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Abstract
Standard models for syntactic dependency
parsing take words to be the elementary units
that enter into dependency relations. In this
paper, we investigate whether there are any
benefits from enriching these models with the
more abstract notion of nucleus proposed by
Tesnière. We do this by showing how the con-
cept of nucleus can be defined in the frame-
work of Universal Dependencies and how
we can use composition functions to make a
transition-based dependency parser aware of
this concept. Experiments on 12 languages
show that nucleus composition gives small but
significant improvements in parsing accuracy.
Further analysis reveals that the improvement
mainly concerns a small number of depen-
dency relations, including nominal modifiers,
relations of coordination, main predicates, and
direct objects.

1 Introduction

A syntactic dependency tree consists of directed
arcs, representing syntactic relations like subject
and object, connecting a set of nodes, represent-
ing the elementary syntactic units of a sentence.
In contemporary dependency parsing, it is gener-
ally assumed that the elementary units are word
forms or tokens, produced by a tokenizer or word
segmenter. A consequence of this assumption is
that the shape and size of dependency trees will
vary systematically across languages. In particu-
lar, morphologically rich languages will typically
have fewer elementary units and fewer relations
than more analytical languages, which use inde-
pendent function words instead of morphological
inflection to encode grammatical information. This
is illustrated in Figure 1, which contrasts two equiv-
alent sentences in English and Finnish, annotated
with dependency trees following the guidelines of
Universal Dependencies (UD) (Nivre et al., 2016,
2020), which assume words as elementary units.

An alternative view, found in the seminal work of
Tesnière (1959), is that dependency relations hold
between slightly more complex units called nuclei,
semantically independent units consisting of a con-
tent word together with its grammatical markers,
regardless of whether the latter are realized as in-
dependent words or not. Thus, a nucleus will often
correspond to a single word – as in the English verb
chased, where tense is realized solely through mor-
phological inflection – but it may also correspond
to several words – as in the English verb group
has chased, where tense is realized by morphologi-
cal inflection in combination with an auxiliary verb.
The latter type is known as a dissociated nucleus. If
we assume that the elementary syntactic units of a
dependency tree are nuclei rather than word forms,
then the English and Finnish sentences will have
the same dependency trees, visualized in Figure 2,
and will differ only in the realization of their nuclei.
In particular, while nominal nuclei in Finnish are
consistently realized as single nouns inflected for
case, the nominal nuclei in English involve stan-
dalone articles and the preposition from.

In this paper, we set out to investigate whether
research on dependency parsing can benefit from
making explicit use of Tesnière’s notion of nucleus,
from the point of view of accuracy, interpretabil-
ity and evaluation. We do this from a multilingual
perspective, because it is likely that the effects of
introducing nuclei will be different in different lan-
guages, and we strongly believe that a comparison
between different languages is necessary in order
to assess the potential usefulness of this notion. We
are certainly not the first to propose that Tesnière’s
notion of nucleus can be useful in parsing. One
of the earliest formalizations of dependency gram-
mar for the purpose of statistical parsing, that of
Samuelsson (2000), had this notion at its core, and
Sangati and Mazza (2009) presented a conversion
of the Penn Treebank of English to Tesnière style
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Figure 1: Word-based dependency trees for equivalent sentences from English (top) and Finnish (bottom).

the dog chased the cat from the room
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Figure 2: Nucleus-based dependency trees for equiva-
lent sentences from English (top) and Finnish (bottom).

representations, including nuclei. However, previ-
ous attempts have been hampered by the lack of
available parsers and resources to test this hypothe-
sis on a large scale. Thus, the model of Samuelsson
(2000) was never implemented, and the treebank
conversion of Sangati and Mazza (2009) is avail-
able only for English and in a format that no ex-
isting dependency parser can handle. We propose
to overcome these obstacles in two ways. On the
resource side, we will rely on UD treebanks and
exploit the fact that, although the annotation is
word-based, the guidelines prioritize dependency
relations between content words that are the cores
of syntactic nuclei, which facilitates the recogni-
tion of dissociated nuclei and gives us access to
annotated resources for a wide range of languages.
On the parsing side, we will follow a transition-
based approach, which can relatively easily be ex-
tended to include operations that create represen-
tations of syntactic nuclei, as previously shown by
de Lhoneux et al. (2019a), something that is much
harder to achieve in a graph-based approach.

