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Abstract
Modern neural approaches to dependency pars-
ing are trained to predict a tree structure by
jointly learning a contextual representation
for tokens in a sentence, as well as a head–
dependent scoring function. Whereas this
strategy results in high performance, it is dif-
ficult to interpret these representations in re-
lation to the geometry of the underlying tree
structure. Our work seeks instead to learn in-
terpretable representations by training a parser
to explicitly preserve structural properties of
a tree. We do so by casting dependency pars-
ing as a tree embedding problem where we in-
corporate geometric properties of dependency
trees in the form of training losses within a
graph-based parser. We provide a thorough
evaluation of these geometric losses, showing
that the majority of them yield strong tree dis-
tance preservation as well as parsing perfor-
mance on par with a competitive graph-based
parser (Qi et al., 2018). Finally, we show
where parsing errors lie in terms of tree rela-
tionship in order to guide future work.

1 Introduction

Dependency grammars are syntactic formalisms
that represent the syntactic structure of a sentence
as asymmetric binary grammatical relations among
words (Tesnière, 1959; Hudson, 1984; Melcuk,
2003). An example dependency structure is given
in Figure 1. Formally, a dependency structure is
defined as a directed graph where words are ver-
tices and relations are labelled directed edges (the
arcs) between a child (the dependent) and its par-
ent (the head). In practice, dependency structures
considered for syntactic analysis are trees. Depen-
dency trees have long been used to improve the
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performance of many NLP applications, includ-
ing machine translation (Ding and Palmer, 2004;
Menezes et al., 2010; Bastings et al., 2017), re-
lation extraction (Kambhatla, 2004; Bunescu and
Mooney, 2005; Miwa and Bansal, 2016; Zhang
et al., 2018), and semantic role labeling (Hacioglu,
2004; Marcheggiani and Titov, 2017; He et al.,
2018).

In order to assign the correct dependency tree to
a sentence, dependency parsers are trained to cor-
rectly identify head–dependent relations between
pairs of words. Modern neural approaches do so by
jointly learning contextual feature representations
for the tokens in a sentence, as well as a parsing
decision function. This is the case for recent graph-
based parsers (Zhang et al., 2017; Dozat et al.,
2017; Mohammadshahi and Henderson, 2020, inter
alia) where an encoder feature extractor is comple-
mented by a score function predicting the likeli-
hood of a word to be the head of another. However,
whereas this joint learning strategy results in state-
of-the-art performance, the representations learned
by these parsers are opaque.

As a first step towards learning interpretable
parser representations, here we take a different ap-
proach: in addition to learning-to-parse, we seek to
learn representations from which tree distances be-
tween words in dependency trees can be recovered.
This stems from one simple observation: previous
approaches do not take into account the geome-
try of the tree they try to model. That is, parsers
are unaware of the structural properties of the tree
(e.g., distance between nodes, depth from root),
and as such are not trained to explicitly preserve
these properties. In this respect, our approach is
aligned with recent work looking at these geomet-
ric properties in the context of probing the BERT
(Devlin et al., 2019) embedding space for syntactic
structure (Hewitt and Manning, 2019; Reif et al.,
2019). In particular, Hewitt and Manning (2019)
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Figure 1: Example dependency tree.

have shown that it is possible to recover approxi-
mate syntactic trees from BERT embeddings by a
linear transformation trained to minimize the dif-
ference between predicted and ground-truth tree
distances. Given these results we then ask: is it
possible to extend this idea to directly train tree-
aware dependency parsers? We argue that using the
geometric tree structure to embed the dependency
trees enhances the interpretability of the learned
representations

In this paper, we show that this is indeed possi-
ble by casting dependency parsing as a tree em-
bedding problem. Specifically, we view a de-
pendency tree as a finite metric space, and com-
pute head–dependent scores for all word pairs
within a sentence as follows: Given a sentence
s = (w0, . . . , wns), where w0 is a special ROOT
token, we compute a geometric tree embedding
φ : {w0, . . . , wns} → Rm that maps tokens wi to
m-dimensional vectors. Geometric properties of
an ideal isometric tree embedding are used to de-
fine the functional form of head–dependent (edge)
scores ψ(wi, wj). Concretely, our approach pre-
dict dependency trees only from pairwise embed-
ded node distances, which completely specify the
score function. We consider this as a step in the
direction of interpretable end-to-end dependency
parsing. We start with a straight-forward applica-
tion of Hewitt and Manning (2019) and consider
a mean absolute error (MAE) loss that encourages
the embedding φ to approximate an isometric em-
bedding of the ground-truth tree Ts into (Rm, dR).
In this paper, we use the squared Euclidean dis-
tance semi-metric (d22) as in Hewitt and Manning
(2019) and also consider the distance obtained from
the `1-norm (d1)1. We show formally that any iso-
metric d22 embedding can be simply rotated to form
an isometric d1 embedding.

1The squared Euclidean distance is a semi-metric, not a
metric, as it does not respect the triangle inequality. Here
d1(u,v) := ||u− v||1. Other distance functions could also
be considered for dR but that is beyond the scope of current
work.

We learn the tree embedding φ and the edge
score function ψ through end-to-end training, by
incorporating geometric properties of dependency
trees (in terms of distance and depth) in the form of
geometric losses within a graph-based parser. As
our base parser, we use a simplified version of the
biaffine parser of Qi et al. (2018). This setup al-
lows us to directly compare the performance of our
losses and score functions to the biaffine score func-
tion used in several state-of-the-art graph parsers.
We propose three additional losses for training a de-
pendency parser expressed explicitly through tree
distances: a maximum likelihood estimation func-
tion, a margin-based loss function, and one based
on cross-entropy.

