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Abstract
Sentence Compression is the task of gen-
erating a shorter, yet grammatical version
of a given sentence, preserving the essence
of the original sentence. This paper pro-
poses a Black-Box Optimizer for Compression
(B-BOC): given a black-box compression al-
gorithm and assuming not all sentences need
be compressed – find the best candidates for
compression in order to maximize both com-
pression rate and quality. Given a required
compression ratio, we consider two scenar-
ios: (i) single-sentence compression, and (ii)
sentences-sequence compression. In the first
scenario, our optimizer is trained to predict
how well each sentence could be compressed
while meeting the specified ratio requirement.
In the latter, the desired compression ratio is
applied to a sequence of sentences (e.g., a
paragraph) as a whole, rather than on each in-
dividual sentence. To achieve that, we use
B-BOC to assign an optimal compression ra-
tio to each sentence, then cast it as a Knapsack
problem, which we solve using bounded dy-
namic programming. We evaluate B-BOC on
both scenarios on three datasets, demonstrat-
ing that our optimizer improves both accuracy
and Rouge-F1-score compared to direct appli-
cation of other compression algorithms.

1 Introduction

Sentence Compression is the task of generating a
short, accurate, and fluent sentence that preserves
the essence of a given original sentence by re-
moving nonessential words and/or rephrasing it
in a compact form. Compression can take many
forms, ranging from Extractive and Abstractive
Summarization (Jing, 2000; Madnani et al., 2007;
Cohn and Lapata, 2008, 2009; Galanis and An-
droutsopoulos, 2010; Rush et al., 2015; Chopra

et al., 2016) to Text Simplification and Paraphras-
ing (Bannard and Callison-Burch, 2005; Xu et al.,
2012; Klerke et al., 2016; Narayan et al., 2017;
Aharoni and Goldberg, 2018; Botha et al., 2018),
among others.

On the sentential level, compression is often
viewed as a word deletion task (Knight and Marcu,
2000, 2002; Filippova and Strube, 2008; Filippova
et al., 2015; Wang et al., 2016, 2017; Zhou and
Rush, 2019). However, not all sentences could,
or should be compressed as part of compressing
a longer text they reside in. Consider the familiar
scenario in which a full paragraph needs to be com-
pressed in order to have an EACL paper meet the
page restriction specified in the submission guide-
lines. A common approach by LATEX users is to
first identify paragraphs ending with a short line,
(e.g., this very paragraph), then choose one or more
sentences that could be compressed with a mini-
mal loss of information – shaving the extra line.
We propose a Black-Box Optimizer for Compres-
sion (B-BOC) that mitigates this problem. Given a
compression algorithm A, a desired compression
ratio, and a document D, B-BOC chooses the best
sentences to compress using A in order to produce
a shorter version of D, while keeping the other
sentences of D untouched. B-BOC achieves that
without explicit knowledge of the inner-workings
of the given compression algorithm, hence we call
it a black-box optimizer. Selected sentences are ex-
pected to be the best candidates for compression –
balancing compression rate with compression qual-
ity.

This paper addresses two main research ques-
tions: (1) How to predict the compression perfor-
mance (preserving meaning and grammar) of an al-
gorithm on a given sentence? (2) Given a document
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and a required compression ratio, how to choose
the optimal subset of sentences to compress, along
with the appropriate compression ratio per each of
the sentences, so that the total compression meets
the required compression requirement?

Given a gold set of pairs of sentences and their
compressions, we represent each sentence as a vec-
tor of shallow and syntactic features, and train a re-
gression model to predict its expected compression
rate. B-BOC ranks all sentences by the predicted
compression potential while considering a required
compression ratio.

The document-level task could be modeled as a
Knapsack optimization problem, considering the
subset of sentences to be compressed in order to
satisfy the overall compression requirement (capac-
ity), with a minimal loss of information (value).
The solution space covers the trade-off between
aggressively compressing only a few sentences and
applying minimal compression on a larger number
of sentences. While the general Knapsack is NP-
complete, the 0-1 variation can be approximated
efficiently by using Dynamic Programming (Hris-
takeva and Shrestha, 2005).

We evaluate B-BOC on three benchmarks com-
monly used for the sentence compression task. We
show that applying B-BOC on top of state-of-the-
art sentence compression models improves the per-
formance for any desired compression rate. In ad-
dition, optimizing the B-BOC-Knapsack achieves
top performance on the document-level task.

