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Abstract
According to the Probability Ranking Princi-
ple (PRP), ranking documents in decreasing or-
der of their probability of relevance leads to an
optimal document ranking for ad-hoc retrieval.
The PRP holds when two conditions are met:
[C1] the models are well calibrated, and,
[C2] the probabilities of relevance are reported
with certainty. We know however that deep
neural networks (DNNs) are often not well cal-
ibrated and have several sources of uncertainty,
and thus [C1] and [C2] might not be satisfied
by neural rankers. Given the success of neu-
ral Learning to Rank (L2R) approaches—and
here, especially BERT-based approaches—we
first analyze under which circumstances de-
terministic neural rankers are calibrated for
conversational search problems. Then, moti-
vated by our findings we use two techniques to
model the uncertainty of neural rankers lead-
ing to the proposed stochastic rankers, which
output a predictive distribution of relevance as
opposed to point estimates. Our experimental
results on the ad-hoc retrieval task of conver-
sation response ranking1 reveal that (i) BERT-
based rankers are not robustly calibrated and
that stochastic BERT-based rankers yield bet-
ter calibration; and (ii) uncertainty estimation
is beneficial for both risk-aware neural rank-
ing, i.e. taking into account the uncertainty
when ranking documents, and for predicting
unanswerable conversational contexts.

1 Introduction

According to the Probability Ranking Principle
(PRP) (Robertson, 1977), ranking documents in
decreasing order of their probability of relevance
leads to an optimal document ranking for ad-hoc
retrieval2. Gordon and Lenk (1991) discussed that

1The source code and data are available at
https://github.com/Guzpenha/transformer_
rankers/tree/uncertainty_estimation.

2Standard retrieval task where the user specifies his infor-
mation need through a query which initiates a search by the
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Figure 1: While deterministic neural rankers output
a point estimate probability (magenta values) of rele-
vance for a combination of query (blue bars) and doc-
ument (grey bars), stochastic neural rankers output a
predictive distribution (orange curves). The dispersion
of the predictive distribution provides an estimation of
the model uncertainty.

for the PRP to hold, ranking models must at least
meet the following conditions: [C1] assign well cal-
ibrated probabilities of relevance, i.e. if we gather
all documents for which the model predicts rele-
vance with a probability of e.g. 30%, the amount
of relevant documents should be 30%, and [C2]
report certain predictions, i.e. only point estimates
such as, for example, 80% probability of relevance.

DNNs have been shown to outperform classic
Information Retrieval (IR) ranking models over the
past few years in setups where considerable train-
ing data is available. It has been shown that DNNs
are not well calibrated in the context of computer vi-
sion (Guo et al., 2017). If the same is true for neural
L2R models for IR, e.g. transformer-based mod-
els for ranking (Nogueira and Cho, 2019), [C1]
is not met. Additionally, there are a number of
sources of uncertainty in the training process of
neural networks (Gal, 2016) that make it unreason-
able to assume that neural ranking models fulfill
[C2]: parameter uncertainty (different combina-
tions of weights that explain the data equally well),
structural uncertainty (which neural architecture to

system for documents that are likely relevant (Baeza-Yates
et al., 1999).

https://github.com/Guzpenha/transformer_rankers/tree/uncertainty_estimation
https://github.com/Guzpenha/transformer_rankers/tree/uncertainty_estimation
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use for neural ranking), and aleatoric uncertainty
(noisy data). Given these sources of uncertainty,
using point estimate predictions and ranking ac-
cording to the PRP might not achieve the optimal
ranking for retrieval. While the effectiveness bene-
fits of risk-aware models (Wang, 2009; Wang and
Zhu, 2009), which take into account the risk3, i.e.
the uncertainty of the document’s prediction scores,
have been shown for non-neural IR approaches, this
has not yet been explored for neural L2R models.

In this paper we first analyze the calibration of
neural rankers, specifically BERT-based rankers
for IR tasks to evaluate how calibrated they are.
Then, to model the uncertainty of BERT-based
rankers, we propose stochastic neural ranking mod-
els (see Figure 1), by applying different techniques
to model the uncertainty of DNNs, namely MC
Dropout (Gal and Ghahramani, 2016) and Deep
Ensembles (Lakshminarayanan et al., 2017) which
are agnostic to the particular DNN.