Finally, we explore whether adding a soft global
constraint on the isometry of the learned trees helps
with parsing performance; to this end, we combine
our novel loss functions with the MAE loss.

We evaluate our approach on 16 languages from
different families. We complement unlabeled accu-
racy of head–dependent attachement scores (UAS)
with a Spearman’s ρ correlation between predicted
and true distances (DSpr) to directly assess geomet-
ric properties of the output trees. We also provide
labeled attachment scores (LAS) for completeness.
Through extensive experimentation, we make the
following observations:

• All of our novel tree distance based losses out-
perform the MAE loss of Hewitt and Manning
(2019)

• All losses using the d1 metric provide better
distance preservation properties and depen-
dency parsing performance than using the d22
semi-metric.

• Five of the six loss combinations (using d1)
show both strong distance preservation proper-
ties and parsing performance, indicating that
distance preservation can be obtained with-
out trading off parsing performance. Only
the maximum likelihood estimation loss (on
its own) has poor distance preservation; how-
ever, we find that the combination of this loss
with the MAE loss greatly improves distance
preservation, while achieving similar or better
parsing performance.

• We show that the majority of parsing errors
are local in tree distance, with by far the most
frequent incorrect head assignments being ei-
ther true sisters or grandparents.
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Our results in the direction of accurate dependency
parser that closely preserve tree distances are en-
couraging.

2 Background: Metric Tree Embeddings

A tree T = (V,E) along with the distance dT (u, v)
is a finite metric space,2 where dT (u, v) is the
length of the shortest path between any u, v ∈ V .
In this paper we consider tree embeddings, φ :
V → Rm, which map nodes v ∈ V to points
φ(v) ∈ Rm such that the mapping φ approxi-
mately preserves tree distance. That is, for all pairs
u, v ∈ V , the tree distance dT (u, v) is roughly the
corresponding distance dR(φ(u), φ(v)) in the em-
bedding space Rm, where we select the metric or
semi-metric dR(x, y) in Rm.

In this section, we discuss the choice of dR and il-
lustrate distortion free (i.e., isometric) embeddings
φ : V → Rm. These distortion free embeddings
motivate the formulation of losses that we use for
training suitable embeddings, as discussed in § 3.

To choose the distance measure dR in the em-
bedding space, we note that for a sufficiently large
dimension m: i) any tree can be embedded iso-
metrically into `1; ii) any metric space (including
trees) can be embedded into `∞; and iii) for `p
spaces, with 1 < p <∞, trees can only be embed-
ded with distortion (Linial et al., 1995). The power
transform of the Euclidean distance d2(x,y)c, with
c ≥ 2, allows for isometric embedding of trees
(Reif et al., 2019). However, the squared Euclidean
distance d2(x,y)2 does not satisfy the triangle in-
equality3 and therefore is only a semi-metric. Nev-
ertheless, both (Rm, d1) and (Rm, d22) are natural
choices for embedding spaces for trees and, in this
paper, we restrict our attention to these.

We follow Reif et al. (2019) to explicitly con-
struct squared Euclidean embeddings. Specifically,
all distortion free embeddings into (Rm, d22) can be
simply expressed in terms of the edge displacement
vectors {zi}|E|i=1, where zi ∈ Rm is the displace-
ment between the embedded endpoints of edge
ei ∈ E (i.e., z := φ(c)− φ(p), where c, p ∈ V are
a pair of child and parent nodes). For an isometric
embedding, it turns out we require these zi’s to be

2Metric spaces are 2-tuples (X, dX) consisting of a set of
elements X and a metric dX : X ×X 7→ [0,∞) quantifying
notion of distance between any pair of elements of X .

3Consider three points on a line with successive pairs sep-
arated by a d22 distance of 1. Then the outer two are separated
by an d22 of 22 = 4, which is larger than the sum of the
distances between the successive pairs.

orthonormal, that is

ZTZ = 1, (1)

where Z ∈ Rm×|E| is the matrix having zi as the
ith column and 1 denotes the |E| × |E| identity
matrix. In addition, it is useful to define ρ(u, v)
to denote the shortest path between two vertices
u, v ∈ V . And, finally, define the indicator vector
b(u, v) ∈ Z|E| such that bi(u, v) = 1 when edge
ei is on the shortest path between u and v, and
bi(u, v) = 0 otherwise. With this notation we have
the following theorem:

Theorem 2.1. Pythagorean Embeddings. Given
a rooted tree (V,E, r), where r ∈ V denotes the
root, then for any m ≥ |E| there exists an embed-
ding φ : V → Rm such that,

∀u,v∈V dT (u, v) = ||φ(u)− φ(v)||22. (2)

Moreover, φ satisfies (2) if and only if

φ(v) = φ(r) + Zb(r, v) (3)

for some matrix Z ∈ Rm×|E| with orthonormal
columns (i.e., Eqn. (1) is satisfied).

See Appendix B-D for an example that demon-
strates this construction along with proofs.