2 Related Work

Dependency-based guidelines for syntactic anno-
tation generally discard the nucleus as the basic
syntactic unit in favor of the (orthographic) word
form, possibly with a few exceptions for fixed

multiword expressions. A notable exception is
the three-layered annotation scheme of the Prague
Dependency Treebank (Hajič et al., 2000), where
nucleus-like concepts are captured at the tectogram-
matical level according to the Functional Genera-
tive Description (Sgall et al., 1986). Bārzdiņš et al.
(2007) propose a syntactic analysis model for Lat-
vian based on the x-word concept analogous to
the nucleus concept. In this grammar, an x-word
acts as a non-terminal symbol in a phrase structure
grammar and can appear as a head or dependent in
a dependency tree. Nespore et al. (2010) compare
this model to the original dependency formalism
of Tesnière (1959). Finally, as already mentioned,
Sangati and Mazza (2009) develop an algorithm to
convert English phrase structure trees to Tesnière
style representations.

When it comes to syntactic parsing, Järvinen
and Tapanainen (1998) were pioneers in adapting
Tesnière’s dependency grammar for computational
processing. They argue that the nucleus concept is
crucial to establish cross-linguistically valid crite-
ria for headedness and that it is not only a syntactic
primitive but also the smallest semantic unit in a
lexicographical description. As an alternative to the
rule-based approach of Järvinen and Tapanainen
(1998), Samuelsson (2000) defined a generative sta-
tistical model for nucleus-based dependency pars-
ing, which however was never implemented.

The nucleus concept has affinities with the chunk
concept found in many approaches to parsing, start-
ing with Abney (1991), who proposed to first find
chunks and then dependencies between chunks, an
idea that was generalized into cascaded parsing by
Buchholz et al. (1999) among others. It is also
clearly related to the vibhakti level in the Paninian
computation grammar framework (Bharati and San-
gal, 1993; Bharati et al., 2009). In a similar vein,
Kudo and Matsumoto (2002) use cascaded chunk-
ing for dependency parsing of Japanese, Tongchim
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et al. (2008) show that base-NP chunking can sig-
nificantly improve the accuracy of dependency
parsing for Thai, and Durgar El-Kahlout et al.
(2014) show that chunking improves dependency
parsing of Turkish. Das et al. (2016) study the im-
portance of chunking in the transfer parsing model
between Hindi and Bengali, and Lacroix (2018)
show that NP chunks are informative for universal
part-of-speech tagging and dependency parsing.

In a more recent study, de Lhoneux et al. (2019b)
investigate whether the hidden representations of a
neural transition-based dependency parser encodes
information about syntactic nuclei, with special
reference to verb groups. They find some evi-
dence that this is the case, especially if the parser is
equipped with a mechanism for recursive subtree
composition of the type first proposed by Stenetorp
(2013) and later developed by Dyer et al. (2015)
and de Lhoneux et al. (2019a). The idea is to
use a composition operator that recursively com-
bines information from subtrees connected by a
dependency relation into a representation of the
new larger subtree. In this paper, we will exploit
variations of this technique to create parser-internal
representations of syntactic nuclei, as discussed in
Section 4. However, first we need to discuss how
to identify nuclei in UD treebanks.

3 Syntactic Nuclei in UD

UD1 (Nivre et al., 2016, 2020) is an ongoing project
aiming to provide cross-linguistically consistent
morphosyntactic annotation of many languages
around the world. The latest release (v2.7) con-
tains 183 treebanks, representing 104 languages
and 20 language families. The syntactic annotation
in UD is based on dependencies and the elementary
syntactic units are assumed to be words, but the
style of the annotation makes it relatively straight-
forward to identify substructures corresponding to
(dissociated) nuclei. More precisely, UD prioritizes
direct dependency relations between content words,
as opposed to relations being mediated by function
words, which has two consequences. First, incom-
ing dependencies always go to the lexical core of
a nucleus.2 Second, function words are normally
leaves of the dependency tree, attached to the lexi-
cal core with special dependency relations, which

1https://universaldependencies.org
2Except in some cases of ellipsis, like she did, where the

auxiliary verb did is “promoted” to form a nucleus on its own.

we refer to as functional relations.3

Figure 3 illustrates these properties of UD repre-
sentations by showing the dependency tree for the
English sentence This killing of a respected cleric
will be causing us trouble for years to come with
functional relations drawn below the sentence and
other relations above. Given this type of represen-
tation, we can define a nucleus as a subtree where
all internal dependencies are functional relations,
as indicated by the ovals in Figure 3. The nuclei
can be divided into single-word nuclei, whitened,
and dissociated nuclei, grayed. The latter can be
contiguous or discontiguous, as shown by the nu-
cleus of a cleric, which consists of the two parts
colored with a darker shade.

