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Abstract

Machine reading comprehension (MRC) has
received considerable attention as a bench-
mark for natural language understanding.
However, the conventional task design of
MRC lacks explainability beyond the model
interpretation, i.e., reading comprehension by
a model cannot be explained in human terms.
To this end, this position paper provides a the-
oretical basis for the design of MRC datasets
based on psychology as well as psychometrics,
and summarizes it in terms of the prerequisites
for benchmarking MRC. We conclude that fu-
ture datasets should (i) evaluate the capability
of the model for constructing a coherent and
grounded representation to understand context-
dependent situations and (ii) ensure substan-
tive validity by shortcut-proof questions and
explanation as a part of the task design.

1 Introduction

Evaluation of natural language understanding
(NLU) is a long-standing goal in the field of artifi-
cial intelligence. Machine reading comprehension
(MRC) is a task that tests the ability of a machine to
read and understand unstructured text and could be
the most suitable task for evaluating NLU because
of its generic formulation (Chen, 2018). Recently,
many large-scale datasets have been proposed, and
deep learning systems have achieved human-level
performance for some of these datasets.

However, analytical studies have shown that
MRC models do not necessarily achieve human-
level understanding. For example, Jia and Liang
(2017) use manually crafted adversarial examples
to show that successful systems are easily dis-
tracted. Sugawara et al. (2020) show that a sig-
nificant part of already solved questions is solvable
even after shuffling the words in a sentence or drop-
ping content words. These studies demonstrate that
we cannot explain what type of understanding is

required by the datasets and is actually acquired by
models. Although benchmarking MRC is related to
the intent behind questions and is critical to test hy-
potheses from a top-down viewpoint (Bender and
Koller, 2020), its theoretical foundation is poorly
investigated in the literature.

In this position paper, we examine the prerequi-
sites for benchmarking MRC based on the follow-
ing two questions: (i) What does reading compre-
hension involve? (ii) How can we evaluate it? Our
motivation is to provide a theoretical basis for the
creation of MRC datasets. As Gilpin et al. (2018)
indicate, interpreting the internals of a system is
closely related to only the system’s architecture
and is insufficient for explaining how the task is ac-
complished. This is because even if the internals of
models can be interpreted, we cannot explain what
is measured by the datasets. Therefore, our study
focuses on the explainability of the task rather than
the interpretability of models.

We first overview MRC and review the analytical
literature that indicates that existing datasets might
fail to correctly evaluate their intended behavior
(Section 2). Subsequently, we present a psycholog-
ical study of human reading comprehension in Sec-
tion 3 for answering the what question. We argue
that the concept of representation levels can serve
as a conceptual hierarchy for organizing the tech-
nologies in MRC. Section 4 focuses on answering
the how question. Here, we implement psychomet-
rics to analyze the prerequisites for the task design
of MRC. Furthermore, we introduce the concept of
construct validity, which emphasizes validating the
interpretation of the task’s outcome. Finally, in Sec-
tion 5, we explain the application of the proposed
concepts into practical approaches, highlighting po-
tential future directions toward the advancement of
MRC. Regarding the what question, we indicate
that datasets should evaluate the capability of the
situation model, which refers to the construction
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Question Foundation Requirements Future direction

What is reading
comprehension?

Representation levels in
human reading compre-
hension: (A) surface
structure, (B) textbase,
and (C) situation model.

(A) Linguistic-level sentence understand-
ing, (B) comprehensiveness of skills
for inter-sentence understanding, and
(C) evaluation of coherent representation
grounded to non-textual information.

(C) Dependence of con-
text on defeasibility and
novelty, and grounding to
non-textual information
with a long passage.

How can we evalu-
ate reading compre-
hension?

Construct validity in psy-
chometrics: (1) content,
(2) substantive, (3) struc-
tural, (4) generalizability,
(5) external, and (6) con-
sequential aspects.

(1) Wide coverage of skills, (2) evalu-
ation of the internal process, (3) struc-
tured metrics, (4) reliability of metrics,
(5) comparison with external variables,
and (6) robustness to adversarial attacks
and social biases.

(2) Creating shortcut-
proof questions by
filtering and ablation,
and designing a task for
validating the internal
process.

Table 1: Overview of theoretical foundations, requirements, and future directions of MRC discussed in this paper.

of a coherent and grounded representation of text
based on human understanding. Regarding the how
question, we argue that among the important as-
pects of the construct validity, substantive validity
must be ensured, which requires the verification of
the internal mechanism of comprehension.

Table 1 provides an overview of the perspectives
taken in this paper. Our answers and suggestions to
the what and how questions are summarized as fol-
lows: (1) Reading comprehension is the process of
creating a situation model that best explains given
texts and the reader’s background knowledge. The
situation model should be the next focal point in
future datasets for benchmarking the human-level
reading comprehension. (2) To evaluate reading
comprehension correctly, the task needs to provide
a rubric (scoring guide) for sufficiently covering
the aspects of the construct validity. In particular,
the substantive validity should be ensured by cre-
ating shortcut-proof questions and by designing a
task formulation that is explanatory itself.

2 Task Overview

2.1 Task Variations and Existing Datasets

MRC is a task in which a machine is given a docu-
ment (context) and it answers the questions based
on the context. Burges (2013) provides a general
definition of MRC, i.e., a machine comprehends a
passage of text if, for any question regarding that
text that can be answered correctly by a majority of
native speakers, that machine can provide a string
which those speakers would agree both answers
that question. We overview various aspects of the
task along with representative datasets as follows.
Existing datasets are listed in Appendix A.