2 Related Work

Early sentence compression works employ the
noisy channel model, learning the words and
clauses to be pruned (Knight and Marcu, 2000,
2002; Filippova and Strube, 2008; Clarke and Lap-
ata, 2008; Cohn and Lapata, 2009).

The top-performing sentence compression mod-
els use a Policy Network coupled with a Syntactic
Language Model (bi-LSTM) evaluator (Zhou and
Rush, 2019), and a stacked LSTM with dropout
layers (Filippova et al., 2015). An extension of
Filippova et al., adding syntactic features and us-
ing Integer Linear Programming (ILP), yields im-
proved results in a cross-domain setting (Wang
et al., 2017).

Sentence selection is used for document extrac-
tive summarization – a task conceptually close to
ours, in which full sentences are extracted from
a long document, see (Nenkova et al., 2011) for

an overview. State-of-the-art selection is achieved
by combining sentence and document encoders
(CNN and LSTM) with a sentence extraction model
(LSTM) and a reinforcement layer (Narayan et al.,
2018).

Sentence rephrasing is an abstractive approach
to rewrite a sentence into a shorter form using
some words that may not appear in the original
sentence. A data-driven approach to abstractive
sentence summarization is suggested in (Rush et al.,
2015; Chopra et al., 2016), using about four mil-
lion title-article pairs from the Gigaword corpus
for training, and uses a convolutional neural net-
work model to encode the source and produce a
single representation for the entire input sentence.
Tree-to-tree grammar extraction method for the
rewriting task is used in (Cohn and Lapata, 2008,
2009). State-of-the-art performance on the abstrac-
tive summarization task is obtained using Hierarchi-
cal Attentional Seq2Seq Recurrent Neural Network
(Nallapati et al., 2016; See et al., 2017).

3 Task Definitions and Methodology

In this section we formally define the sentence-
level and the document-level tasks (§3.1) and pro-
vide a detailed description of the application of
B-BOC in both settings (§3.2).

3.1 Problem Definitions
Sentence-Level Compression Given a set of
sentences S = {si}ni=1; a desired compression rate
γ; the number of sentences to compress k ≤ n;
a compression algorithm A; and an oracle R :
(A,S) → [0, 1], returning a score reflecting the
compression quality (grammaticality and minimal
loss of information) A would achieve on s ∈ S –
we would like to choose a set Sk,γ ⊆ S of k sen-
tences:
Sk,γ = {sj | |A(sj)||sj | ≤ γ ∧ argmax

sj
R(A, sj)}kj=1.

We call this sentence-level compression since each
sentence should meet the γ constraint indepen-
dently. It is important to note that γ′ ≤ γ 6=⇒
Sk,γ ⊆ Sk,γ

′
, since different sentences may be

better compressed to different γ values. Consider
the following two sentences used to illustrate the
importance of the Oxford comma: S ={“I had a
yummy dinner with my parents, Batman and Cat-
woman”, “I had a yummy dinner with my parents,
Batman, and Catwoman”}1, and k = 1. The first

1The first sentence, without the Oxford comma, implies
that Batman and Catwoman are the speaker’s parents, the
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sentence could be compressed to “I had a yummy
dinner with my parents” with a minimal loss of
information, while it does not make sense to com-
press the second sentence this way and it should be
compressed to “I had a yummy dinner”, thus spec-
ifying k = 1, the sentence to be compressed with
minimal loss of meaning depends on the desired γ
value.

Document-Level Compression In this setting,
we are given a sequence of sentences D = {si}ni=1

(a paragraph or a full document), and a desired
compression rate γ that should be applied to D as
a whole. That is, we wish to find an optimal subset
of Sγ that satisfies:

argmax
Sγ⊆D

∑
si∈Sγ

R(A, si)

(1)

s.t.

∑
si∈Sγ |A(si)|+

∑
si∈D\Sγ |si|

|D|
≤ γ

Since γ refers to D rather than to individual
sentences, the overall quality can be maximized by
choosing a varying number of sentences expected
to achieve different optimal compressions. Unlike
the sentence-level setting, here, an optimal Sγ may
contain a combination of sentences, for some of
which |A(s)||s| ≤ γ, and for others |A(s)||s| > γ.