This definition of nucleus in turn depends on
what we define to be functional relations. For this
study, we assume that the following 7 UD rela-
tions4 belong to this class:

• Determiner (det): the relation between a de-
terminer, mostly an article or demonstrative,
and a noun. Especially for articles, there is
considerable cross-linguistic variation. For
example, definiteness is expressed by an inde-
pendent function word in English (the girl), by
a morphological inflection in Swedish (flicka-
n), and not at all in Finnish.

• Case marker (case): the relation between a
noun and a case marker when it is a separate
syntactic word and not an affix. UD takes
a radical approach to adpositions and treats
them all as case markers. Thus, in Figure 1,
we see that the English adposition from corre-
sponds to the Finnish elative case inflection.

• Classifier (clf ): the relation between a classi-
fier, a counting unit used for conceptual clas-
sification of nouns, and a noun. This relation
is seen in languages which have a classifica-
tion system such as Chinese. For example,
English three students corresponds to Chinese
三个学生, literally “three [human-classifier]
student”.

• Auxiliary (aux): the relation between an aux-
iliary verb or nonverbal TAME marker and a
verbal predicate. An example is the English
verb group will be causing in Figure 3, which

3Again, there are a few well-defined exceptions to the rule
that function words are leaves, including ellipsis, coordination,
and fixed multiword expressions.

4A more detailed description of the relations is available in
the UD documentation at https://universaldependencies.org.
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This killing of a respected cleric will be causing us trouble for years to come .
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Figure 3: Syntactic UD representation with functional relations drawn below the sentence. Dissociated nuclei are
grayed, with a darker shade for the discontiguous nucleus.

alternates with finite main verbs like causes
and caused.

• Copula (cop): the relation between a verbal
or nonverbal copula and a nonverbal predi-
cate. For example, in English Ivan is the best
dancer, the copula is links the predicate the
best dancer to Ivan, but it has no counterpart
in Russian Ivan lucšı̌j tancor, literally “Ivan
best dancer”.

• Subordination marker (mark): the relation be-
tween a subordinator and the predicate of a
subordinate clause. This is exemplified by
the infinitive marker to in Figure 3. Other ex-
amples are subordinating conjunctions like if,
because and that, the function of which may
be encoded morphologically or through word
order in other languages.

• Coordinating conjunction (cc): the relation be-
tween a coordinator and a conjunct (typically
the last one) in a coordination. Thus, in ap-
ples, bananas and oranges, UD treats and as
a dependent of oranges. This linking function
may be missing or expressed morphologically
in other languages.

The inclusion of the cc relation among the nucleus-
internal relations is probably the most controversial
decision, given that Tesnière treated coordination
(including coordinating conjunctions) as a third
type of grammatical relation – junction (fr. jonc-
tion) – distinct from both dependency relations and
nucleus-internal relations. However, we think co-
ordinating conjunctions have enough in common
with other function words to be included in this
preliminary study and leave further division into
finer categories for future work.5

5In addition to separating the cc relation from the rest,
such a division might include distinguishing nominal nucleus
relations (det, case and clf ) from predicate nucleus relations

Given the definition of nucleus in terms of func-
tional UD relations, it would be straightforward to
convert the UD representations to dependency trees
where the elementary syntactic units are nuclei
rather than words. However, the usefulness of such
a resource would currently be limited, given that
it would require parsers that can deal with nucleus
recognition, either in a preprocessing step or inte-
grated with the construction of dependency trees,
and such parsers are not (yet) available. Moreover,
evaluation results would not be comparable to pre-
vious research. Therefore, we will make use of the
nucleus concept in UD in three more indirect ways:

• Evaluation: Even if a parser outputs a word-
based dependency tree in UD format, we can
evaluate its accuracy on nucleus-based parsing
by simply not scoring the functional relations.
This is equivalent to the Content Labeled At-
tachment Score (CLAS) previously proposed
by Nivre and Fang (2017), and we will use this
score as a complement to the standard Labeled
Attachment Score (LAS) in our experiments.6

• Nucleus Composition: Given our definition
of nucleus-internal relations, we can make
parsers aware of the nucleus concept by differ-
entiating the way they predict and represent
dissociated nuclei and dependency structures,
respectively. More precisely, we will make
use of composition operations to create inter-
nal representations of (dissociated) nuclei, as
discussed in detail in Section 4 below.