Context Styles A context can be given in various
forms with different lengths such as a single pas-

sage (MCTest (Richardson et al., 2013)), a set of
passages (HotpotQA (Yang et al., 2018)), a longer
document (CBT (Hill et al., 2016)), or open domain
(Chen et al., 2017). In some datasets, a context
includes non-textual information such as images
(RecipeQA (Yagcioglu et al., 2018)).

Question Styles A question can be an interrog-
ative sentence (in most datasets), a fill-in-the-
blank sentence (cloze) (CLOTH (Xie et al., 2018)),
knowledge base entries (QAngaroo (Welbl et al.,
2018)) and search engine queries (MSMARCO
(Nguyen et al., 2016)).

Answering Styles An answer can be (i) chosen
from a text span of the given document (answer
extraction) (NewsQA (Trischler et al., 2017)), (ii)
chosen from a candidate set of answers (multiple
choice) (MCTest (Richardson et al., 2013)), or (iii)
generated as a free-form text (description) (Narra-
tiveQA (Kočiský et al., 2018)). Some datasets op-
tionally allow answering by a yes/no reply (BoolQ
(Clark et al., 2019)).

Sourcing Methods Initially, questions in small-
scale datasets are created by experts (QA4MRE
(Sutcliffe et al., 2013)). Later, fueling the devel-
opment of neural models, most published datasets
have more than a hundred thousand questions that
are automatically created (CNN/Daily Mail (Her-
mann et al., 2015)), crowdsourced (SQuAD v1.1
(Rajpurkar et al., 2016)), and collected from exam-
inations (RACE (Lai et al., 2017)).

Domains The most popular domain is Wikipedia
articles (Natural Questions (Kwiatkowski et al.,
2019)), but news articles are also used (Who-did-
What (Onishi et al., 2016)). CliCR (Suster and
Daelemans, 2018) and emrQA (Pampari et al.,
2018) are datasets in the clinical domain. DuoRC



1594

(Saha et al., 2018) uses movie scripts.

Specific Skills Several recently proposed
datasets require specific skills including unanswer-
able questions (SQuAD v2.0 (Rajpurkar et al.,
2018)), dialogues (CoQA (Reddy et al., 2019),
DREAM (Sun et al., 2019)), multiple-sentence
reasoning (MultiRC (Khashabi et al., 2018)),
multi-hop reasoning (HotpotQA (Yang et al.,
2018)), mathematical and set reasoning (DROP
(Dua et al., 2019)), commonsense reasoning
(CosmosQA (Huang et al., 2019)), coreference
resolution (QuoRef (Dasigi et al., 2019)), and
logical reasoning (ReClor (Yu et al., 2020)).

2.2 Benchmarking Issues

In some datasets, the performance of machines has
already reached human-level performance. How-
ever, Jia and Liang (2017) indicate that models can
easily be fooled by manual injection of distract-
ing sentences. Their study revealed that questions
simply gathered by crowdsourcing without careful
guidelines or constraints are insufficient to evaluate
precise language understanding.

This argument is supported by further studies
across a variety of datasets. For example, Min et al.
(2018) find that more than 90% of the questions
in SQuAD (Rajpurkar et al., 2016) require obtain-
ing an answer from a single sentence despite being
provided with a passage. Sugawara et al. (2018)
show that large parts of twelve datasets are eas-
ily solved only by looking at a few first question
tokens and attending the similarity between the
given questions and the context. Similarly, Feng
et al. (2018) and Mudrakarta et al. (2018) demon-
strate that models trained on SQuAD do not change
their predictions even when the question tokens are
partly dropped. Kaushik and Lipton (2018) also
observe that question- and passage-only models
perform well for some popular datasets. Min et al.
(2019) and Chen and Durrett (2019) concurrently
indicate that for multi-hop reasoning datasets, the
questions are solvable only with a single paragraph
and thus do not require multi-hop reasoning over
multiple paragraphs. Zellers et al. (2019b) report
that their dataset unintentionally contains stylistic
biases in the answer options which are embedded
by a language-based model.

Overall, these investigations highlight a grave
issue of the task design, i.e., even if the models
achieve human-level accuracies, we cannot prove
that they successfully perform reading comprehen-

sion. This issue may be attributed to the low in-
terpretability of black-box neural network models.
However, a problem is that we cannot explain what
is measured by the datasets even if we can inter-
pret the internals of models. We speculate that this
benchmarking issue in MRC can be attributed to
the following two points: (i) we do not have a com-
prehensive theoretical basis of reading comprehen-
sion for specifying what we should ask (Section 3)
and (ii) we do not have a well-established method-
ology for creating a dataset and for analyzing a
model based on it (Section 4).1 In the remainder
of this paper, we argue that these issues can be ad-
dressed by using insights from the psychological
study of reading comprehension and by implement-
ing psychometric means of validation.

3 Reading Comprehension from
Psychology to MRC

3.1 Computational Model in Psychology
Human text comprehension has been studied in
psychology for a long time (Kintsch and Rawson,
2005; Graesser et al., 1994; Kintsch, 1988). Con-
nectionist and computational architectures have
been proposed for such comprehension including a
mechanism pertinent to knowledge activation and
memory storing. Among the computational mod-
els, the construction–integration (CI) model is the
most influential and provides a strong foundation
of the field (McNamara and Magliano, 2009).

The CI model assumes three different represen-
tation levels as follows:

• Surface structure is the linguistic information
of particular words, phrases, and syntax ob-
tained by decoding the raw textual input.