3.2 Computational Approach
Scoring Function Given a corpus C =
{〈si, ŝi〉}mi of sentence pairs, each pair contains
an original sentence s and its gold compression
ŝ, we define the golden ratio γ̂i = |ŝi|

|si| , and posit

R(A, s) ≈ 1− |γ̂i − |A(si)||si| |.
We justify the use of γ̂i as a proxy to the opti-

mal compression quality, as compression ratios are
found to correlate with compression quality mea-
sured against gold compressions (Napoles et al.,
2011). The use of γ̂i as a proxy is validated through
manual evaluation, see Sections 4.2 and 5.1.

Syntactic features were successfully used for
sentence compression (Clarke and Lapata, 2008;
Wang et al., 2017; Liu et al., 2017; Futrell and
Levy, 2017). Assuming that sentence complexity
correlates with the ease of compression, we follow
(Brunato et al., 2018) and represent each sentence
as a vector of shallow features (sentence length,
average word length, punctuation counts, etc.) and

second sentence implies that the speaker had dinner with four
people – her parents and Batman and Catwoman.

syntactic features (depth of constituent parse tree
as well as the number of internal nodes, word’s
depth in a dependency parse tree, mean dependency
distance, etc.).

We now train a regression model and learn the
scoring function R(A, s) by minimizing the loss:

L(C,A) = Σsi∈C [R(A, si)− R(A, si)]
2

We note that we do not train a compression al-
gorithm, but an oracle – a scoring function that
predicts the quality of the compression algorithm
A will achieve on a given sentence. This oracle
will be used to rank candidate sentences in order to
optimize the choice of sentences in the two tasks
defined in Section 3.1.

We train a Gradient Boosted Tree regression
model using XGBoost. The model’s hyperparame-
ters (e.g., subsample ratio, learning rate, max depth)
were tuned on a separated development set.

Sentence level compression: Given a set of sen-
tences S, B-BOC operates on two steps: (i) It ap-
plies R on every s ∈ S, producing an ordered set
Ŝ for which ∀i<jR(A, si) ≥ R(A, sj). (ii) It con-
structs Sk,γ by iterating over Ŝ, choosing the first
k sentences that satisfy the γ requirement.

Document level compression: Using the task
definition in Section 3.1, it is straight forward
to cast the task as a combinatorial 0-1 Knapsack
problem in the following way: Given a set of
items (sentences) S = {s1, ..., sn}, each weighs
wi = |A(si)| if compressed, or |si| if kept in the
original form, and each holds a value vi = R(A, si)
(predicted compression quality), if compressed and
vi = 1 if kept in the original form; and given a
weight limit W = γ ·

∑n
1 |si| – we wish to find

Sγ = {si|xi = 1} that maximizes:

∑
i

(vixi − [1− xi]−1) s.t.∑
i

(wixi − |si| [1− xi]−1) ≤W ,xi ∈ {0, 1}

were xi = 1 denotes we choose to compress si
and xi = 0 denotes that si remains in its original
long form (hence the 0-1 Knapsack setting). Note
that the value we maximize and the weight con-
straints include a term for the unchanged sentences,
in case they are not chosen for compression. This
term is introduced since the γ constraint in the task
definition applies to the document as a whole.



1628

B-BOC-knapsack returns Sγ by solving the 0-1
knapsack problem using the dynamic programming
approach proposed by (Hristakeva and Shrestha,
2005) to reduce the computation complexity to
a pseudo-polynomial time. Knapsack’s solution
ensures an optimal set of sentences, satisfying the
required compression limitations, while achieving
the maximum quality score.

4 Experimental Setting

4.1 Datasets

Training Data: We train B-BOC on a dataset of
200,000 sentence-compression pairs2 used by Fil-
ippova and Altun (2013). Each pair is composed of
a long sentence (usually the teaser, caption, extract
or the first sentence that bears the most salient infor-
mation) from a news story and the story’s headline,
which is a compressed version of the long sentence.

Out of these 200,000 sentences, we set aside
9,000 to be used as a development set, and 1,000
as one of our three test sets.