• Oracle Parsing: To establish an upper bound
on what a nucleus-aware parser can achieve,
we will create a version of the UD represen-
tation which is still a word-based dependency

(aux, cop and mark).
6Our use of CLAS differs only in that we include punc-

tuation in the evaluation, whereas Nivre and Fang (2017)
excluded it.
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tree, but where nuclei are explicitly repre-
sented by letting the word form for each nu-
cleus core be a concatenation of all the word
forms that are part of the nucleus.7 We call
this oracle parsing to emphasize that the parser
has oracle information about the nuclei of a
sentence, although it still has to predict all the
syntactic relations.

4 Syntactic Nuclei in Transition-Based
Dependency Parsing

A transition-based dependency parser derives a de-
pendency tree from the sequence of words forming
a sentence (Yamada and Matsumoto, 2003; Nivre,
2003, 2004). The parser constructs the tree incre-
mentally by applying transitions, or parsing actions,
to configurations consisting of a stack S of partially
processed words, a buffer B of remaining input
words, and a set of dependency arcs A representing
the partially constructed dependency tree. The pro-
cess of parsing starts from an initial configuration
and ends when the parser reaches a terminal config-
uration. The transitions between configurations are
predicted by a history-based model that combines
information from S, B and A.

For the experiments in this paper, we use a ver-
sion of the arc-hybrid transition system initially
proposed by Kuhlmann et al. (2011), where the
initial configuration has all words w1, . . . , wn plus
an artificial root node r in B, while S and A are
empty.8 There are four transitions: Shift, Left-Arc,
Right-Arc and Swap. Shift pushes the first word
b0 in B onto S (and is not permissible if b0 = r).
Left-Arc attaches the top word s0 in S to b0 and
removes s0 from S, while Right-Arc attaches s0
to the next word s1 in S and removes s0 from S.
Swap, finally, moves s1 back to B in order to allow
the construction of non-projective dependencies.9

Our implementation of this transition-based pars-
ing model is based on the influential architecture of
Kiperwasser and Goldberg (2016), which takes as
input a sequence of vectors x1, . . . , xn represent-
ing the input words w1, . . . , wn and feeds these
vectors through a BiLSTM that outputs contextu-

7The English sentence in Figure 1 thus becomes: the dog-
the chased the cat-the from the room-the-from.

8Positioning the artificial root node at the end of the buffer
is a modification of the original system by Kiperwasser and
Goldberg (2016), inspired by the results reported in Balles-
teros and Nivre (2013).

9This extension of the arc-hybrid system was proposed
by de Lhoneux et al. (2017b), inspired by the corresponding
extension of the arc-standard system by Nivre (2009).

alized word vectors v1, . . . , vn, which are stored
in the buffer B. Parsing is then performed by it-
eratively applying the transition predicted by an
MLP taking as input a small number of contextual-
ized word vectors from the stack S and the buffer
B. More precisely, in the experiments reported
in this paper, the predictions are based on the two
top items s0 and s1 in S and the first item b0 in B.
In a historical perspective, this may seem like an
overly simplistic prediction model, but recent work
has shown that more complex feature vectors are
largely superfluous thanks to the BiLSTM encoder
(Shi et al., 2017; Falenska and Kuhn, 2019).

The transition-based parser as described so far
does not provide any mechanism for modeling the
nucleus concept. It is a purely word-based model,
where any more complex syntactic structure is rep-
resented internally by the contextualized vector of
its head word. Specifically, when two substructures
h and d are combined in a Left-Arc or Right-Arc
transition, only the vector vh representing the syn-
tactic head is retained in S or B, while the vector
vd representing the syntactic dependent is removed
from S. In order to make the parser sensitive to
(dissociated) nuclei in its internal representations,
we follow de Lhoneux et al. (2019a) and augment
the Right-Arc and Left-Arc actions with a com-
position operation. The idea is that, whenever the
substructures h and d are combined with label l, we
replace the current representation of h with the out-
put of a function f(h, d, l). We can then control the
information flow for nuclei and other constructions
through the definition of f(h, d, l).