• Textbase is a set of propositions in the text,
where the propositions are locally connected
by inferences (microstructure).

• Situation model is a situational and coherent
mental representation in which the propositions
are globally connected (macrostructure), and it
is often grounded to not only texts but also to
sounds, images, and background information.

The CI model first decodes textual information
(i.e., the surface structure) from the raw textual

1These two issues loosely correspond to the plausibility
and faithfulness of explanation (Jacovi and Goldberg, 2020).
The plausibility is linked to what we expect as an explanation,
whereas the faithfulness refers to how accurately we explain
models’ reasoning process.
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input, then creates the propositions (i.e., textbase)
and their local connections occasionally using the
reader’s knowledge (construction), and finally con-
structs a coherent representation (i.e., situation
model) that is organized according to five dimen-
sions including time, space, causation, intention-
ality, and objects (Zwaan and Radvansky, 1998),
which provides a global description of the events
(integration). These steps are not exclusive, i.e.,
propositions are iteratively updated in accordance
with the surrounding ones with which they are
linked. Although the definition of successful text
comprehension can vary, Hernández-Orallo (2017)
indicates that comprehension implies the process
of creating (or searching for) a situation model that
best explains the given text and the reader’s back-
ground knowledge (Zwaan and Radvansky, 1998).
We use this definition to highlight that the creation
of a situation model plays a vital role in human
reading comprehension.

Our aim in this section is to provide a basis for
explaining what reading comprehension is, which
requires terms for explanation. In the computa-
tional model above, the representation levels appear
to be useful for organizing such terms. We ground
existing NLP technologies and tasks to different
representation levels in the next section.

3.2 Skill Hierarchy for MRC

Here, we associate the existing NLP tasks with the
three representation levels introduced above. The
biggest advantage of MRC is its general formu-
lation, which makes it the most general task for
evaluating NLU. This emphasizes the importance
of the requirement of various skills in MRC, which
can serve as the units for the explanation of reading
comprehension. Therefore, our motivation is to
provide an overview of the skills as a hierarchical
taxonomy and to highlight the missing aspects in
existing MRC datasets that are required for com-
prehensively covering the representation levels.

Existing Taxonomies We first provide a brief
overview of the existing taxonomies of skills in
NLU tasks. For recognizing textual entailment
(Dagan et al., 2006), several studies present a clas-
sification of reasoning and commonsense knowl-
edge (Bentivogli et al., 2010; Sammons et al., 2010;
LoBue and Yates, 2011). For scientific question
answering, Jansen et al. (2016) categorize knowl-
edge and inference for an elementary-level dataset.
Similarly, Boratko et al. (2018) propose types of

knowledge and reasoning for scientific questions
in MRC (Clark et al., 2018). A limitation of both
these studies is that the proposed sets of knowl-
edge and inference are limited to the domain of
elementary-level science. Although some existing
datasets for MRC have their own classifications of
skills, they are coarse and only cover a limited ex-
tent of typical NLP tasks (e.g., word matching and
paraphrasing). In contrast, for a more generalizable
definition, Sugawara et al. (2017) propose a set of
13 skills for MRC. Rogers et al. (2020) pursue this
direction by proposing a set of questions with eight
question types. In addition, Schlegel et al. (2020)
propose an annotation schema to investigate requi-
site knowledge and reasoning. Dunietz et al. (2020)
propose a template of understanding that consists
of spatial, temporal, causal, and motivational ques-
tions to evaluate precise understanding of narratives
with reference to human text comprehension.

In what follows, we describe the three represen-
tation levels that basically follow the three repre-
sentations of the CI model but are modified for
MRC. The three levels are shown in Figure 1. We
emphasize that we do not intend to create exhaus-
tive and rigid definitions of skills. Rather, we aim
to place them in a hierarchical organization, which
can serve as a foundation to highlight the missing
aspects in the current MRC.

Surface Structure This level broadly covers the
linguistic information and its semantic meaning,
which can be based on the raw textual input. Al-
though these features form a proposition according
to psychology, it should be viewed as sentence-
level semantic representation in computational lin-
guistics. This level includes part-of-speech tagging,
syntactic parsing, dependency parsing, punctua-
tion recognition, named entity recognition (NER),
and semantic role labeling (SRL). Although these
basic tasks can be accomplished by some recent
pretraining-based neural language models (Liu
et al., 2019), they are hardly required in NLU tasks
including MRC. In the natural language inference
task, McCoy et al. (2019) indicate that existing
datasets (e.g., Bowman et al. (2015)) may fail to
elucidate the syntactic understanding of given sen-
tences. Although it is not obvious that these basic
tasks should be included in MRC and it is not easy
to circumscribe linguistic knowledge from con-
crete and abstract knowledge (Zaenen et al., 2005;
Manning, 2006), we should always care about the
capabilities of basic tasks (e.g., use of checklists
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Situation
model

Textbase

Surface structure

Construct the global structure of propositions.
Skills: creating a coherent representation and grounding it to other media.

Construct the local relations of propositions.
Skills: recognizing relations between sentences such as coreference resolu-
tion, knowledge reasoning, and understanding discourse relations.

Creating propositions from the textual input.
Skills: syntactic and dependency parsing, POS tagging, SRL, and NER.

Figure 1: Representation levels and corresponding natural language understanding skills.

(Ribeiro et al., 2020)) when the performance of a
model is being assessed.