In our experiments, we test models under distri-
butional shift, i.e. the test data distribution is differ-
ent from the training data, also referred to as out-of-
distribution (OOD) examples (Lee et al., 2018). In
real-world settings, there are often inputs that are
shifted due to factors such as non-stationarity and
sample bias. Additionally, this experimental setup
provides a way of measuring whether the DNN

”knows what it knows” (Ovadia et al., 2019), e.g.
by outputting high uncertainty for OOD examples.

We find that BERT-based rankers are not ro-
bustly calibrated. Stochastic BERT-based rankers
have 14% less calibration error on average than
BERT-based rankers. Uncertainty estimation from
stochastic BERT-based rankers is advantageous for
downstream applications as shown by our exper-
iments for risk-aware neural ranking (2% more
effective on average relative to a model without
risk-awareness) and for predicting unanswerable
conversational contexts (improves classification by
33% on average of all conditions).

2 Related Work

Calibration and Uncertainty in IR
Even though to optimally rank documents accord-
ing to the PRP (Robertson, 1977) requires the
model to be calibrated (Gordon and Lenk, 1991)
([C1]), the calibration of ranking models has re-
ceived little attention in IR. In contrast, in the ma-
chine learning community there have been a num-

3In this paper we use risk and uncertainty interchangeably.

ber of studies about calibration (Ovadia et al., 2019;
Maddox et al., 2019), due to the larger decision
making pipelines DNNs are often part of and their
importance for model interpretability (Thiagarajan
et al., 2020). For instance, in the automated medi-
cal domain it is important to provide a calibrated
confidence measure besides the prediction of a dis-
ease diagnosis to provide clinicians with sufficient
information (Jiang et al., 2012). Guo et al. (2017)
have shown that DNNs are not well calibrated in the
context of computer vision, motivating our study
of the calibration of neural L2R models.

The second condition ([C2]) for optimal retrieval
when ranking according to the PRP (Gordon and
Lenk, 1991) is that models report predictions with
certainty. While the (un)certainty has not been
studied in neural L2R models, there are classic ap-
proaches in IR that model the uncertainty. Such ap-
proaches have been mostly inspired by economics
theory, treating variance as a measure of uncer-
tainty (Varian, 1999). Following such ideas, non-
neural ranking models that take uncertainty into
account (i.e. risk-aware models), and thus do not
follow the PRP (Robertson, 1977), have been pro-
posed (Zhu et al., 2009; Wang and Zhu, 2009),
showing significant effectiveness improvements
compared to the models that do not model uncer-
tainty. Uncertainty estimation is a difficult task that
has other applications in IR besides improving the
ranking effectiveness: it can be employed to decide
between asking clarifying questions and providing
a potential answer in conversational search (Alian-
nejadi et al., 2019); to perform dynamic query re-
formulation (Lin et al., 2020) for queries where the
intent is uncertain; and to predict questions with no
correct answers (Feng et al., 2020).

Bayesian Neural Networks
Unlike standard algorithms to train neural net-
works, e.g. SGD, that fit point estimate weights
given the observed data, Bayesian Neural Networks
(BNNs) infer a distribution over the weights given
the observed data. Denker et al. (1987) contains
one of the earliest mentions of choosing probabil-
ity over weights of a model. An advantage of the
Bayesian treatment of neural networks (MacKay,
1992; Neal, 2012; Blundell et al., 2015) is that they
are better at representing existing uncertainties in
the training procedure. One limitation of BNNs is
that they are computationally expensive compared
to DNNs. This has lead to the development of
techniques that scale well, and do not require mod-
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ifications of the neural net architecture and training
procedure. Gal and Ghahramani (2016) proposed a
way to approximate Bayesian inference by relying
on dropout (Srivastava et al., 2014). While dropout
is a regularization technique that ignores units with
probability p during every training iteration and is
disabled at test time, Dropout (Gal and Ghahra-
mani, 2016) employs dropout at both train and test
time and generates a predictive distribution after
a number of forward passes. Lakshminarayanan
et al. (2017) proposed an alternative: they employ
ensembles of models (Ensemble) to obtain a pre-
dictive distribution. Ovadia et al. (2019) showed
that Ensemble are able to produce well calibrated
uncertainty estimates that are robust to dataset shift.