Hard Composition: The simplest version,
which we call hard composition, is to explicitly
condition the composition on the dependency label
l. In this setup, f(h, d, l) combines the head and
dependent vectors only if l is a functional relation
and simply returns the head vector otherwise:

f(h, d, l) =

{
~h ◦ ~d if l ∈ F
~h otherwise

(1)

We use ~x to denote the vector representation of x10

and F to denote the set of seven functional relations
defined in Section 3. The composition operator
◦ can be any function of the form Rn × Rn →

10In the baseline parser, ~h is always identical to the con-
textualized representation vh of the head word wh, but after
introducing composition operations we need a more abstract
notation.
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Rn, e.g., vector addition ~h + ~d, where n is the
dimensionality of the vector space.

Soft Composition: The soft composition is simi-
lar to the hard composition, but instead of applying
the composition operator to the head and depen-
dent vectors, the operator is applied to the head
vector and a vector representation of the entire de-
pendency arc (h, d, l). The vector representation
of the dependency arc is trained by a differentiable
function g that encodes the dependency label l into
a vector ~l and maps the triple (~h, ~d,~l) to a vector
space, i.e., g : Rn ×Rn ×Rm → Rn where n and
m are the dimensionalities of the word and label
spaces, respectively. An example of g is a percep-
tron with a sigmoid activation that maps the vector
representations of h, d and l to a vector space:

g(h, d, l) = σ(W (~h� ~d�~l) + b) (2)

where � is the vector concatenation operator. The
soft nucleus composition is then:

f(h, d, l) =

{
~h ◦ g(h, d, l), if l ∈ F
~h otherwise

(3)

The parameters of the function g are trained with
the other parameters of the parser.

Generalized Composition: To test our hypoth-
esis that composition is beneficial for dissociated
nuclei, we contrast both hard and soft composition
to a generalized version of soft composition, where
we do not restrict the application to functional re-
lations. In this case, the composition function is:

f(h, d, l) = ~h ◦ g(h, d, l) (4)

where l can be any dependency label. In this ap-
proach, the if-clause in Equation 2 and 3 is elimi-
nated and the parser itself learns in what conditions
the composition should be performed. In particular,
if the composition operator is addition, and g is a
perceptron with a sigmoid activation on the output
layer (as in Equation 2), then g operates as a gate
that controls the contribution of the dependency
elements h, d, and l to the composition. If the
composition should not be performed, it returns a
vector close to zero.

5 Experiments

In the previous sections, we have shown how syn-
tactic nuclei can be identified in the UD annota-
tion and how transition-based parsers can be made

sensitive to these structures in their internal repre-
sentations through the use of nucleus composition.
We now proceed to a set of experiments investigat-
ing the impact of nucleus composition on a diverse
selection of languages.

5.1 Experimental Settings

We use UUParser (de Lhoneux et al., 2017a; Smith
et al., 2018), an evolution of the transition-based
dependency parser of Kiperwasser and Goldberg
(2016), which was the highest ranked transition-
based dependency parser in the CoNLL shared
task on universal dependency parsing in 2018 (Ze-
man et al., 2018). As discussed in Section 4, this
is a greedy transition-based parser based on the
extended arc-hybrid system of de Lhoneux et al.
(2017b). It uses an MLP with one hidden layer to
predict transitions between parser configurations,
based on vectors representing two items on the
stack S and one item in the buffer B. In the base-
line model, these items are contextualized word
representations produced by a BiLSTM with two
hidden layers. The input to the BiLSTM for each
word is the concatenation of a randomly initialized
word embedding and a character-based represen-
tation produced by running a BiLSTM over the
character sequence of the word. We use a dimen-
sionality of 100 for the word embedding as well as
for the output of the character BiLSTM.

For parsers with composition, we considered var-
ious composition operators ◦ and functions g. For
the former, we tested vector addition, vector con-
catenation,11 and perceptron. For the latter we tried
a multi-layer perceptron with different activation
functions. Based on the results of the preliminary
experiments, we selected vector addition for the
composition operator ◦ and the perceptron with sig-
moid activation for the soft composition function g.
The inputs to the perceptron consist of two token
vectors of size 512 and a relation vector of size 10.
The token vectors are the outputs of the BiLSTM
layer of the parser and the relation vector is trained
by a distinct embedding layer.