Textbase This level covers local relations of
propositions in the computational model of reading
comprehension. In the context of NLP, it refers
to various types of relations linked between sen-
tences. These relations not only include the typical
relations between sentences (discourse relations)
but also the links between entities. Consequently,
this level includes coreference resolution, causality,
temporal relations, spatial relations, text structuring
relations, logical reasoning, knowledge reasoning,
commonsense reasoning, and mathematical reason-
ing. We also include multi-hop reasoning (Welbl
et al., 2018) at this level because it does not neces-
sarily require a coherent global representation over
a given context. For studying the generalizabil-
ity of MRC, Fisch et al. (2019) propose a shared
task featuring training and testing on multiple do-
mains. Talmor and Berant (2019) and Khashabi
et al. (2020) also find that training on multiple
datasets leads to robust generalization. However,
unless we make sure that datasets require various
skills with sufficient coverage, it might remain un-
clear whether we evaluate a model’s transferability
of the reading comprehension ability.

Situation Model This level targets the global
structure of propositions in human reading com-
prehension. It includes a coherent and situational
representation of a given context and its grounding
to the non-textual information. A coherent repre-
sentation has well-organized sentence-to-sentence
transitions (Barzilay and Lapata, 2008), which are
vital for using procedural and script knowledge
(Schank and Abelson, 1977). This level also in-
cludes characters’ goals and plans, meta perspec-
tive including author’s intent and attitude, thematic
understanding, and grounding to other media. Most
existing MRC datasets seem to struggle to target the
situation model. We discuss further in Section 5.1.

Passage: The princess climbed out the window of the high
tower and climbed down the south wall when her mother
was sleeping. She wandered out a good way. Finally, she
went into the forest where there are no electric poles.

Q1: Who climbed out of the castle? A: Princess
Q2: Where did the princess wander after escaping?
A: Forest
Q3: What would happen if her mother was not sleeping?
A: the princess would be caught soon (multiple choice)

Figure 2: Example questions of the different represen-
tation levels. The passage is taken from MCTest.

Example The representation levels in the exam-
ple shown in Figure 2 are described as follows.
Q1 is at the surface-structure level where a reader
only needs to understand the subject of the first
event. We expect that Q2 requires understanding
of relations among described entities and events at
the textbase level; the reader may need to under-
stand who she means using coreference resolution.
Escaping in Q2 also requires the reader’s common-
sense to associate it with the first event. However,
the reader might be able to answer this question
only by looking for a place (specified by where)
described in the passage, thereby necessitating the
validity of the question to correctly evaluate the
understanding of the described events. Q3 is an
example that requires imagining a different situa-
tion at the situation-model level, which could be
further associated with a grounding question such
as which figure best depicts the given passage?

In summary, we indicate that the following fea-
tures might be missing in existing datasets:

• Considering the capability to acquire basic un-
derstanding of the linguistic-level information.

• Ensuring that the questions comprehensively
specify and evaluate textbase-level skills.

• Evaluating the capability of the situation model
in which propositions are coherently organized
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and are grounded to non-textual information.

Should MRC models mimic human text com-
prehension? In this paper, we do not argue that
MRC models should mimic human text compre-
hension. However, when we design an NLU task
and create datasets for testing human-like linguistic
generalization, we can refer to the aforementioned
features to frame the intended behavior to evaluate
in the task. As Linzen (2020) discusses, the task de-
sign is orthogonal to how the intended behavior is
realized at the implementation level (Marr, 1982).

4 MRC on Psychometrics

In this section, we provide a theoretical foundation
for the evaluation of MRC models. When MRC
measures the capability of reading comprehension,
validation of the measurement is crucial to obtain a
reliable and useful explanation. Therefore, we fo-
cus on psychometrics—a field of study concerned
with the assessment of the quality of psychological
measurement (Furr, 2018). We expect that the in-
sights obtained from psychometrics can facilitate a
better task design. In Section 4.1, we first review
the concept of validity in psychometrics. Subse-
quently, in Section 4.2, we examine the aspects that
correspond to construct validity in MRC and then
indicate the prerequisites for verifying the intended
explanation of MRC in its task design.

4.1 Construct Validity in Psychometrics
According to psychometrics, construct validity is
necessary to validate the interpretation of outcomes
of psychological experiments.2 Messick (1995)
report that construct validity consists of the six
aspects shown in Table 2.

In the design of educational and psychological
measurement, these aspects collectively provide
verification questions that need to be answered for
justifying the interpretation and use of test scores.
In this sense, the construct validation can be viewed
as an empirical evaluation of the meaning and con-
sequence of measurement. Given that MRC is in-
tended to capture the reading comprehension abil-
ity, the task designers need to be aware of these
validity aspects. Otherwise, users of the task can-
not justify the score interpretation, i.e., it cannot be
confirmed that successful systems actually perform
intended reading comprehension.

2In psychology, a construct is an abstract concept, which
facilitates the understanding of human behavior such as vo-
cabulary, skills, and comprehension.

4.2 Construct Validity in MRC

Table 2 also raises MRC features corresponding to
the six aspects of construct validity. In what fol-
lows, we elaborate on these correspondings and dis-
cuss the missing aspects that are needed to achieve
the construct validity of the current MRC.

Content Aspect As discussed in Section 3, suffi-
ciently covering the skills across all the representa-
tion levels is an important requirement of MRC. It
may be desirable that an MRC model is simultane-
ously evaluated on various skill-oriented examples.