Evaluation datasets: Three datasets are used for
evaluation:

1. Google (GGL) – the first 1000 sentences of
the training corpus (described above) were
used for testing.

2. British National Corpus (BNC) – a man-
ually crafted dataset of ∼ 1500 sentence-
compression pairs. Given a long sentence,
annotators were asked to produce a short ver-
sion by deleting extraneous words from the
source without changing the order of words 3.

3. Gigaword (GIGA)- headline-generation cor-
pus of articles4 consists ∼ 4 million sentence-
compression pairs. We note that this dataset
contains abstractive pairs, nevertheless, it can
be used to measure accuracy.

4.2 Evaluation Procedures

Evaluation metrics: We used four evaluation
metrics that complement each other, providing a
comprehensive evaluation of the different factors
that contribute to quality summarization as sug-
gested by (Filippova et al., 2015): (1) Accuracy –
how many compressed sentences are fully repro-
duced, (i.e., the generated compression is identical

2www.github.com/google-research-datasets/
sentence-compression

3jamesclarke.net/research/resources
4github.com/harvardnlp/sent-summary

to the golden one). (2) F-score – given the golden
and predicted compressions, recall and precision
are based on the ROUGE metric. (3) Readability
score – the grammaticality of the compression. (4)
Informativeness – the level in which the compres-
sion covers the most salient information.

The two latter metrics are based on a manual
evaluation by three annotators, scoring Readability
and Informativeness on a 5-Point Likert scale. The
annotators were guided to give a top Readability
score (score 5) if the predicted compressed sen-
tence is clear and grammatically correct, regardless
of the original context, and a top Informativeness
score (score 5) if the essence of the original is pre-
served completely. The Informativeness measure-
ment bears some degree of subjectivity as annota-
tors may not agree on what should be considered
“the essence” of a sentence, see examples in Table 1.
We used Cohen’s Kappa (Cohen, 1960) to measure
inter-annotator agreements. Low agreements are
expected due to the subjectivity and the five-point
scale, i.e., when two raters agree on the grammati-
cality of a sentence, but do not give the same exact
Informativeness score. To account for slight varia-
tions in assessment, we measure agreement using
the off-by-one procedure proposed by (Tsur and
Rappoport, 2009) and supported by (Toutanova
et al., 2016). Linear and Quadratic weighting were
added as additional statistical methods. Neverthe-
less, we kept the 5-point scale to be aligned with
Filippova’s evaluations. The Kappa values for the
strict and the off-by-one agreement for a sample
of 200 sentences of the GGL dataset are reported
in Table 2. These scores are comparable with the
scores reported by (Filippova et al., 2015). Agree-
ment of 0.86 and 0.78 for Readability and Infor-
mativeness reflect an almost perfect agreement on
Readability and substantial agreement on Informa-
tiveness, according to the interpretation protocol
suggested by McHugh (2012).

4.2.1 Black-Box Compression Models
As described in Section 3.2, B-BOC accommo-
dates any compression model used to compress the
sentences. To show this independence, B-BOC is
evaluated with three competitive compression mod-
els: (1) Filippova: An LSTM model trained on
two million sentence-compression pairs (Filippova
et al., 2015), (2) Zhou: An unsupervised model for
sentence summarization (Zhou and Rush, 2019),
and (3) Klerke: A three-layer bi-LSTM model
(Klerke et al., 2016).

www.github.com/google-research-datasets/sentence-compression
www.github.com/google-research-datasets/sentence-compression
jamesclarke.net/research/resources
github.com/harvardnlp/sent-summary
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Source Text Issue
Long A gang of youths between eight and sixteen robbed a man in an Oldbrook

underpass for just 10£
The salience the clause “for just
10£”

Manual 1 A gang of youths robbed a man in an Oldbrook underpass for just 10£
Manual 2 A gang robbed a man in an Oldbrook underpass

Long A woman was injured by a falling tree in the Gresham neighborhood,
according to the Chicago Fire Department

The salience of the location “Gre-
sham neighborhood”

Manual 1 A woman was injured by a falling tree
Manual 2 A woman was injured by a falling tree in the Gresham neighborhood

Table 1: Two examples of compression disagreements.

Agreement
coverage

Readability Informativeness

Strict 0.61 0.32
Off-by-one 0.86 0.78
Linear 0.78 0.54
Quadratic 0.87 0.72

Table 2: Cohen’s Kappa inter-annotator agreement be-
tween three annotators for the strict, off-by-one, and
other statistical approaches to calculate agreement.