The edge-on-path indicator vectors b(r, v) pro-
vide some additional intuition about these squared
Euclidean embeddings. Specifically, for v, w ∈ V
we have

g(v) := ZTφ(v) = ZTφ(r) + b(r, v), (4)

g(v)− g(w) = ZTZ(b(r, v)− b(r, w)),

= b(r, v)− b(r, w) (5)

||g(v)− g(w)||1 = ||b(r, v)− b(r, w)||1
= dT (v, w) (6)

Here (5) follows from (1), (3) and (4). Therefore g
is an isometric `1 embedding which expresses tree
distance in terms of the `1 norm of the difference
between two path vectors b. One interesting conse-
quence of Theorem 2.1, along with Eqn.’s (4) and
(6), is:

Corollary 2.1. `1 Embeddings. Given any iso-
metric embedding φ : V → Rm using the
squared Euclidean distance, the embedding g(v) =
ZTφ(v) is an isometric embedding of the same tree
(V,E, r) into (R|E|, d1). Here Z is as described in
(3).
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That is, any distance preserving tree embedding
using the squared Euclidean norm can simply be
rotated to an isometric `1 tree embedding.4 Note
the converse of Cor. 2.1 is not true. For example,
three equally spaced points on a line form an `1
embedding that cannot be linearly transformed to
a d22 embedding. Indeed, it is shown in (Aksoy
et al., 2020) that a finite metric tree can be embed-
ded into (Rm, d1) if and only if it has at most 2m
leaves. Thus, for a fixed dimensional embedding
space Rm, the metric d1 allows for more trees to be
isometrically embedded than d22.

In this paper we use an embedding dimension
m that is larger than the number of edges and thus
isometric tree embeddings are feasible using both
d22 and d1. The learning problem considered in
this paper is, given a sentence s, we seek to embed
each of the sentence’s tokens into (Rm, dR) such
that the embedded tree is nearly isometric to the
dependency parse tree for s. Here we evaluate
using both d1 and d22 for dR.

3 Geometric Losses for Tree Embeddings

Given a sentence s = (w0, . . . , wns), where w0 is
a special ROOT token inserted at the beginning
of every sentence, dependency parsing seeks to re-
cover the correct dependency tree Ts = (Vs, Es).
For simplicity, we label the tree nodes in Vs with
the tokens themselves, so Vs = {w0, . . . , wns}. A
geometric tree embedding maps tokens wi within
a sentence s to embedded points vi = φ(i, s) ∈
Rm (for brevity, we drop the dependence on the
whole sentence s and simply write φ(wi)). In § 2,
we describe the exact geometry of the isometric
embeddings using the d22 semi-metric. For d1 iso-
metric embeddings we show one sub-class are sim-
ply rotations of isometric d22 embeddings, but there
are other forms. This section examines the use
of auxiliary losses on the embedding φ that en-
courage approximately isometric embeddings. We
expect an approximation of this geometry holds in
d22 when the losses are sufficiently small. Since
we do not have a similar proof of necessity as in
Appendix D for d1 embeddings, the local geometry
is more open.

Given such an embedding, we then follow first-
order graph-based dependency parsers (McDon-
ald et al., 2005) which compute a pairwise score
ψ(vi,vj) that indicates how likely it is for wj to

4This rotation aligns the edge directions zi with the stan-
dard bases vectors ±ei of Rm.

be the head of wi. These scores provide edge
weights on a fully connected embedded graph on
φ(Vs)× φ(Vs). Having trained a network to com-
pute suitable embeddings vi = φ(wi) and edge
weights ψ(vi,vj), parsing then amounts to finding
the maximum spanning tree in this weighted graph
that is rooted at v0; a detailed description of the
parser architecture is provided in § 4.

Given this general approach, a natural choice
for an auxiliary loss on φ is to consider the mean
absolute error (MAE) in the distances between the
embeddings of any two nodes:

LMAE(φ, T ) =
1

|V |(|V | − 1)∑
wi,wj∈V,

i6=j

| dR(vi,vj)− dTs(wi, wj)|, (7)

where vi = φ(wi) (we drop the subscripts s for
brevity). This MAE loss treats the distance errors
for all pair of nodes as equally important, and we
therefore refer to it as a global loss. Note the loss
in (7) is zero only when the embedding φ is an
isometric tree embedding with respect to dR.

We next consider the edge scoring function ψ,
whose role is to assign costs to proposed head–
dependent pairs (wi, wj). We denote this ground-
truth head–dependent relation by %(wi, wj) (which
is true when wj is the head of wi in T ) and note
it can be defined only in terms of the distance
dT (wi, wj) and depth difference ∆s(wi, wj) =
dT (w0, wi)− dT (w0, wj) as follows:

∀wi,wj∈V %(wi, wj) ⇐⇒
dT (wi, wj) = 1 ∧∆(wi, wj) = 1. (8)

Each node wi then has a unique head wj defined by
(8), except for the ROOTw0 which has none. Given
the embedding φ is providing a near-isometric tree,
we define an edge scoring function in the embed-
ding space, namely ψ(vi,vj), by rewriting (8) in
the following probabilistic form:

vi := φ(wi), (9)

∆φ
ij := dR(vi,v0)− dR(vj ,v0), (10)

`φij := |dR(vi,vj)− 1|+ |∆φ
ij − 1|, (11)

ψ(vi,vj) := −`φij , (12)

pφ(wj |wi) :=
eψ(vi,vj)/τ∑

0≤k≤n
k 6=i

eψ(vi,vk)/τ
. (13)

where τ is a temperature parameter. Here we refer
to `φij as the “head–dependent cost” for the pair wi
and wj .



