar-
get domain in terms of gradient steps and therefore
perform better when there is very less data. How-
ever, as fine-tuning data is increased to 1000s of
dialogues, any random initialization is also able
to reach the optimal parameters for target domain.
We observe the benefits of D-REPTILE in limited
data consistently across different domains, datasets
and models as explained one-by-one below

Across domains - We used all different domains
of MultiWoz 2.0 data as farget domain in 5 plots
in Figure 1. We pre-train D-REPTILE (solid) and
NFT (dashed) versions of different models (repre-
sented by different colors). For the models repre-
sented by red and blue colors, we used all domains
other than target domain as our train domains. For
example, for the first plot, hotel domain is our tar-
get domain, while restaurant, train, attraction and
taxi are our train domains. The red corresponds
to starting with Roberta-Base embeddings, while
the blue represent Roberta-RC which is pre-trained
Roberta-Base with reading comprehension datasets
(Gao et al., 2020). The green dotted line represent
model without any pretraining. It is clearly very
bad and unstable. This shows importance of us-
ing other domains for few-shot experiments. We
fine-tune all our models using different amount of
training data of target domain (x-axis). In each
one of our models, the solid lines (D-REPTILE)
lies strictly above the dashed lines (NFT) in JGA
metric. The gains obtained are as high as 47.8%
(D-REPTILE) vs 22.3% (NFT) for restaurant do-
main with 1 dialogue which is more than 100%
improvement at no annotation cost at all.

Across models - Not only the results are consis-
tent across different base models for transformer
as shown in Figure 1 but also across different DST
methods. As done in Gao et al. (2020), we train
separate categorical and extractive models for ho-
tel domain (using categorical and extractive data
respectively from train domains) (which we have
combined to plot Figure 1). If we consider these
two fairly different models separately, we achieve
similar trends in each individually as plotted in

Joint Goal Accuracy Hotel Restaurant Taxi Attraction Train

TRADE (Wu et al., 2019)  13.7 11.52 60.58 19.87 22.37

STARC (Gao et al., 2020)  28.6 28.2 65 36.9 26.1

STARC + D-REPTILE 324 478 672 459 461
Table 1: Zero-shot performance on MultiWoz 2.0

dataset. Domains like restaurant and train witness a
significant boost in performance over baselines

Figure 2. Note that JGA metric is computed here
with restricted slots based on the type of the model.
The gains are larger for the extractive model possi-
bly because marking span in original dialogue can
be considered slightly harder task than choosing
among limited number of choices.

Across datasets - To show that the merits of D-
REPTILE are not limited to MultiWoz data, we
tested with domains from DSTCS dataset as both
train and target domain. In Figure 1, the orange
lines represent model pre-trained using all the do-
mains in DSTCS as frain domains while target
domain is from MultiWoz. As expected, the perfor-
mance of these models fall below red and blue lines
(models pre-trained with MultiWoz train domains)
but above green (no pre-training) as training and
testing datasets are different. However, the solid
orange line (D-REPTILE) lies above dashed line
(NFT). In another set of experiments, we used tar-
get domain from DSTCS8 and compiled the results
in Figure 3. Except for Hotels_1, Hotels_2 and
Hotels_3, all other domains from DSTCS8 are used
as train domains while Hotels_2 is kept as target
domain. We see that the benefits of meta-learning
are much larger for DSTCS dataset than MultiWoz.
For example, with 8 dialogues for fine-tuning, D-
REPTILE achieves JGA of 43.9% while NFT is
only able to get 14.1%. This can be attributed to
increase in number of different training tasks (23
domains were used as frain domains for DSTCS as
opposed to 4 for MultiWoz experiments).

Surprisingly, the meta-learned initializations not
only adapt faster but are also better to start with.
We see an improvement in zero-shot performance
as well. In addition to comparison with the NFT
baseline, we also show improvement over existing
models on MultiWoz 2.0 dataset in Table 1. Also
note that D-REPTILE is model-agnostic and there-
fore has the capability to improve the JGA for any
underlying model for a new unknown domain.

5 Ablation Studies

To validate our various theoretical hypothesis,
search for hyper-parameters, clearly identify and
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Figure 1: Performance of D-REPTILE vs NFT for different MultiWoz domains with three different models.

Joint Goal Accuracy for different STARC models for hotel domain
Categorical STARC Model (9/10 hotel slots) Extractive STARC Model (7/10 hotel slots)
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Figure 2: Performance of D-REPTILE vs NFT for dif-
ferent DST models for different slots in hotel domain.

Joint Goal Accuracy for Hotels_2 domain from DSTC8 data
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Figure 3: Performance of D-REPTILE vs NFT for Ho-
tels_2 domain in DSTCS8 data as target domain.

reason about the situations where using meta-
learning helps DST, we perform additional analysis
as written in subsections below.