Conversational Search
Conversational search is concerned with creating
agents that fulfill an information need by means of
a mixed-initiative conversation through natural lan-
guage interaction. A popular approach to conversa-
tional search is its modeling as an ad-hoc retrieval
task: given an ongoing conversation and a large cor-
pus of historic conversations, retrieve the response
that is best suited from the corpus (this is also
known as conversation response ranking (Wu et al.,
2017; Yang et al., 2018; Penha and Hauff, 2020; Gu
et al., 2020; Lu et al., 2020)). This retrieval-based
approach does not require task-specific knowledge
provided by domain experts (Henderson et al.,
2019), and it avoids the difficult task of dialogue
generation, which often suffers from uninformative,
generic responses (Li et al., 2016a) or responses
that are incoherent given the dialogue context (Li
et al., 2016b). One of the challenges of conver-
sational search is identifying unanswerable ques-
tions (Feng et al., 2020), which can trigger for
instance clarifying questions (Aliannejadi et al.,
2019). Identifying unanswerable conversational
contexts is one of the applications we employ uncer-
tainty estimation for. Intuitively, if the system has
high uncertainty in the available responses, there
may be no correct response available. In this pa-
per we focus on pointwise BERT for ranking—a
competitive approach for the conversation response
ranking task.

3 Method

In this section we introduce the methods used for
answering the following research questions: RQ1
How calibrated are deterministic and stochastic
BERT-based rankers? RQ2 Are the uncertainty

estimates from stochastic BERT-based rankers use-
ful for risk-aware ranking? RQ3 Are the uncer-
tainty estimates obtained from stochastic BERT-
based rankers useful for identifying unanswerable
queries? We first describe how to measure the cal-
ibration of neural rankers ([C1]), followed by our
approach for modeling and ranking under uncer-
tainty ([C2]), and then we describe how we evalu-
ate their robustness to distributional shift.

3.1 Measuring Calibration
To evaluate the calibration of neural rankers
(RQ1) we resort to the Empirical Calibration Error
(ECE) (Naeini et al., 2015). ECE is an intuitive way
of measuring to what extent the confidence scores
from neural networks align with the true correct-
ness likelihood. It measures the difference between
the observed reliability curve (DeGroot and Fien-
berg, 1983) and the ideal one4. More formally, we
sort the predictions of the model, divide them into
c buckets {B0, ..., Bc}, and take the weighted av-
erage between the average predicted probability
of relevance avg(Bi) and the fraction of relevant5

documents rel(Bi)
|Bi| in the bucket:

ECE =

c∑
i=0

|Bi|
n

∣∣∣∣avg(Bi)− rel(Bi)

|Bi|

∣∣∣∣,
where n is the total number of test examples.

3.2 Modeling Uncertainty
First we define the ranking problem we focus on,
followed by the BERT-based ranker baseline model
(BERT). Having set the foundations, we move to
the methods we propose to answer RQ2 and RQ3:
a stochastic BERT-based ranker to model uncer-
tainty (S-BERT) and a risk-aware BERT-based
ranker to take into account uncertainty provided by
S-BERT when ranking (RA-BERT).

3.2.1 Conversation Response Ranking
The task of conversation response ranking (Zhang
et al., 2018; Gu et al., 2019; Tao et al., 2019; Hen-
derson et al., 2019; Penha and Hauff, 2020; Yang
et al., 2020) (also known as next utterance selec-
tion), concerns retrieving the best response given
the dialogue context. We choose this specific task
due to the large-scale training data available, suit-
able for the training of neural L2R models. For-
mally, let D = {(Ui,Ri,Yi)}Ni=1 be a data set con-

4See examples of reliability diagrams in Figure 2.
5We consider here binary relevance.
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sisting of N triplets: dialogue context, response
candidates and response relevance labels. The dia-
logue context Ui is composed of the previous utter-
ances {u1, u2, ..., uτ} at the turn τ of the dialogue.
The candidate responses Ri = {r1, r2, ..., rk}
are either ground-truth responses or negative sam-
pled candidates, indicated by the relevance labels
Yi = {y1, y2, ..., yk}6. The task is then to learn
a ranking function f(.) that is able to generate a
ranked list for the set of candidate responses Ri
based on their predicted relevance scores f(Ui, r).