1688

A natural loss on both the embedding φ : V →
Rm and the edge-cost ψ(vi,vj) is the maximum
likelihood loss

LMLE(φ, T ) =
∑

wi,wj∈V,
i6=j

%(wi, wj) [− log(pφ(wj | wi)))]

(14)

where pφ(wj |wi) is defined in (13).
As an alternative to the MLE loss we consider a

margin based approach where the task is to mini-
mize `φij for the true head j, subject to `φik ≥ `

φ
ij+α

for all k ∈ {0, . . . , n}\{i, j}, where α > 0 is
a margin.5 We explore such a margin-based ap-
proach using the soft triplet loss (Sohn, 2016)

Lα(φ, T ) = (15)

∑
wi,wj∈V,

i 6=j

%(wi, wj) log

1 + ∑
wk∈V \{wj ,wi}

eα−`
φ
ik

+`
φ
ij

 .
As a third alternative for the head–dependent

loss we consider the cross-entropy between the
probability distribution pφ(wj |wi) and the corre-
sponding distribution pT (wi|wj) formed by using
an isometric embedding φT in Eqns. (9 - 13).
Note that for an isometric embedding φT we have
dR(vi,vj) = dT (wi, wj), and this can be used
to simplify the resulting expression. Specifically,
we find pT (wj |wi) depends only on the true tree
distance dT and not on the details of φT . The cross-
entropy loss is then

LCE(φ, T ) =
∑

wi∈V \{w0},
wj∈V \{wi}

pT (wj |wi) [− log(pφ(wj |wi))] .

(16)

In summary, we investigate the choice between
several different head–dependent losses (i.e., Eqn.’s
(14), (15), or (16), and optionally combine each of
these with the explicit global MAE loss (7).

4 Evaluation

4.1 Model

We use a simplified version of the Biaffine depen-
dency parser of Qi et al. (2018).6 First, we give
an overview of the Biaffine parser, and then de-
scribe our modifications. Biaffine is composed of a

5Note that an isometric embedding φ provides one solution
for which `φij = 0 for all head–dependent pairs, and `φij ≥ 2
otherwise.

6We use the codebase provided at https://github.
com/stanfordnlp/stanfordnlp.

highway-BiLSTM encoder (Srivastava et al., 2015)
that takes as input a sequence of ns+1 embeddings
x0, . . . ,xns , where each xi is a concatenation of
word-level, character-level, part-of-speech and mor-
phological feature embeddings. We use pre-trained
word2vec (Mikolov et al., 2013) when available,
and fastText embedding (Bojanowski et al., 2017)
otherwise. We train the rest of the embeddings
from scratch.

Given such an input sequence, the Biaffine
parser predicts the most likely head for each word
(referred to as unlabelled attachment prediction),
along with the grammatical relation between each
pair of head and dependent words (labelled attach-
ment prediction). Biaffine first calculates contex-
tual embeddings hi (through the encoder), and then
projects these into separate head and dependent rep-
resentations for each word (through two separate
MLP networks):

hi = BiLSTMi(x0, . . . ,xns), (17)

hhead
i ,h

dep
j = MLPhead(hi),MLPdep(hj), (18)

where hhead
i and h

dep
i are the head and dependent

representations. Next, for each pair of words wi
and wj , a head–dependent score sij and a corre-
sponding probability p(wj |wi) are calculated with
a learnable biaffine weight U:

sij = hhead
i Uh

dep
j ,

:= Biaffine(hi,hj), (19)

p(wj |wi) =
esij∑

wk∈Vs\{wi} e
sik
. (20)

Our geometric tree embedding φ computes a single
representation for each node, as such we replace
the separate head and dependent MLP networks
with a single MLP network7:

vi := φ(wi), (21)

= MLP(hi). (22)

Given v0, . . . ,vn, head–dependent scores sij are
defined as in:

sij = ψ(vi,vj), (23)

where ψ is calculated as in Eqn. (12). We obtain
asymmetry in our score function ψ(vi,vj) from
the depth difference term |∆φ

ij − 1| in Eqn. (11).

7To focus on learning unlabeled tree structures, we also re-
move the auxiliary losses that penalize rightward attachments
or long dependencies, since the model behaves differently
from the unlabeled prediction.
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During inference, we use the Chu-Liu-Edmonds
algorithm (Chi, 1999; Edmonds, 1967) to find the
highest-scoring dependency tree. While our main
focus is embedding unlabeled trees for dependency
relation prediction, for completeness we also report
results on labeled dependency tree prediction. We
use the same classifier as Biaffine — with the same
setting as described in Qi et al. (2018) — to esti-
mate the probabilities of dependency labels lij for
a given head–dependent pair wi and wj :

p(lk,ij |wj , wi) =
es

rel
k,ij∑

n e
srel
n,ij

(24)

srel
ij = Biaffinerel(hi,hj) (25)

where srel
ij ∈ RK is a K-dimensional vector con-

taining the dependency relation scores for each of
the K dependency labels.

4.2 Experimental Setup
Data. We perform experiments on Universal De-
pendencies (UD; Nivre et al. 2020). Relying on cri-
teria proposed by Kulmizev et al. (2019), we select
16 languages from different families, with differ-
ent scrips and training sizes, all with good annota-
tion quality. We use the following treebanks from
UD v2.2: Arabic-PADT, Basque-BDT, Bulgarian-
BTB, Chinese-GSD, Czech-PDT, Danish-DDT,
English-EWT, Finnish-TDT, Hebrew-HTB, Hindi-
HDTB, Italian-ISDT, Japanese-GSD, Korean-GSD,
Russian-SynTagRus, Swedish-Talbanken, Turkish-
IMST.

Performance Measures. We report the overall
accuracy of head and relation predictions for all
tokens in the test portion of the data sets. Given our
model prediction and a reference parse for a given
input, accuracy is calculated using two standard
measures: Unlabelled Attachment Score (UAS),
that is the percentage of tokens that are assigned
the correct head; and Labelled Attachment Score
(LAS) that is the percentage of tokens that are as-
signed the correct head and the correct grammatical
relation. We use UAS for model selection.