4.3 Experimental Procedure

Given the two settings presented in Section 3.1, we
aim to evaluate the performance of B-BOC in op-
timizing compression quality, on top of a number
of black-box compression algorithms. We eval-
uate the way different values of k affect the per-
formance, and explore the contribution of various
feature types to the trained optimizer.

4.3.1 Sentence level compression:

We evaluate the effectiveness of B-BOC for varied
compression rates. The tested sentences were di-
vided into buckets of different compression rates
0.1-0.9. For each bucket we set k to be 50% of
the sentence in a bucket and compare B-BOC se-
lections to: (1) A random selection of k sentences
from the bucket (RANDOM). (2) The average of
all sentences in the compression rate bucket (ALL).
We report results of this comparison for each of
the black-box algorithms listed in Section 4.2.1).
Note that the F-score is based on the actual results
of each of the black-box models, and that both
B-BOC and RANDOM choose from the same pool
of candidates for each compression rate bucket.

4.3.2 Document level compression

Having a document or a paragraph comprised of
several sentences that are needed to be compressed,
the target is to find the sentences that would gain
the highest performance score subject to the overall
compression ratio constraint.

To simulate a document, we synthesized one hun-
dred documents by randomly sampling sentences
from the test set. Every document contains 100
different sentences of varying lengths. We then
use B-BOC-Knapsack as described in 3.2. B-BOC-
Knapsack is compared with: (1) an oracle Knap-
sack solution where the golden scores are provided,
rather than estimated by B-BOC (ORACLE). (2)
We iteratively sample sentences to compress un-
til the compression ratio is reached (RANDOM).
(3) A sorted selection- choosing sentences by their
lengths in an ascending sort (SHORTER FIRST).
The latter baseline was added followed by our ex-
periments, showing that compression quality tends
to be higher for shorter sentences.

5 Results and Discussion

5.1 Results
Detailed results for both sentence level and docu-
ment level compression are presented below.

Sentence level compression: Figure 1 presents
the F1 performance of sentence selection methods
over varied γ-buckets on the GGL dataset, while
training with the compression models of Filippova
and Zhou respectively. B-BOC is compared with
all sentences and a random selection of sentences,
as described in Section 4.3.1. It can be seen that
B-BOC achieves the highest F1-score for every γ.
The evaluated metrics’ averages for all compres-
sion buckets are presented in Table 3, evaluating
the GGL dataset using three different compression
models. Best results are in bold. B-BOC achieves
the best performance overall measures – automatic
and manual (F1-score, Accuracy, Readability and
Informativeness).

The results confirm that by utilizing B-BOC, the
top sentences which yield the best overall compres-
sion results will be chosen, no matter which black-
box compression model is applied, for every given
compression ratio. Table 4 describes the average
F1-scores and variances for the manual evaluations
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(a) Filippova’s compression model (b) Zhou’s compression model

(c) Klerke’s compression model

Figure 1: Average F1-score (y-axis) applied on the GGL dataset for different compression rate buckets (x-axis)
while training B-BOC with Filippova (a), Zhou’s (b) and Klerke (c) compression models.

F1-score F2-score Accuracy Readability Info.
ALL 0.837 0.77 0.31 4.562 3.78

Filippova RANDOM 0.835 0.76 0.306 4.559 3.79
B-BOC 0.86 * 0.795 0.332 4.65 4.08
ALL 0.82 0.7 0.24 3.92 3.41

Zhou RANDOM 0.815 0.69 0.226 3.91 3.41
B-BOC 0.87 * 0.77 0.30 3.92 3.60
ALL 0.787 0.685 0.187 4.12 3.73

Klerke RANDOM 0.783 0.677 0.156 4.00 3.65
B-BOC 0.815 * 0.72 0.214 4.23 3.97

Table 3: GGL dataset: Evaluation metrics’ average re-
sults over all compression rate buckets. Statistical sig-
nificance using a paired T-test is indicated by *.

Likert score Info. F1 Read. F1 Info. Var Read. Var
1 0.59 0.67 0.13 0.10
2 0.66 0.66 0.07 0.04
3 0.70 0.69 0.05 0.05
4 0.77 0.74 0.04 0.05
5 0.77 0.75 0.03 0.04

Table 4: Readability and Informativeness average F1-
scores and variance.