3.2.2 Deterministic BERT Ranker
We use BERT for learning the function f(Ui, r),
based on the representation of the [CLS] token.
The input for BERT is the concatenation of the
context Ui and the response r, separated by SEP to-
kens. This is the equivalent of early adaptations of
BERT for ad-hoc retrieval (Yang et al., 2019) trans-
ported to conversation response ranking. Formally
the input sentence to BERT is concat(Ui, r) =
u1 | [U ] | u2 | [T ] | ... | uτ | [SEP ] | r,
where | indicates the concatenation operation.
The utterances from the context Ui are concate-
nated with special separator tokens [U ] and [T ]
indicating end of utterances and turns. The
response r is concatenated with the context using
BERT’s standard sentence separator [SEP ]. We
fine-tune BERT on the target conversational corpus
and make predictions as follows: f(Ui, r) =
σ(FFN(BERTCLS(concat(Ui, r)))), where
BERTCLS is the pooling operation that extracts
the representation of the [CLS] token from the
last layer and FFN is a feed-forward network
that outputs logits for two classes (relevant and
non-relevant). We pass the logits through a softmax
transformation σ that gives us a probability of
relevance. We use the cross entropy loss for
training. The learned function f(Ui, r) outputs a
point estimate and we refer to it as BERT.

3.2.3 Stochastic S-BERT Ranker
In order to obtain a predictive distribution, Rr =
{f(Ui, r)0, f(Ui, r)1, ..., f(Ui, r)n}, which allows
us to extract uncertainty estimates, we rely on
two techniques, namely Ensemble (Lakshmi-
narayanan et al., 2017) and Dropout (Gal and
Ghahramani, 2016). Both techniques scale well

6Typically, the number of candidates k � K, where K is
the number of available responses and by design the number of
ground-truth responses is usually one, the observed response
in the conversational data. In our experiments k=10.

and do not require modifications on the architec-
ture or training of BERT.

Using Deep Ensembles (S-BERTE) We train
M models using different random seeds without
changing the training data, each with its own set of
parameters {θm}Mm=1 and make predictions with
each one of them to generate M predicted values:
REr = {f(Ui, r)0, f(Ui, r)1, ..., f(Ui, r)M}.
The mean of the predicted values is used
as the predicted probability of relevance:
S-BERTE(Ui, r) = E[REr ], and the variance
var[REr ] gives us a measure of the uncertainty in
the prediction.

Using MC Dropout (S-BERTD) We train a sin-
gle model with parameters θ and employ dropout
at test time and generate stochastic predictions of
relevance by conducting T forward passes: RDr =
{f(Ui, r)0, f(Ui, r)1, ..., f(Ui, r)T }. The mean of
the predicted values is used as the predicted prob-
ability of relevance: S-BERTD(Ui, r) = E[RDr ],
and the variance var[RDr ] gives us a measure of
the uncertainty.

3.2.4 Risk-Aware RA-BERT Ranker
Given the predictive distribution Rr, obtained ei-
ther by Ensemble or Dropout, we use the
following function to rank responses with risk-
awareness:

RA-BERT(Ui, r) = E[Rr]− b ∗ var[Rr]

−2b
n−1∑
i

cov[Rr, Rri ],

where E[Rr] is the mean of the predictive dis-
tribution, and b is a hyperparameter that controls
the aversion or predilection towards risk. Unlike
(Zuccon et al., 2011), we are not combining dif-
ferent runs that encompass different model archi-
tectures. We instead take a Bayesian interpreta-
tion of the process of generating a predictive dis-
tribution from a single model architecture. We re-
fer to the rankers as RA-BERTD and RA-BERTE ,
when using S-BERTD’s predictive distribution and
S-BERTE’s predictive distribution respectively.

3.3 Robustness to Distributional Shift
In order to evaluate whether we can trust the
model’s calibration and uncertainty estimates, sim-
ilar to (Ovadia et al., 2019) we evaluate how robust
the models are to different types of shift in the



164

test data. We do so by training the model using
one setting and applying it in a different setting.
Specifically for all three research questions we test
the models under two settings—cross domain and
cross negative sampling—which we describe next.