To assess how well the learned tree embeddings
preserve distances, we follow Hewitt and Man-
ning (2019) and Hall Maudslay et al. (2020), and
measure the correlation between the learned and
ground-truth tree distances. Specifically, for all
words in all sentences, we compute Spearman’s
ρ between predicted and true distances. We first
average the correlation coefficients for sentences

d22 d1 d1 [+LMAE]
LMAE 90.28 (0.89) 90.53 (0.89) N/A
LMLE 91.47 (0.60) 91.51 (0.71) 91.77 (0.85)
Lα 91.43 (0.83) 91.57 (0.88) 91.41 (0.89)
LCE 86.82 (0.38) 91.79 (0.81) 91.85 (0.88)

Table 1: UAS (DSpr) of d22 and d1 embeddings, plus
effects of adding the auxiliary MAE loss; reported on
the development portion of English-EWT.

of the same length. We report the macro-average
over these averages for sentences of length 5–50,
referred to as DSpr.

Hyperparameters. We adopt the same hyperpa-
rameter configuration as in the original Biaffine
model (Qi et al., 2018) up to the BiLSTM layer
for the head–dependent classifier, and the same
configuration for the entire dependency label clas-
sifier. We perform grid search on the remaining
hyperparameters and select best hyperparameter
configurations based on UAS on the development
portion of the English-EWT data. Based on the
results, we set the margin α = 3 for Lα, and the
temperature τ = 1 for LMLE and τ = 0.2 for
LCE . In our evaluation, we run experiments that
involve the combination of any of Lα, LCE , and
LMLE with LMAE as an auxiliary loss, with a co-
efficient λ1. We find the best values for λ1 to be
0.2 for Lα, and 0.1 for both LCE and LMLE . We
refer the reader to Appendix A for the full list of
hyperparameters and training details.

5 Results

5.1 Metric Spaces and Geometric Losses

We first verify whether the choice of metric space
impacts performance. Table 1 reports UAS (and
DSpr) on the development portion of the English-
EWT corpus, for tree embeddings in both (Rm, d1)
and (Rm, d22) metric spaces (referred to as d1 and
d22 for brevity, respectively).

The first row shows results when trained with
LMAE only. It learns an embedding that provides
good approximation of global tree distances using
d22 (DSpr: 0.89), which is similar to the findings
reported by Hewitt and Manning (2019), but is
suboptimal in terms of parsing (UAS: 90.28). On
the other hand we can see that all head–dependent
losses achieve stronger parsing performances in
both spaces, with the proper metric d1 leading to
higher UAS and DSpr scores across the board (in-
cluding LMAE) when compared to d22. We will
then report results in the rest of this section only
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(a) (b)

Figure 2: Distance distributions for (a) LMLE and (b) LCE , for different metric spaces (d22/d1) and trained with
or without the auxiliary loss LMAE . The four box plots at each x-tick summarize the distribution of predicted
distances for a particular ground-truth distance. Each box covers data distribution between 25 to 75 percentile,
with median showing by the black line. The dashed line represents perfect correlation.

with the d1 metric, unless otherwise stated.
Table 1 also shows a comparison between the

different head–dependent losses, with and without
the auxiliary loss LMAE that further constrains φ
to be globally isometric. In isolation, LCE yields
the best UAS while Lα the best DSpr; interpolating
the losses with LMAE improves results for LMLE

and LCE , especially in terms of DSpr. This is in
line with our expectations that the auxiliary loss
encourages the parser to learn an embedding that
more faithfully preserves global tree distances.
LMLE seeks to correctly identify all head–

dependent relations by maximizing the probability
pφ(wj |wi) of true head–dependent pairs with no ex-
plicit constraints on global isometry; see Eqn. (14).
We thus hypothesize that LMLE can learn an em-
bedding that produces good UAS, but is far from
being isometric to the ground-truth tree. We ver-
ify this empirically: Figure 2(a) shows that the
addition of LMAE greatly regulates the embed-
ding distances of the trees produced by LMLE ,
hence improving the DSpr score for this loss.8

LCE on the other hand seeks to match pφ(wj |wi)
with pT (wj |wi), which encourages all embedding
distances to be correlated with tree distances; see
Eqn. (16). However, the pT (wj |wi) term in this
loss gives higher weights to word pairs that are
closer in terms of ground-truth tree distance and
therefore the model is trained to focus more on pre-
serving short distances.9 Figure 2(b) confirms that

8We observe that the optimized LMLE (without MAE)
is lower than that produced by an isometric embedding on
the development portion of English-EWT, indicating that the
observed distortion of tree distances is an overfitting issue.

9The local emphasis is stronger with lower temperature.
We chose temperature τ = 0.2 based on UAS on the develop-

the embedding obtained using LCE underestimates
the ground-truth tree distances, and adding the aux-
iliary MAE loss helps regulate this distortion of
tree distances.
§ 2 describes the exact geometry of the embed-

dings that out model learns using the d22 semi-
metric in the special case that LMAE is reduced to
zero. In Figure 2(b), we observe small losses up
to tree distance five when d22 is used with LCE and
LMAE . Therefore we expect the local geometry of
d22 trees to approximately follow Eqn. (3).

Overall, for both losses we observe that, on aver-
age, d22 embeddings lead to predicted tree distances
that have large variances, as well as medians fur-
ther away from the ground-truth, whereas the d1
embeddings are more stable and accurate. This
agrees with the observations in Table 1 that embed-
dings in d1 have better DSpr than embeddings in
d22 for all losses we considered. The same com-
parison between dφ and dT for Lα is provided in
Appendix E.