Substantive Aspect This aspect appraises the ev-
idence for the consistency of model behavior. We
consider that this is the most important aspect for
explaining reading comprehension, a process that
subsumes various implicit and complex steps. To
obtain a consistent response from an MRC system,
it is necessary to ensure that the questions correctly
assess the internal steps in the process of reading
comprehension. However, as stated in Section 2.2,
most existing datasets fail to verify that a question
is solved by using an intended skill, which implies
that it cannot be proved that a successful system
can actually perform intended comprehension.

Structural Aspect Another issue in the current
MRC is that they only provide simple accuracy
as a metric. Given that the substantive aspect ne-
cessitates the evaluation of the internal process of
reading comprehension, the structure of metrics
needs to reflect it. However, a few studies have at-
tempted to provide a dataset with multiple metrics.
For example, Yang et al. (2018) not only ask for
the answers to questions but also provide sentence-
level supporting facts. This metric can also evaluate
the process of multi-hop reasoning whenever the
supporting sentences need to be understood for an-
swering a question. Therefore, we need to consider
both substantive and structural aspects.

Generalizability Aspect The generalizability of
MRC can be understood from the reliability of met-
rics and the reproducibility of findings. For the
reliability of metrics, we need to take care of the re-
liability of gold answers and model predictions. Re-
garding the accuracy of answers, the performance
of the model becomes unreliable when the answers
are unintentionally ambiguous or impractical. Be-
cause the gold answers in most datasets are only
decided by the majority vote of crowd workers,
the ambiguity of the answers is not considered. It
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Validity aspects Definition in psychometrics Correspondence in MRC

1. Content Evidence of content relevance, representativeness,
and technical quality.

Questions require reading comprehension skills
with sufficient coverage and representativeness
over the representation levels.

2. Substantive Theoretical rationales for the observed consisten-
cies in the test responses including task perfor-
mance of models.

Questions correctly evaluate the intended inter-
mediate process of reading comprehension and
provide rationales to the interpreters.

3. Structural Fidelity of the scoring structure to the structure of
the construct domain at issue.

Correspondence between the task structure and
the score structure.

4. Generalizability Extent to which score properties and interpretations
can be generalized to and across population groups,
settings, and tasks.

Reliability of test scores in correct answers and
model predictions, and applicability to other
datasets and models.

5. External Extent to which the assessment scores’ relationship
with other measures and non-assessment behaviors
reflect the expected relations.

Comparison of the performance of MRC with
that of other NLU tasks and measurements.

6. Consequential Value implications of score interpretation as a basis
for the consequences of test use, especially regard-
ing the sources of invalidity related to issues of
bias, fairness, and distributive justice.

Considering the model vulnerabilities to adver-
sarial attacks and social biases of models and
datasets to ensure the fairness of model outputs.

Table 2: Aspects of the construct validity in psychometrics and corresponding features in MRC.

may be useful if such ambiguity can be reflected
in the evaluation (e.g., using the item response the-
ory (Lalor et al., 2016)). As for model predic-
tions, an issue may be the reproducibility of results
(Bouthillier et al., 2019), which implies that the
reimplementation of a system generates statistically
similar predictions. For the reproducibility of mod-
els, Dror et al. (2018) emphasize statistical testing
methods to evaluate models. For the reproducibil-
ity of findings, Bouthillier et al. (2019) stress it as
the transferability of findings in a dataset/task to
another dataset/task. In open-domain question an-
swering, Lewis et al. (2021) point out that success-
ful models might only memorize dataset-specific
knowledge. To facilitate this transferability, we
need to have units of explanation that can be used
in different datasets (Doshi-Velez and Kim, 2018).

External Aspect This aspect refers to the rela-
tionship between a model’s scores on different
tasks. Yogatama et al. (2019) point out that current
models struggle to transfer their ability from a task
originally trained on (e.g., MRC) to different un-
seen tasks (e.g., SRL). To develop a general NLU
model, one would expect that a successful MRC
model should show sufficient performance on other
NLU tasks as well. To this end, Wang et al. (2019)
propose an evaluation framework with ten different
NLU tasks in the same format.

Consequential Aspect This aspect refers to the
actual and potential consequences of test use. In

MRC, this refers to the use of a successful model
in practical situations other than tasks, where we
need to ensure the robustness of a model to adver-
sarial attacks and the accountability for unintended
model behaviors. Wallace et al. (2019) highlight
this aspect by showing that existing NLP models
are vulnerable to adversarial examples, thereby gen-
erating egregious outputs.

Summary: Design of Rubric Given the validity
aspects, our suggestion is to design a rubric (scor-
ing guide used in education) of what reading com-
prehension we expect is evaluated in a dataset; this
helps to inspect detailed strengths and weaknesses
of models that cannot be obtained only by simple
accuracy. The rubric should not only cover various
linguistic phenomena (the content aspect) but also
involve different levels of intermediate evaluation
in the reading comprehension process (the substan-
tive and structural aspects) as well as stress testing
of adversarial attacks (the consequential aspect).
The rubric is in a similar motivation with dataset
statements (Bender and Friedman, 2018; Gebru
et al., 2018); however, taking the validity aspects
into account would improve its substance.

5 Future Directions

This section discusses future potential directions
toward answering the what and how questions in
Sections 3 and 4. In particular, we infer that the
situation model and substantive validity are critical
for benchmarking human-level MRC.
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5.1 What Question: Situation Model
As mentioned in Section 3, existing datasets fail
to fully assess the ability of creating the situation
model. As a future direction, we suggest that the
task should deal with two features of the situation
model: context dependency and grounding.