3.3.1 Cross Domain
We train a model using the training set from one
domain known as the source domain DS and evalu-
ate it on the test set of a different domain, known
as the target domain DT . This is also known as the
problem of domain generalization (Gulrajani and
Lopez-Paz, 2020).

3.3.2 Cross Negative Sampling
Pointwise L2R models are trained on pairs of query
and relevant document and pairs of query and non
relevant document (Lucchese et al., 2017). Select-
ing the non-relevant documents requires a negative
sampling (NS) strategy. For the cross-NS condi-
tion, we test models on negative documents that
were sampled using a different NS strategy than
during training, evaluating the generalization of the
models on a shifted distribution of candidate docu-
ments. We use three NS strategies. In NSrandom we
randomly select candidate responses from the list
of all responses. For NSclassic we retrieve candi-
date responses using the conversational context Ui
as query to a conventional retrieval model and all
the responses r as documents. In NSsentenceEmb we
represent both Ui and all the responses with a sen-
tence embedding technique and retrieve candidate
responses using a similarity measure.

4 Experimental Setup

We consider three large-scale information-seeking
conversation datasets7 that allow the training of
neural ranking models for conversation response
ranking: MSDialog (Qu et al., 2018) contains
246K context-response pairs, built from 35.5K
information seeking conversations from the Mi-
crosoft Answer community, a QA forum for several
Microsoft products; MANTiS (Penha et al., 2019)
contains 1.3 million context-response pairs built
from conversations of 14 Stack Exchange sites,
such as askubuntu and travel; UDCDSTC8 (Kummer-
feld et al., 2019) contains 184k context-response
pairs of disentangled Ubuntu IRC dialogues.

7MSDialog is available at https://ciir.cs.
umass.edu/downloads/msdialog/; MANTiS
is available at https://guzpenha.github.
io/MANtIS/; UDCDSTC8 is available at https:
//github.com/dstc8-track2/NOESIS-II.

4.1 Implementation Details

We fine-tune BERT (Devlin et al., 2019) (bert-base-
cased) for conversation response ranking using the
huggingface-transformers (Wolf et al., 2019). We
follow recent research in IR that employed fine-
tuned BERT for retrieval tasks (Nogueira and Cho,
2019; Yang et al., 2019), including conversation
response ranking (Penha and Hauff, 2020; Vig and
Ramea, 2019; Whang et al., 2019). When training
BERT we employ a balanced number of relevant
and non-relevant—sampled using BM25 (Robert-
son and Walker, 1994)—context and response
pairs. The sentence embeddings we use for cross-
NS is sentenceBERT (Reimers and Gurevych,
2019) and we employ dot product calculation from
FAISS (Johnson et al., 2017). We consider each
dataset as a different domain for cross-NS. We use
the Adam optimizer (Kingma and Ba, 2014) with
lr = 5−6 and ε = 1−8, we train with a batch size
of 6 and fine-tune the model for 1 epoch. This base-
line BERT-based ranker setup yields comparable
effectiveness with SOTA methods8.

4.2 Evaluation

To evaluate the effectiveness of the neural rankers
we resort to a standard evaluation metric in con-
versation response ranking (Yuan et al., 2019; Gu
et al., 2020; Tao et al., 2019): recall at position
K with n candidates9: Rn@K. To evaluate the
calibration of the models, we resort to the Empir-
ical Calibration Error (cf. §3.1, using C = 10).
Throughout, we report the test set results for each
dataset. To evaluate the quality of the uncertainty
estimation we rely on two downstream tasks. The
first is to improve conversation response ranking
itself via Risk-Aware ranking (cf. §3.2.4). The
second, which fits well with conversation response
ranking, is to predict unanswerable conversational
contexts. Formally the task is to predict whether
there is a correct answer in the candidates listR or
not. In our experiments, for half of the instances
we remove the relevant response from the list, set-
ting the label as None Of The Above (NOTA). The
other half of the data has the label Answerable
(ANSW) indicating that there is a suitable answer

8We obtain 0.834 R10@1 on UDCDSTC8 with our base-
line BERT model, c.f. Table 1, while SA-BERT (Gu et al.,
2020) achieves 0.830. The best performing model of the
DSTC8 (Kim et al., 2019) also employed a fine-tuned BERT