5.2 Comparison with Qi et al. (2018)

We compare the parsing results for the six geomet-
ric loss combinations against the biaffine parser
of Qi et al. (2018) for all treebanks in Table 2.
For a fair comparison, we re-run all experiments
and report our results for the biaffine parser. We
report UAS for models trained without the depen-
dency label prediction loss in order to focus on
unlabeled tree structure and LAS for completeness.
In general, the parsing performance is stable across

ment portion of English-EWT. However, we find a temperature
of 1 to provide better approximation of global distances, es-
pecially for tree distances less than five (see Appendix E and
Figure 6).
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Biaffine LMLE LMLE+MAE Lα Lα+MAE LCE LCE+MAE

Arabic 87.70 84.83 86.75 83.44 86.60 82.96 86.16 82.93 85.81 82.65 86.01 83.14 86.82 82.77
Basque 89.03 87.45 88.01 86.08 87.75 86.17 87.49 85.97 87.57 86.05 87.14 85.92 87.61 86.03
Bulgarian 94.97 92.44 94.06 92.06 94.58 92.06 93.97 91.97 94.18 91.54 94.22 92.12 94.51 92.45
Chinese 86.73 86.16 85.51 84.54 86.29 84.75 85.92 84.82 85.79 85.11 85.95 85.23 85.79 85.22
Czech 92.43 90.92 93.18 92.04 93.10 91.72 93.40 91.54 93.24 91.97 93.29 91.64 93.42 92.12
Danish 88.23 87.70 87.08 86.31 87.51 86.40 87.11 86.45 87.26 86.50 87.08 86.55 87.91 87.30
English 91.21 90.15 90.71 89.37 90.81 89.57 90.82 89.66 90.81 89.63 90.78 89.69 90.87 89.86
Finnish 91.55 91.29 90.54 90.06 90.51 90.24 90.14 89.60 90.32 89.73 90.55 90.02 90.85 90.75
Hebrew 91.00 90.28 90.07 89.14 90.11 88.90 89.14 88.46 89.16 88.94 89.50 88.95 90.29 89.51
Hindi 96.78 94.80 96.55 94.62 96.55 94.35 96.65 94.44 96.40 94.58 96.40 94.58 96.81 94.69
Italian 94.14 92.98 93.56 92.62 93.35 92.27 93.21 92.49 93.27 92.34 93.64 92.26 93.30 92.51
Japanese 96.03 95.69 95.43 94.94 95.41 94.83 95.14 95.16 95.14 94.87 94.77 94.97 95.53 95.50
Korean 88.84 86.75 87.80 86.24 87.98 85.78 87.59 85.66 87.73 85.97 87.03 85.72 88.28 86.40
Russian 93.86 93.22 93.16 92.61 93.37 92.17 93.06 91.80 92.97 91.96 93.50 91.99 92.93 92.61
Swedish 91.52 90.16 90.06 89.07 90.52 89.13 90.85 89.74 90.61 89.33 90.74 89.67 91.12 89.58
Turkish 73.14 70.25 72.69 69.16 72.85 67.80 72.18 68.48 72.61 69.14 70.34 68.15 73.45 67.34
Average 90.45 89.07 89.70 88.29 89.83 88.07 89.55 88.07 89.56 88.04 89.43 88.16 90.18 88.42

Table 2: UAS (left) and LAS (right) on the test set of 16 treebanks in the UD dataset, plus the macro averages over
all treebanks. We mark the highest performing system for both UAS and LAS in bold and second highest in blue.

d1 d1 [+LMAE]
LMLE 0.72 ± 0.03 0.85 ± 0.02
LCE 0.89 ± 0.03 0.86 ± 0.05
Lα 0.87 ± 0.03 0.89 ± 0.03

Table 3: Average DSpr over all (test) treebanks.

different languages for all geometric losses. Over-
all, LCE+MAE is our best performing model and
the average UAS/LAS across languages are on par
with the Biaffine parser in spite of only having a
single representation for each token. Moreover,
it achieves top performance on Czech, Hindi and
Turkish. All other geometric losses also achieve
competitive results that are within 1% of the Bi-
affine parser for both UAS and LAS.

We also report the mean DSpr along with stan-
dard deviation across the 16 treebanks in Table 3.
Unlike the UAS and LAS we find a substantial dif-
ference in the DSpr score for the lossLMLE . When
combined with the auxiliary loss LMAE we find a
pronounced increase in DSpr, this agrees with the
findings in § 5.1.

5.3 Parsing Errors w.r.t. Tree Relationships
Inspired by the geometric structure of tree embed-
dings, we investigate the sources of errors in terms
of ground-truth dependency trees. Given a sentence
s and a dependency tree Ts, we define the type of re-
lation between a pair of token (wi, wj) by a 2-tuple
consisting the distance dTs(wi, wj) and depth dif-
ference ∆s(wi, wj) = dTs(w0, wi)− dTs(w0, wj).
This definition follows naturally from the geomet-
ric interpretation of trees: for a node wi, (1, -1)
defines its children, (2, 0) defines its sisters, and (2,

2) defines its grandparents.
To visualize the distribution of errors, for each

trained model, we plot the percentage of wrong
edges for each relation type on the development
set of English-EWT. We show an example plot in
Figure 3 for our best LCE+MAE , with results for
other losses provided in Appendix F.

Figure 3: Distribution of edge errors on the de-
velopment portion of English-EWT, optimized with
LCE+MAE ; the two axes are (dT (i, v), ∆T (u, v)).