5.1 Slot-wise Analysis

To exactly pin-point the advantage of D-REPTILE,
we do a slot-wise analysis of our models in Fig-
ure 4 and 5. Note that slots are defined as
domain_name.slot_name. For example, hotel.day
represents performance of the models in predicting
the values for day slot where the farget domain was
hotel. Overall performance or JGA in plot 1 of
Figure 1 is combination of all the hotel slots like
day, people, area, etc. Figure 4 shows the slots
which are common among different domains while
Figure 5 compare the performance for slots that
are unique to a target domain. We can see that
for the common slots, the solid lines (D-REPTILE)
mostly lie higher than the dashed (NFT) counter-
parts. However, nothing can be said in particular
about slots in Figure 5. This behaviour is expected
as unique slots particular to a target domain have
little to gain from the different slots present in train
domains (which were used for pre-training). This
is evident from the fact that slots like hotel.internet,
hotel.parking have zero-shot active accuracy close
to zero for all kinds of pretraining strategies (Figure
5). However, wherever slots between different do-
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Performance of categorical hotel slots(9/10) with different datasets for pre-training

hotel

Figure 6: JGA for categorical model for hotel domain
with different datasets

JGA for Restaurant domain dev set for different hyperparameters
for Roberta-RC-MultiWoz-D-REPTILE model
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Figure 7: JGA for restaurant domain dev set with differ-
ent hyper-parameters for the best D-REPTILE model

mains are similar, the pretraining have much larger
influence. In that case, the merit of learning gener-
alizable initialization from D-REPTILE than NFT
is much more clearly evident (Figure 4).

5.2 Hyper-parameter Search

We briefly discuss the choice of various hyper-
parameters here. We use dev set from restaurant
domain for searching for optimum values for differ-
ent parameters introduced by meta-learning, while
the rest are kept same as STARC model (Gao et al.,
2020). In Figure 7, we plot the variation in perfor-
mance with k and pp(.). Like any meta-learning
algorithm, setting k£ too small or too large hurts
the performance in our case as well (specially
k = 1 where it becomes theoretically similar to
NFT (Nichol et al., 2018)). Hence, optimum value
k = 5 is used for all our experiments. Also, simi-
lar to the conclusion in Dou et al. (2019), we find
choosing pp(.) of any domain as proportional to
the size of the training dataset of that domain help-
ful (blue vs red line). This is attributed to the fact
that in case of imbalance in data among different
train domains, the algorithm gets to see all the data
from the resource-rich domain as it is chosen more
often and hence generalizes better.

5.3 Adding more train domains

As mentioned in previous section, we observe that
benefits of D-REPTILE are much more profound
when farget domain is from DSTCS dataset than
when it is from MultiWoz (Figure 3). Given that
DSTCS has 23 train domains as compared to 4 in
MultiWoz, it is not difficult to see the reason for
this boost in performance. In this subsection, we
try to answer the question whether MultiWoz target
can also gain from additional domains of DSTCS.
Here, for ease of computation, we only experiment
with categorical model with hotel domain as tar-
get . We use both DSTC8 domains and MultiWoz
domains (of course excluding hotel domain data
during pre-training) and test it on hotel data from
MultiWoz. These are represented by additional
pink and black lines in Figure 6. We observe that al-
though D-REPTILE helps to improve performance
over baseline NFT but adding additional domains
does not help the model much overall(solid black
line is similar to solid blue line). This shows that in
addition to the number of different training tasks,
the relatedness of those tasks is also very crucial
for meta-learning. The DSTC8 domains which are
out-of-sample for MultiWoz target domain did not
prove to be effective. (the small difference between
JGA values for 1-dialogue fine-tuning in Figure 6
and categorical model in Figure 2 is due to differ-
ence in the choice of the single dialogue from hotel
domain used for fine-tuning)

6 Conclusion

We conclude our analysis on the merits of meta-
learning as compared to naive pre-training for DST
problem on a very positive note. Given the prac-
tical applicability of very-low data analysis, we
provide enough evidence to a developer of an au-
tomated conversational system for an unknown do-
main that irrespective of his/her model and target
domain, D-REPTILE can achieve significant im-
provement (sometimes almost double) over conven-
tional fine-tuning methods with no additional cost.
With detailed ablations, we further provide insights
on which slots and domains will particularly benefit
from pre-traning strategies and which of those will
require additional data. Being agnostic to underly-
ing model, our proposed algorithm has capability
to push state-of-the-art in zero/few-shot DST prob-
lem, giving hope for expanding the scope of similar
chatbot based systems in new businesses.
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