9For example R10@1 indicates the number of relevant
responses found at the first position when the model has to
rank 10 candidate responses.

https://ciir.cs.umass.edu/downloads/msdialog/
https://ciir.cs.umass.edu/downloads/msdialog/
https://guzpenha.github.io/MANtIS/
https://guzpenha.github.io/MANtIS/
https://github.com/dstc8-track2/NOESIS-II
https://github.com/dstc8-track2/NOESIS-II
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Figure 2: Calibration of BERT trained on a balanced set of relevant and non-relevant documents, and tested data
with more non-relevant (#-non-rel) than relevant (1 per query) documents. A fully calibrated model is repre-
sented by the dotted diagonal: for every bucket of confidence in relevance, the % of relevant documents in that
bucket is exactly the confidence. The calibration error is the difference between the curves and the diagonal line.

cross-domain cross-NS

Test on → MANTiS MSDialog UDCDSTC8 NSrandom NSsentenceBERT

Train on ↓
(NSBM25) R10@1 ECE R10@1 ECE R10@1 ECE R10@1 ECE R10@1 ECE

MANTiS 0.615 0.003 0.653 0.010 0.422 0.028 0.263 0.011 0.310 0.009
MSDialog 0.398 0.009 0.652 0.006 0.495 0.014 0.298 0.029 0.239 0.027
UDCDSTC8 0.349 0.016 0.306 0.023 0.834 0.002 0.318 0.050 0.182 0.045

Table 1: Calibration (ECE, lower is better) and effectiveness (R10@1, higher is better) of BERT for conversation
response ranking in cross-domain, and cross-NS conditions. All models were trained using NSBM25. ECE is calcu-
lated using a balanced number of relevant and non relevant documents. Underlined values indicate no distributional
shift (DS = DT and train NS = test NS).

cross-domain cross-NS

Test on → MANTiS MSDialog UDCDSTC8 NSrandom NSsentenceBERT

Train on ↓
(NSBM25) S-BERTE S-BERTD S-BERTE S-BERTD S-BERTE S-BERTD S-BERTE S-BERTD S-BERTE S-BERTD

MANTiS -35.13%† -56.14%† -03.42% -26.89%† -04.94% -00.83% -31.35% -18.65%† -37.65%† -02.79%
MSDialog +25.05% +08.27% -43.11% -11.54% +22.77% +05.85% -15.91% -10.58% -17.17% -12.93%
UDCDSTC8 -54.95%† -09.98%† -25.78%† -09.15% +24.77% -01.84% -08.05% -01.78% -04.81% -01.28%

Table 2: Relative decreases of ECE (lower is better) of S-BERTE and S-BERTD over BERT. Superscript † denote
significant improvements (95% confidence interval) using Student’s t-tests.

in the candidates list, for which we remove one of
the negative samples instead. Similar to Feng et al.
(2020), who proposed to use the outputs (logits) of
a LSTM-based model in order to predict NOTA,
we use the uncertainties as additional features to
the classifier for NOTA prediction. The input space
with the additional features is fed to a learning al-
gorithm (Random Forest), and we evaluate it with a
5 fold cross-validation procedure using F1-Macro.

5 Results

5.1 Calibration of Neural Rankers (RQ1)
In order to answer our first research question about
the calibration of neural rankers, let us first analyze
BERT under standard settings (no distributional
shift). Our results show that BERT is both effective
and calibrated under no distributional shift condi-

tions. In Table 1 we see that when the target data
(Test on→) is the same as the source data (Train
on ↓)—indicated by underlined values—we obtain
the highest effectiveness (on average 0.70 R10@1)
and the lowest calibration error (on average 0.036
ECE). When plotting the calibration curves of the
model in Figure 2, we observe the curves to be al-
most diagonal (i.e. having near perfect calibration)
when there are an equal number of relevant and
non-relevant candidates (#-non-rel = 1).