Surprisingly, we do not identify long distance
ambiguities as a major source of errors (i.e., 99.8%
of UAS errors have incorrectly assigned a head
node that is within a tree distance of 5 from the
dependent). Moreover, we find that sisters and
grandparents account for 36.2% and 34.8% of all
the UAS errors, respectively. To put these results
into context, we construct a synthetic random error
distribution: for each tree in the English-EWT de-
velopment set we generate all trees with a single
attachment error. We observe 81.6% of the errors
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to be local (up to distance 5) and sisters account
for 22.5% and grandparents only account for 5.4%
of the errors. We further compare with the biaffine
parser and find 99.5% of UAS errors are local with
40.2% for sister and 32.7% for grandparent errors.
Therefore parsing errors for a trained parser are
dominated by errors that are more local in terms
of tree distance than expected from a uniform er-
ror distribution. One immediate question that may
arise is how can we reduce these specific high-
frequency errors. One intuitive extension of the
current work is to modify the formulation of edge
scores in Eqn. (12) to push the decision boundary
away from sisters or grandparents during inference.
By training to explicitly model the geometry of
the tree, our approach is one step closer towards
addressing specific high-frequency errors.

6 Conclusions

In this work, we propose to use the geometry of
(dependency) tree structures to construct a neural
dependency parser that improves the interpretabil-
ity of the learned representations without compro-
mising parsing performance. We propose several
geometric loss functions, and show that for a ma-
jority of them, our simple network learns distance-
preserving embeddings through end-to-end train-
ing. In doing so, we also compare squared Eu-
clidean distance (d22) with the distance obtained
from `1-norm (d1), as the (semi-)metric in the em-
bedding space Rm, and provide empirical evidence
for using the proper d1 metric. We compare our
results with a competitive and widely-used graph-
parser proposed by Qi et al. (2018) on 16 languages
from different families, and show overall parser per-
formances that are on par with it. Our experiments
also suggest a new way of looking at the sources of
parsing errors in terms of tree distances, and show
that the majority of errors are local (e.g., sisters or
grandparents).

For future work, we suggest looking at poten-
tial ways to correct such high-frequency head pre-
diction errors, defined by their relationship within
a tree. Another interesting direction that’s worth
exploring is to use the continuous tree distances
predicted by our methods as features for down-
stream tasks instead of the discrete tree structures
produced by conventional parsers. As recent work
has been exploring, this differentiable representa-
tion of tree structure is potentially useful within the
iterative-refinement framework (Mohammadshahi

and Henderson, 2020), or as additional tree-specific
positional features in a transformer (Omote et al.,
2019).
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A Hyperparameters

We use 2 layers of MLP with leaky-relu as ac-
tivation to map the biLSTM outputs into a 800-
dimensional embedding space10. The layer weights
are initialized with the values from uniform distri-
bution U(−0.05, 0.05), and biases are initialized
to zero.

We train the models with Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.001,
β1 = 0.9, β2 = 0.95, and ε = 1e − 8 for up to
50, 000 iterations, where each iteration is a batch
of up to 5000 tokens or the maximum number of
tokens we can fit in the GPU memory. We evaluate
the models every 100 steps and save them only if
we see improvement in UAS on development data.
We switch to AMSGrad (Reddi et al., 2018) after
3000 iterations with no observed improvement on
development set UAS, at which point we terminate
training when another 3000 iterations pass without
improving development set UAS.

B Example d22 and d1 Tree Embeddings

r

b

he

e5 e6
a

dc

e3 e4

e1 e2

Figure 4: Simple binary tree example.

Let us take as a working example the binary
tree on Figure 4. The embedding of node v is
the embedding of the root r plus the sum of all
direction vectors on the path ρ(r, v), from r to v.
If can take f(r) to be 0 or any random vector then
embedding of all nodes in the tree are by definition:

f(a) = f(r) + u1

f(c) = f(r) + u1 + u3

f(d) = f(r) + u1 + u4

f(b) = f(r) + u2

f(e) = f(r) + u2 + u5

f(h) = f(r) + u2 + u6

10The maximum length of any sentence in the dataset is
smaller than 800 and thus an isometric tree embeddings are
feasible using both d22 and d1

We took an arbitrary root embedding f(r) and
n− 1 orthogonal unit-length vectors ui. If the ui-s
are the standard unit basis vectors, for example,
then the tree is embedded on the edges of the unit
cube and it is an isometric embedding for both d22
and d1.

C Proof of Thm. 2.1, Sufficiency

Proof. Eqn. (3) sufficient. We first show that an
embedding of the form given in Eqn. (3) necessar-
ily satisfies (2). This is Thm. 1 in Reif et al. (2019)
and here we find it useful to expand on their proof
to introduce notation and assist the reader.

Let T = (V,E, r), Z and b(r, u) be as described
in § 2. Then Eqn. (3) is simply

f(v) = f(r) +
∑

{i∈ρ(r,v)}

zi, (26)

where the notation {i ∈ ρ(r, v)} is short for
{i | ei ∈ ρ(r, v)}, which is the set of i’s for which
bi(r, v) = 1. Consider any two vertices v and w.
Notice the two paths ρ(r, v) and ρ(r, w) must share
a common prefix, namely ρ(r, a), the sub-path
from r to the lowest common ancestor a of v and
w, with the remaining paths ρ(a, v) and ρ(a,w)
being edge disjoint. Therefore

||f(v)− f(w)||22
= ||

∑
{i∈ρ(r,v)}

zi −
∑

{j∈ρ(r,v))}

zj ||22 (27)

= ||
∑

{i∈ρ(a,v)}

zi −
∑

{j∈ρ(a,w)}

zj ||22 (28)

= |ρ(a, v)|+ |ρ(a,w)| (29)

= |ρ(v, w)| ≡ dT (v, w). (30)

Here we canceled the common term f(r) and com-
mon prefix edges to derive Eqn. (27) and (28). Eqn.
(29) follows from the fact that paths ρ(a, v) and
ρ(a,w) are edge disjoint and the orthonormality
of the zi’s. Here |ρ(a, v)| denotes the number of
edges on the a to v path. Finally, (30) follows since
a is the least common ancestor of v and w.