5.1.1 Context-dependent Situations
A vital feature of the situation model is that it is
conditioned on a given text, i.e., a representation
is constructed distinctively depending on the given
context. We elaborate it by discussing the two key
features: defeasibility and novelty.

Defeasibility The defeasibility of a constructed
representation implies that a reader can modify and
revise it according to the newly acquired informa-
tion (Davis and Marcus, 2015; Schubert, 2015).
The defeasibility of NLU has been tackled in the
task of if-then reasoning (Sap et al., 2019a), ab-
ductive reasoning (Bhagavatula et al., 2020), coun-
terfactual reasoning (Qin et al., 2019), or contrast
sets (Gardner et al., 2020). A possible approach
in MRC is that we ask questions against a set of
modified passages that describe slightly different
situations, where the same question can lead to
different conclusions.

Novelty An example showing the importance
of contextual novelty is Could a crocodile run a
steeplechase? by Levesque (2014). This question
poses a novel situation where the solver needs to
combine multiple commonsense knowledge to de-
rive the correct answer. If non-fiction documents,
such as newspaper and Wikipedia articles, are only
used, some questions require only the reasoning
of facts already known in web-based corpus. Fic-
tional narratives may be a better source for creating
questions on novel situations.

5.1.2 Grounding to Other Media
In MRC, grounding texts to non-textual informa-
tion is not fully explored yet. Kembhavi et al.
(2017) propose a dataset based on science text-
books, which contain questions with passages, di-
agrams, and images. Kahou et al. (2018) propose
a figure-based question answering dataset that re-
quires the understanding of figures including line
plots and bar charts. Although another approach
could be vision-based question answering tasks
(Antol et al., 2015; Zellers et al., 2019a), we can-
not directly use them for evaluating NLU because
they focus on understanding of images rather than

texts. Similarly to the textbook questions (Kemb-
havi et al., 2017), a possible approach would be to
create questions for understanding of texts through
showing figures. We might also need to account
for the scope of grounding (Bisk et al., 2020), i.e.,
ultimately understanding human language in a so-
cial context beyond simply associating texts with
perceptual information.

5.2 How Question: Substantive Validity

Substantive validity requires us to ensure that the
questions correctly assess the internal steps of read-
ing comprehension. We discuss two approaches for
this challenge: creating shortcut-proof questions
and ensuring the explanation by design.

5.2.1 Shortcut-proof Questions
Gururangan et al. (2018) reveal that NLU datasets
can contain unintended dataset biases embedded
by annotators. If machine learning models exploit
such biases for answering questions, we cannot
evaluate the precise NLU of models. Following
Geirhos et al. (2020), we define shortcut-proof
questions as ones that prevent models from exploit-
ing dataset biases and learning decision rules (short-
cuts) that perform well only on i.i.d. test examples
with regard to its training examples. Gardner et al.
(2019) also point out the importance of mitigating
shortcuts in MRC. In this section, we view two
different approaches for this challenge.

Removing Unintended Biases by Filtering
Zellers et al. (2018) propose a model-based ad-
versarial filtering method that iteratively trains an
ensemble of stylistic classifiers and uses them to
filter out the questions. Sakaguchi et al. (2020)
also propose filtering methods based on both ma-
chines and humans to alleviate dataset-specific and
word-association biases. However, a major issue
is the inability to discern knowledge from bias in
a closed domain. When the domain is equal to a
dataset, patterns that are valid only in the domain
are called dataset-specific biases (or annotation
artifacts in the labeled data). When the domain
covers larger corpora, the patterns (e.g., frequency)
are called word-association biases. When the do-
main includes everyday experience, patterns are
called commonsense. However, as mentioned in
Section 5.1, commonsense knowledge can be de-
feasible, which implies that the knowledge can be
false in unusual situations. In contrast, when the
domain is our real world, indefeasible patterns are
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called factual knowledge. Therefore, the distinc-
tion of bias and knowledge depends on where the
pattern is recognized. This means that a dataset
should be created so that it can evaluate reasoning
on the intended knowledge. For example, to test
defeasible reasoning, we must filter out questions
that are solvable by usual commonsense only. If we
want to investigate the reading comprehension abil-
ity without depending on factual knowledge, we
can consider counterfactual or fictional situations.

Identifying Requisite Skills by Ablating Input
Features Another approach is to verify shortcut-
proof questions by analyzing the human answer-
ability of questions regarding their key features.
We speculate that if a question is still answerable
by humans even after removing the intended fea-
tures, the question does not require understanding
of the ablated features (e.g., checking the necessity
of resolving pronoun coreference after replacing
pronouns with dummy nouns). Even if we can-
not accurately identify such necessary features, by
identifying partial features of them in a sufficient
number of questions, we could expect that the ques-
tions evaluate the corresponding intended skill. In
a similar vein, Geirhos et al. (2020) argue that a
dataset is useful only if it is a good proxy for the
underlying ability one is actually interested in.

5.2.2 Explanation by Design
Another approach for ensuring the substantive va-
lidity is to include explicit explanation in the task
formulation. Although gathering human explana-
tions is costly, the following approaches can facil-
itate the explicit verification of a model’s under-
standing using a few test examples.