However, when we make the conditions more
realistic10 by having multiple non-relevant candi-
dates for each conversational context, we observe
in Figure 2 that the calibration errors start to in-

10In a production system, the retrieval stage would be ex-
ecuted over all candidate responses. As a consequence, the
data is highly unbalanced, i.e. only a few relevant responses
among potentially millions of non-relevant responses.
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cross-domain cross-NS

Test on → MANTiS MSDialog UDCDSTC8 NSrandom NSsentenceBERT

Train on ↓
(NSBM25) RA-BERTE RA-BERTD RA-BERTE RA-BERTD RA-BERTE RA-BERTD RA-B.E RA-B.D RA-B.E RA-B.D

MANTiS -0.14% +0.16%† +0.00% +0.00% +0.00% +0.00% +4.73%† +4.58%† +9.68%† -2.68%
MSDialog -2.74% +0.39% -1.05% -0.66% +5.08%† -0.10% -7.61% +3.29% -0.61% +0.63%
UDCDSTC8 +0.00% +0.00% +0.00% +0.00% +0.42% -0.06% +6.32%† +3.83%† +16.39%† +17.18%†

Table 3: Relative improvements (higher is better) of R10@1 of RA-BERTE and RA-BERTD over the mean of
stochastic BERT predictions (S-BERTE and S-BERTD). Superscript † denote statistically significant improve-
ments over the S-BERT ranker at 95% confidence interval using Student’s t-tests.
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Figure 3: Gains of the Risk-Aware BERT-ranker for different values of risk aversion b.

crease, moving away from the diagonal. Addi-
tionally, when we challenge the model in cross-
domain and cross-NS settings, the calibration er-
ror increases significantly as evident in Table 1.
On average, the ECE is 4.6 times higher for cross-
domain and 7.9 times higher for cross-NS. Thus
answering the first part of our first research
question about the calibration of deterministic
BERT-based rankers, indicating that they do
not have robust calibrated predictions, failing
on the scenarios where there is a distributional shift.

In order to answer the remaining part of RQ1,
on how calibrated stochastic BERT-based rankers
are, let us consider Table 2. It displays the improve-
ments (relative drop in ECE) over BERT in terms
of calibration. S-BERTE is on average 14% bet-
ter (has less calibration error) than BERT, while
S-BERTD is on average 10% better than BERT,
answering our first research question: stochas-
tic BERT-based rankers are better calibrated
than deterministic BERT-based ranker. We hy-
pothesize that S-BERTE leads to less ECE than

S-BERTD because it better captures the model
uncertainty in the training procedure, since it com-
bines different weights that explain equally well
the prediction of relevance given the inputs. In the
next section we focus on evaluating the effective-
ness of such models that are better calibrated and
also taking into account uncertainty when ranking.

5.2 Uncertainty Estimates for Risk-Aware
Neural Ranking (RQ2)

In order to evaluate the quality of the uncertainty
estimations, we first resort to using them as a mea-
sure of the risk through risk-aware neural rank-
ing (RA-BERTD and RA-BERTE). Figure 3 dis-
plays the effectiveness in terms of R10@1 gains
over BERT for the different settings (cross-domain
and cross-NS) when varying the risk aversion b.

We note that when b = 0, we are using the mean
of the predictive distribution and disregard the risk,
which is equivalent to S-BERTD and S-BERTE .
The ensemble based average S-BERTE is more ef-
fective than the baseline BERT for almost all com-
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cross-domain

Test on → MANTiS MSDialog UDCDSTC8

Train on ↓
(NSBM25) E[RD] +var[RE ] +var[RD] E[RD] +var[RE ] +var[RD] E[RD] +var[RE ] +var[RD]

MANTiS 0.635 (.02) 0.686 (.01)† 0.792 (.02)† 0.669 (.03) 0.731 (.04) 0.855 (.02)† 0.571 (.04) 0.590 (.08)† 0.621 (.04)†

MSDialog 0.561 (.02) 0.598 (.02)† 0.633 (.02)† 0.662 (.04) 0.702 (.01)† 0.699 (.06)† 0.596 (.04) 0.566 (.06)† 0.655 (.06)†

UDCDSTC8 0.527 (.04) 0.665 (.02)† 0.738 (.03)† 0.523 (.05) 0.691 (.03)† 0.757 (.04)† 0.787 (.01) 0.829 (.03)† 0.807 (.01)†