Figure 2: F1-score (y-axis) per top X% of sentences
(x-axis) that are ranked by B-BOC.

of the GGL dataset using Filippova’s compression
model. It can be seen that both Readability and
Informativeness are correlated with F1-scores. A
compression that gets a higher Readability or Infor-
mativeness on the 5-point Likert score, will most
probably get a higher F1-score as well, with a lower
variance. This manual evaluation of Readability
and Informativeness supports our choice of R (see
Section 3.2).

As described in Section 4.3.1, the top 50% of
the test dataset are chosen for our evaluations. We
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repeated the same experiment varying the num-
ber (percentage) of sentences ranked by B-BOC.
Figure 2 presents the impact of the number of sen-
tences we consider, and demonstrates the determin-
istic trend of B-BOC ranking method. It can be
seen that when considering only the higher ranked
sentences, their compression will produce a higher
F1-score. It suggests that the lower number of
sentences we consider – the higher the benefit of
B-BOC is, compared with a random selection of
the same number of selected sentences.

Document level compression: Given a docu-
ment or a paragraph and a specified compression
rate requirement, B-BOC-Knapsack aims to find a
subset of sentences, that together will satisfy the
compression rate constraints if being compressed,
and while guaranteeing a top F1-score. Our re-
sults below depict an experiment for compressing
a document with a certain compression ratio con-
straint. A document is constructed using 100 sen-
tences with variate lengths, randomly selected from
a given dataset. B-BOC-Knapsack sentence selec-
tion is being compared with a random selection and
a sorted selection of the sentences, as described in
Section 4.3.2. Each experiment was repeated 100
times, sampling different sentences for each of the
datasets. The average scores reported below were
achieved with the same compression model used
by Filippova (see Section 4.2.1) for all sentences.

Figure 3 presents the experiments for GGL and
BNC datasets respectively. An overall compression
requirement is added, ranging from 0.1 to 0.5 (e.g.,
0.1 means that the document should be compressed
in 10 percent). B-BOC-Knapsack has a higher F1-
score for almost every compression ratio, especially
at the lower ratios.

Knapsack’s oracle solution can be created when
considering the actual F1 and compression rates for
all sentences. A histogram of the sentences that the
oracle Knapsack chose to compress, grouped by
their lengths is presented in Figure 4. The Figure
provides a number of insights: (1) The F1-score
decreases as the number of compressed sentences
grow, due to the increased uncertainty when com-
pressing more sentences. A similar pattern is ob-
served in Figure 3. (2) The Knapsack prefers to
choose shorter sentences, as these perform better
than longer sentences. We attribute this to the fact
that shorter sentences may be easier to optimize, as
compression alternatives are limited, compared to
longer sentences.

F1-score Readability Informativeness
ORACLE 0.89 4.64 4.05

GGL RANDOM 0.837 4.59 3.76
SHORTER FIRST 0.850 4.6 3.97
B-BOC 0.854 4.62 4.01
ORACLE 0.68 3.77 3.26

BNC RANDOM 0.55 3.53 3.13
SHORTER FIRST 0.62 3.69 3.24
B-BOC 0.63 3.79 3.28
ORACLE 0.47 - -

GIGA RANDOM 0.256 - -
SHORTER FIRST 0.297 - -
B-BOC 0.303 - -

Table 5: Average results- Document level compression.

The average results for the three datasets are
presented in Table 5. Best results are in bold. In-
formativeness and Readability average scores are
aligned with the F1-scores (note that the GIGA
dataset was not manually annotated for Readabil-
ity and Informativeness, since we are focused on
extractive summarization rather than abstractive,
and the Readability and Informativeness of the two
types cannot be compared directly). We observe
that B-BOC chooses the best sentences and pro-
vides a better compression performance for any
compression ratio.

Feature Importance: Sentence complexity is
correlated with the parse tree structure (Oya, 2011).
Analyzing the contribution of each feature type, we
find the tree depth features and especially Mean
Dependency Distance (MDD) to do the heavy lift-
ing. The MDD is the sum of the depth of words in
the dependency tree, divided by the total number
of dependencies. For example, the MDD scores for
two sentences of the same character length “Sarah
read the book quickly and understood it correctly”
(Figure 5 top) and “US President Donald Trump
tests positive for coronavirus” (Figure 5 bottom) is
19/8 = 2.735 and 11/7 = 1.57, respectively. This
observation validates the relation between sentence
complexity and compression.