Generating Introspective Explanation Inoue
et al. (2020) classify two types of explanation
in text comprehension: justification explanation
and introspective explanation. The justification
explanation only provides a collection of support-
ing facts for making a certain decision, whereas
the introspective explanation provides the deriva-
tion of the answer for making the decision, which
can cover linguistic phenomena and commonsense
knowledge not explicitly mentioned in the text.
They annotate multi-hop reasoning questions with
introspective explanation and propose a task that
requires the derivation of the correct answer of a
given question to improve the explainability. Ra-
jani et al. (2019) collect human explanations for
commonsense reasoning and improve the system’s

performance by modeling the generation of the ex-
planation. Although we must take into account
the faithfulness of explanation, asking for intro-
spective explanations could be useful in inspecting
the internal reasoning process, e.g., by extending
the task formulation so that it includes auxiliary
questions that consider the intermediate facts in a
reasoning process. For example, before answering
Q2 in Figure 2, a reader should be able to answer
who escaped? and where did she escape from? at
the surface-structure level.

Creating Dependency Between Questions An-
other approach for improving the substantive va-
lidity is to create dependency between questions
by which answering them correctly involves an-
swering some other questions correctly. For exam-
ple, Dalvi et al. (2018) propose a dataset that re-
quires a procedural understanding of scientific facts.
In their dataset, a set of questions corresponds to
the steps of the entire process of a scientific phe-
nomenon. Therefore, this set can be viewed as
a single question that requires a complete under-
standing of the scientific phenomenon. In CoQA
(Reddy et al., 2019), it is noted that questions often
have pronouns that refer back to nouns appearing
in previous questions. These mutually-dependent
questions can probably facilitate the explicit vali-
dation of the models’ understanding of given texts.

6 Conclusion

In this paper, we outlined current issues and future
directions for benchmarking machine reading com-
prehension. We visited the psychology study to
analyze what we should ask of reading comprehen-
sion and the construct validity in psychometrics to
analyze how we should correctly evaluate it. We
deduced that future datasets should evaluate the
capability of the situation model for understanding
context-dependent situations and for grounding to
non-textual information and ensure the substantive
validity by creating shortcut-proof questions and
designing an explanatory task formulation.
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Dataset Answer
style Size Corpus Question

source Focus

QA4MRE
(Sutcliffe et al., 2013)

multiple-
choice 240 technical

document expert exam-level questions

MCTest
(Richardson et al., 2013)

multiple-
choice 2.6K written

story crowd children-level narrative

bAbI
(Weston et al., 2015) descript 10K *

20
generated

text automated toy tasks for prerequisite skills

CNN/ DailyMail
(Hermann et al., 2015) extract 1.4M news

article automated entity cloze

Children’s Book Test
(Hill et al., 2016) extract 688K narrative automated large-scale automated

SQuAD 1.1
(Rajpurkar et al., 2016) extract 100K Wikipedia crowd large-scale crowdsourced

LAMBADA
(Paperno et al., 2016) descript 10K narrative crowd hard language modeling

WikiReading
(Hewlett et al., 2016) descript 18m Wikipedia automated Wikidata articles

Who did What
(Onishi et al., 2016)

multiple-
choice 200K news

article automated cloze of person names

MS MARCO
(Nguyen et al., 2016) descript 100K web

snippet query description on web snippets

NewsQA
(Trischler et al., 2017) extract 120K news

article crowd blindly created questions

SearchQA
(Dunn et al., 2017) extract 140K web

snippet trivia 49.6 snippets on average

RACE
(Lai et al., 2017)

multiple-
choice 100K language

exam expert middle and high school
English exam in China

Story Cloze Test
(Mostafazadeh et al., 2017)

multiple-
choice 3.7K written

story crowd 98,159 stories for training

TriviaQA
(Joshi et al., 2017) extract 650K web

snippet trivia trivia questions

Quasar
(Dhingra et al., 2017) extract 80K web

snippet query search queries

TextbookQA
(Kembhavi et al., 2017)

multiple-
choice 26K textbook expert figures included

AddSent SQuAD
(Jia and Liang, 2017) extract 3.6K Wikipedia crowd distracting sentences injected

Table 3: Machine reading comprehension datasets published until 2017. In the answer style column, descript
represents description (free-form answering) and extract denotes answer extraction by selecting a span in given
texts. Size indicates the size of the whole dataset including training, development, and test sets. In the question
source column, crowd indicates questions written by crowdworkers and query indicates questions collected from
search-engine queries.
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Dataset Answer
style Size Corpus Question

source Focus

ARCT
(Habernal et al., 2018)

multiple-
choice 2.0K debate

article
crowd
expert reasoning on argument

QAngaroo
(Welbl et al., 2018)

multiple-
choice 50K Wikipedia,

MEDLINE automated multi-hop reasoning

CLOTH
(Xie et al., 2018)

multiple-
choice 99K various expert cloze in exam texts

NarrativeQA
(Kočiský et al., 2018) descript 45K movie

script crowd summary and full
story tasks

MCScript
(Ostermann et al., 2018)

multiple-
choice 30K written

story crowd commonsense reasoning,
script knowledge

CliCR
(Suster and Daelemans, 2018) extract 100K clinical case

text automated cloze style queries

ARC
(Clark et al., 2018)

multiple-
choice 8K science

exam expert retrieved documents
from textbooks

DuoRC
(Saha et al., 2018) extract 186K movie

script crowd commonsense reasoning,
multi-sentence reasoning

ProPara
(Dalvi et al., 2018) extract 2K science

exam automated procedural understanding

DuReader
(He et al., 2018) descript 200K web

snippet
query
crowd

Chinese,
Baidu Search/Knows

MultiRC
(Khashabi et al., 2018)