Table 4: Results of the cross-domain condition for the NOTA prediction task, using a Random Forest classifier and
different input spaces. The F1-Macro and standard deviation over the 5 folds of the cross validation are displayed.
Superscript † denote statistically significant improvements over E[RD] at 95% confidence interval using Student’s
t-tests. Bold indicates the most effective approach.

cross-NS

Test on → NSrandom NSsentenceBERT

Train on ↓
(NSBM25) E[RD] +var[RE ] +var[RD] E[RD] +var[RE ] +var[RD]

MANTiS 0.557 (.01) 0.604 (.02)† 0.698 (.02)† 0.534 (.03) 0.587 (.02)† 0.647 (.05)†

MSDialog 0.505 (.02) 0.606 (.02)† 0.702 (.05)† 0.522 (.03) 0.611 (.07)† 0.653 (.04)†

UDCDSTC8 0.565 (.03) 0.800 (.02)† 0.942 (.04)† 0.506 (.05) 0.755 (.05)† 0.821 (.05)†

Table 5: Results of the cross-NS condition for the NOTA prediction task.

binations and S-BERTD is equivalent to the base-
line. When using b < 0, we are ranking with risk
predilection (the opposite of risk aversion), and in
all conditions we found that the effectiveness was
significantly worse than when b = 0 and thus b < 0
is not displayed in Figure 3.

When increasing the risk aversion (b > 0), we
see that it has different effects depending on the
combination of domain and NS. For instance, when
training in MSDialog and applying on UDCDSTC8,
increasing the risk aversion improves effective-
ness of RA-BERTE until b reaches 0.25 and af-
ter that the effectiveness drops, meaning that too
much risk aversion is not effective. In order to
investigate whether ranking with risk aversion is
more effective than using the predictive distribu-
tion mean, we select b based on the best value
observed on the validation set. Table 3 displays
the results of this experiment, showing the im-
provements of RA-BERTD and RA-BERTE over
S-BERTD and S-BERTE respectively. The re-
sults show that in a few cases (8 out of 30) the
best value of b is 0, for which risk-aversion is not
the best option in the development set. We ob-
tain effectiveness improvements primarily on the
cross-NS condition (up to 17.2% improvement of
R10@1), which is the hardest condition (when the
models are most ineffective, c.f. Table 1). This an-
swers our second research question, indicating
that the uncertainties obtained from stochastic
neural rankers are useful for risk-aware rank-

ing, specially in the cross-NS setting where the
baseline model is quite ineffective. RA-BERTE
is on average 2% more effective than S-BERTE ,
while RA-BERTD is on average 1.7% more effec-
tive than S-BERTD.

5.3 Uncertainty Estimates for NOTA
prediction (RQ3)

Besides using the uncertainty estimation for risk-
aware ranking, we also employ it for the NOTA
(None of the Above) prediction task. We compare
here different input spaces for the NOTA classi-
fier. E[RD] stands for the input space that only
uses the mean of the predictive distribution for
the k candidate responses in R using S-BERTD,
+var[RE ] uses both E[RD] and the uncertainties
of S-BERTE for the k candidates and +var[RD]
uses both the scores E[RD] and the uncertainties
of S-BERTD. Our results show that the uncer-
tainties from S-BERTD and of S-BERTE signif-
icantly improve the F1 for NOTA prediction for
both cross-domain (Table 4, improvement of 24%
on average when using S-BERTD) and cross-NS
settings (Table 5, improvement of 46% on aver-
age when using S-BERTD). We can thus answer
our last research question: the uncertainty es-
timates from stochastic neural rankers do im-
prove the effectiveness of the NOTA prediction
task (by an average of 33% across all conditions
considered).
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6 Conclusions

In this work we study the calibration and uncer-
tainty estimation of neural rankers, specifically
BERT-based rankers. We first show that the de-
terministic BERT-based ranker is not robustly cali-
brated for the task of conversation response ranking
and we improve its calibration with two techniques
to estimate uncertainty through stochastic neural
ranking. We also show the benefits of estimating
uncertainty using risk-aware neural ranking and for
predicting unanswerable conversational contexts.

As future work, investigating the use of stochas-
tic rankers in other settings is important, such as
other neural L2R architectures, other search and
retrieval tasks (Guo et al., 2019; Diaz et al., 2020;
Lin et al., 2020), and the ensembling of neural
rankers (Zuccon et al., 2011).
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