Table 6 presents the importance of the syntactic
features to the B-BOC model in terms of weight,
which means the relative number of times a feature
occurs in the boosted trees of the trained model.
Shallow properties such as the number of verbs
and number of nodes are located at the bottom.

5.2 Discussion

Limitation of the F1-score Our main target is
maximizing the F1-score, which happens to be a
common approach for the sentence compression
task, e.g., (Filippova et al., 2015; Zhao et al., 2018).



1632

(a) GGL dataset (b) BNC dataset

Figure 3: 0-1 Knapsack’s F-score results for GGL dataset (a) and BNC dataset (b). x-axis is the total desired
compression rate of the document (i.e., 0.1 means compressing the whole document by 10 percent). y-axis is the
average F1-score of the subset of sentences being compressed.

Figure 4: GGL dataset: Oracle Knapsack subset’s his-
togram. Two y-axis are average F1-score of the subset
(right axis, describes the line) and the number of se-
lected sentences to be compressed (left axis, describes
the bars’ height). x-axis is the total desired compres-
sion rate of the document.

Sarah read the book quickly and understood it correctly

nsubj

dobj

det

advmod

cc

conj

dobj

advmod

US President Donald Trump tests positive for coronavirus

nsubj

compound

compound

compound xcomp

nmod

case

Figure 5: Dependency trees of sentences of the same
length (chars), but different depth and MDD score.

Feature name Weight
Word Length Average 0.140630
MDD-score 0.121428
Tree Depth Average 0.116776
Character count 0.093331
Count Relations 0.079562
Count PoS 0.072715
Parse-Tree Height 0.069478
Count Nodes 0.066835
Parse-Tree sub trees 0.061700
Count words 0.051541
Dependency tree depth 0.045512
Verb count 0.042461
Parse-Tree count POS types 0.038032

Table 6: Feature Importance of B-BOC. The percent-
ages representing the relative number of times a partic-
ular feature occurs in the trees of the model.

Automatic evaluation metrics like the F1-score
serve complementary purposes for linguistic qual-
ity evaluation rather than replacement because it
is unclear whether the improvement in F1-score
necessarily indicates the improvement of linguistic
quality. Nevertheless, it was shown that the F1-
score correlates with human judgment (Napoles
et al., 2011). We manually performed additional
evaluation for Readability and Informativeness to
complement the evaluation based on the F1-score.
For example, when applied on the document-level
on the BNC dataset, B-BOC does not achieve the
best F-score but does achieve best Readability and
Informativeness scores (see Table 5).

Fairness Compression algorithms should be
compared for similar levels of compression
(Napoles et al., 2011). Partitioning S to different
compression rate buckets, as explained in 4.3.1 and
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demonstrated in Figure 1, ensures a fair compari-
son between the different compression models.

Manual evaluations. Exploring the cases in
which annotators did not agree on either Readabil-
ity or Informativeness, we noticed a higher likeli-
hood for disagreement in the lower scale of both
measurements, especially in case the original sen-
tence was convoluted or grammatically flawed.

6 Conclusions

In this paper we presented B-BOC- Black-Box Op-
timizer for Compression, a new complexity opti-
mization method designated to the sentence com-
pression problem. We defined the correlation be-
tween the complexity of a sentence and the chance
that a black-box compression model could suc-
cessfully compress it. Our optimization model
is independent of the compression model used to
compress the sentences and can be combined with
any sentence compression model. Our evaluation
on three benchmarks revealed promising results
when applied to three different types of sentence
compression models. We achieve top performance
for a document compression problem using the
B-BOC-Knapsack optimization implemented with
a bounded Dynamic Programming technique. Our
method could assist in compressing any kind of text
while applying their desired compression model.
Utilizing our method provides a proper guideline
for which of the sentences are the most beneficial
to focus on, in order to compress a given text, while
yielding the best overall compression results.

For future work, we plan to construct Model-
Dependant Optimization that accounts for the fea-
tures of each compression model. This will facili-
tate a choice of the compression model that is the
most suitable for a given sentence.
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