multiple-
choice 6K various

documents crowd multi-sentence reasoning

Multi-party Dialog
(Ma et al., 2018) extract 13K TV show

transcript automated 1.7k crowd dialogues,
cloze query

SQuAD 2.0
(Rajpurkar et al., 2018)

extract
no answer 100K Wikipedia crowd unanswerable questions

ShARC
(Saeidi et al., 2018)

yes/no/
irrelevant 32K web

snippet crowd reasoning on rules from
government documents

QuAC
(Choi et al., 2018)

extract
yes/no 100K Wikipedia crowd dialogue-based,

14k dialogues
Textworlds QA

(Labutov et al., 2018) extract 1.2M generated
text automated simulated worlds,

logical reasoning
SWAG

(Zellers et al., 2018)
multiple-

choice 113K video
captions

language-
model commonsense reasoning

emrQA
(Pampari et al., 2018) extract 400K clinical

documents automated using annotated logical
forms on i2b2 dataset

HotpotQA
(Yang et al., 2018)

extract
yes/no 113K Wikipedia crowd multi-hop reasoning

OpenbookQA
(Mihaylov et al., 2018)

multiple-
choice 6.0K textbook crowd commonsense reasoning

RecipeQA
(Yagcioglu et al., 2018)

multiple-
choice 36K recipe

script automated multimodal questions

ReCoRD
(Zhang et al., 2018) extract 120K news

article crowd commonsense reasoning,
cloze query

Table 4: Machine reading comprehension datasets published in 2018. In the answer style column, descript repre-
sents description (free-form answering) and extract denotes answer extraction by selecting a span in given texts.
Size indicates the size of the whole dataset including training, development, and test sets. In the question source
column, crowd indicates questions written by crowdworkers and query indicates questions collected from search-
engine queries.
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Dataset Answer
style Size Corpus Question

source Focus

CoQA
(Reddy et al., 2019)

extract
yes/no 127K Wikipedia crowd dialogue-based,

8k dialogues
Commonsense QA

(Talmor et al., 2019)
multiple-

choice 12K ConceptNet crowd commonsense reasoning

Natural Questions
(Kwiatkowski et al., 2019)

extract
yes/no 323K Wikipedia query

crowd short or long answer styles

DREAM
(Sun et al., 2019)

multiple-
choice 10K language

exam expert dialogue-based,
6.4k multi-party dialogues

DROP
(Dua et al., 2019) descript 96K Wikipedia crowd discrete reasoning

SocialIQA
(Sap et al., 2019b)

multiple-
choice 38K crowd crowd commonsense reasoning

about social situation
BoolQ

(Clark et al., 2019) yes/no 16K Wikipedia query
crowd

boolean questions,
subset of Natural Questions

MSCript 2.0
(Ostermann et al., 2019)

multiple-
choice 20K narrative crowd commonsense reasoning,

script knowledge
HellaSWAG

(Zellers et al., 2019b)
multiple-

choice 70K web
snippet

language-
model

commonsense reasoning,
WikiHow and ActivityNet

CODAH
(Chen et al., 2019)

multiple-
choice 2.8K written

prompt expert adversarial collection

Quoref
(Dasigi et al., 2019) extract 24K Wikipedia crowd coreference resolution

CosmosQA
(Huang et al., 2019)

multiple-
choice 36K narrative crowd commonsense reasoning

PubMedQA
(Jin et al., 2019) yes/no 273.5K PubMed expert

automated
biomedical domain,
1k expert questions

ROPES
(Lin et al., 2019) extract 14K textbook

Wikipedia crowd paragraph effects
in situations

Table 5: Machine reading comprehension datasets published in 2019. In the answer style column, descript repre-
sents description (free-form answering) and extract denotes answer extraction by selecting a span in given texts.
Size indicates the size of the whole dataset including training, development, and test sets. In the question source
column, crowd indicates questions written by crowdworkers and query indicates questions collected from search-
engine queries.
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Dataset Answer
style Size Corpus Question

source Focus

QuAIL
(Rogers et al., 2020)

multiple-
choice 15K various crowd prerequisite real tasks

QASC
(Khot et al., 2020)

multiple-
choice 10K textbook crowd knowledge composition

AdversarialQA
(Bartolo et al., 2020) extract 36K Wikipedia crowd adversarial collection

ReClor
(Yu et al., 2020)

multiple-
choice 6.1K exam expert logical reasoning

R4C
(Inoue et al., 2020)

extract
descript 5K Wikipedia crowd multi-hop reasoning

TechQA
(Castelli et al., 2020) descript 1.4K tech

documents crowd tech forum questions

LogiQA
(Liu et al., 2020)

multiple-
choice 8.7K exam expert logical reasoning

ProtoQA
(Boratko et al., 2020) descript 9.8K web

snippet crowd commonsense reasoning
over prototypical sittuations

IIRC
(Ferguson et al., 2020) descript 13K Wikipedia crowd incomplete information

HybridQA
(Chen et al., 2020) extract 70K Wikipedia crowd understanding tabular data

TORQUE
(Ning et al., 2020) extract 21K TempEval-3 crowd temporal ordering

2WikiMultiHopQA
(Ho et al., 2020)

extract yes/no
descript 200K Wikipedia automated multi-hop reasoning

Table 6: Machine reading comprehension datasets published in 2020. In the answer style column, descript repre-
sents description (free-form answering) and extract denotes answer extraction by selecting a span in given texts.
Size indicates the size of the whole dataset including training, development, and test sets. In the question source
column, crowd indicates questions written by crowdworkers and query indicates questions collected from search-
engine queries.