D Proof of Thm. 2.1, Necessity

We provide a proofs that any isometric d22 embed-
ding must have the form defined in (3) that relies
only on linear algebra and may provide the reader
with additional intuition about the construction of
d22 embeddings.
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Proof. First, for the case |V | ≤ m + 1, we use
induction to show that any isometric d22 embedding
f must have the form described in Eqn. (3). Then
we show that for |V | > m + 1, such an f cannot
exist.

We use the notation V = {vj | 0 ≤ j < k},
where v0 = r, |V | = k and |E| = k − 1. For
2 ≤ k ≤ m + 1 define the the |E| × |E| path
matrix B to be

B = (b(r, v1), . . . ,b(r, vk−1)), (31)

where b(r, v) are defined to be the binary path
vectors used in (3).

We use induction to prove that if f : V → Rm

is an isometric embedding for any k ≤ m+ 1 then
(3) must hold and B must be full rank. Note this
statement is trivially true for k = 1 and 2.

Let k ≥ 2 and k ≤ m. Let T = (V,E, r) be
a tree of size |V | = k. Consider the induction
hypothesis that any isometric embedding (using
d22) of T must have the form in (3) and, moreover,
the matrix B in (31) has full rank. We next show
that it follows the same is true for any tree of size
k + 1.

Suppose T ′ = (V ′, E′, r) is a rooted tree with
|V ′| = k+1 ≤ m+1. Suppose f : V ′ → Rm is an
isometric embedding using d22. Let c 6= r be a leaf
and p be its parent in T ′11, and consider the subtree
T = (V,E, r) formed by removing the vertex c
and the edge (c, p) from the tree. So |V | = k, and
the restriction of f to V must provide an isometric
embedding of this subtree T . By the induction
hypothesis this embedding f , when restricted to V ,
must satisfy (3) and have the form in (3). Moreover
the path matrix B in (31) for T must be full rank.

Since the full embedding f of T ′ (including the
new vertex c) is isometric it follows that

||f(c)− f(v)||22 = dT (c, v),

= dT (p, v) + 1, ∀v ∈ V. (32)

Specifically, when v = p this constrains the em-
bedded displacement for the (p, c) edge, namely
z := f(c) − f(p), to be length 1. Moreover, for
any v ∈ V ′ \{p, c}, consider the triangle with ver-
tices f(c), f(p), and f(v). Then (32) states that the
squared Euclidean distances of the triangle edges
(f(c), f(p)), (f(p), f(v)) and (f(c), f(v)), must
be 1, dT (p, v), and dT (p, v) + 1, respectively. By

11Note c 6= r is possible since k ≥ 2

the Pythagorean Theorem, this must be a right tri-
angle with

zT (f(p)− f(v)) = 0, ∀v ∈ V ′\{p, c}.

By using Eqn. (3) on the subtree T this can be
rewritten as

zTZ(b(r, p)− b(r, v)) = 0, ∀v ∈ V ′\{p, c}.
(33)

By setting v = r in (33) and using b(r, r) = 0
(i.e., null vector in Z|E|) we find zTZb(r, p) = 0.
So (33) is equivalent to

zTZb(r, v) = 0,∀v ∈ V ′\{c}. (34)

That is zTZB = 0. However, by the induction
hypothesis, the (k− 1)× (k− 1) matrix B (for T )
is full rank, and so we must have zTZ = 0. That
is, the direction of the edge (p, c) in the embedding
space, z = f(c) − f(p), must be perpendicular
to all the other edges in the tree T ′ and have unit
length, so

zTZ = 0, (35)

||z||2 = 1.

Since Z is a m × (k − 1) matrix with k ≤ m it
follows that such z must exist.

Note the path vector b(r, c), in the tree T ′, is just
the path vector for the parent, b(r, p), modified to
have a 1 in the kth row, while all other path vectors
b(r, vj) must have zero in this kth row (since c is
a leaf). The path matrix B′ for T ′ therefore has the
form

B′ =

(
B b(r, p)
0 1

)
. (36)

Since the induction hypothesis ensures that B has
full rank, it follows that B′ has full rank. Finally,
defining Z′ = (Zz) ∈ Rm×k, it follows from (35)
that (Z′)TZ′ = 1 and therefore we have shown that
f must have the form in (3) with this Z′ and these
path vectors b(r, v). This completes the proof of
the induction step, the desired result follows by
induction.

To show that there is no embedding for |V ′| ≥
m + 2 it is sufficient to show that there is no em-
bedding for |V ′| = m + 2. We use contradic-
tion. Suppose f : V ′ → Rm is such an embedding.
We can proceed as above, with c a leaf node of
T ′ = (V ′, E′, r), and p its parent. Then, by using
the previous result, any isometric embedding of the
subtree T = (V,E, r) that is formed by removing
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this child (so |V | = m+ 1) must have the form de-
scribed in (3) with a full rankm×m path matrix B
and orthonormalm×mmatrix Z. The same line of
reasoning then shows that z := f(c)− f(p) must
satisfy (35). But here Z is full rank and so z = 0,
which contradicts the constraint that the (c, p) edge
in the embedding must have length 1.

E Distance plots for learned embedding

Figure 5: Distance distribution for triplet loss in d22, d1
and d1 with MAE on dev set of English-EWT.

Figure 6: Distance distribution for CE loss using d1
for different softmax temperature on dev set of English-
EWT.

F Error distribution trained with
different losses
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Figure 7: Distribution of edge errors for (a) LMLE (b)
LMLE+MAE (c) Lα (d) Lα+MAE and (e) LCE on dev
set of English-EWT.