All parsers are trained for 50 epochs and all re-
ported results are averaged over 10 runs with dif-
ferent random seeds. Altogether we explore five
different parsers:

11The concatenation operator requires special care to keep
vector dimensionality constant. We double the dimensionality
of the contextual vectors and fill the extra dimensions with
zeros. We then replace the zero part of the second operand
with the first operand’s non-zero part at composition time.
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LAS CLAS
Language Treebank Family Size Base Hard Soft Gen Ora Base Hard Soft Gen Ora
Arabic PADT AA-Semitic 242K 78.0 78.1 78.3 78.2 80.5 74.4 74.6 74.9 74.8 75.8
Basque BDT Basque 70K 73.5 73.4 73.9 74.2 78.9 70.9 70.9 71.3 71.8 75.3
Chinese GSD Sino-Tibetan 49K 72.1 72.1 72.7 72.2 80.4 68.8 68.7 69.4 69.0 74.6
English EWT IE-Germanic 188K 82.5 82.4 82.5 82.4 85.6 78.8 78.7 78.8 78.7 81.0
Finnish TDT Uralic 168K 78.5 78.9 79.6 79.9 84.2 77.5 77.8 78.6 78.9 81.8
Hebrew HTB AA-Semitic 108K 81.5 81.6 81.8 82.1 83.3 74.5 74.7 74.9 75.3 75.9
Hindi HDTB IE-Indic 294K 87.9 88.1 88.4 89.0 89.8 83.9 83.9 84.4 85.4 85.0
Italian ISDT IE-Romance 252K 87.4 87.6 87.9 87.5 89.0 81.5 81.6 82.1 81.6 82.8
Japanese GSD Japanese 61K 93.4 93.4 93.5 93.4 94.1 89.7 89.7 89.9 89.7 90.5
Korean GSD Korean 21K 75.1 75.0 75.4 75.6 76.6 74.9 74.8 75.2 75.4 75.7
Swedish Talbanken IE-Germanic 61K 76.9 77.3 77.5 77.6 82.9 73.2 73.5 73.8 74.1 78.2
Turkish IMST Turkic 40K 55.6 55.3 56.2 54.8 58.6 53.4 53.0 54.1 52.6 54.8
Average 78.5 78.6 79.0 78.9 82.0 75.1 75.2 75.6 75.6 77.6

Table 1: Parsing accuracy for 5 parsing models evaluated on 12 UD treebanks. Language family includes genus
according to WALS for large families (AA = Afro-Asian, IE = Indo-European). LAS = Labeled Attachment Score.
CLAS = Content Labeled Attachment Score.

• Base(line): No composition.

• Hard: Baseline + hard composition.

• Soft: Baseline + soft composition.

• Gen(eralized): Baseline + gen. composition.

• Ora(cle): Baseline trained and tested on ex-
plicit annotation of nuclei (see Section 3).

Our experiments are carried out on a typologically
diverse set of languages with different degrees of
morphosyntactic complexity, as shown in Table 1.
The corpus size is the total number of words in
each treebank. We use UD v2.3 with standard data
splits (Nivre et al., 2018). All evaluation results are
on the development sets.12

5.2 Results

Table 1 reports the parsing accuracy achieved with
our 5 parsers on the 12 different languages, using
the standard LAS metric as well as the nucleus-
aware CLAS metric. First of all, we see that
hard composition is not very effective and mostly
gives results in line with the baseline parser, ex-
cept for small improvements for Finnish, Hindi
and Swedish and a small degradation for Turkish.
These differences are statistically significant for all
four languages with respect to LAS but only for
Finnish and Turkish with respect to CLAS (two-
tailed t-test, α = .05). By contrast, soft composi-
tion improves accuracy for all languages except En-

12Since we want to perform an informative error analysis,
we avoid using the dedicated test sets.

glish and the improvements are statistically signifi-
cant for both LAS and CLAS. The average improve-
ment is 0.5 percentage points for both LAS and
CLAS, which indicates that most of the improve-
ment occurs on nucleus-external relations thanks
to a more effective internal representation of disso-
ciated nuclei. There is some variation across lan-
guages, but the CLAS improvement is in the range
0.2–0.7 for most languages, with Finnish as the
positive exception (1.1) and English as the negative
one (0.0). Generalized composition, finally, where
we allow composition also for non-functional rela-
tions, yields results very similar to those for soft
composition, which could be an indication that the
parser learns to apply composition mostly for func-
tional relations. The results are a little less stable,
however, with degradations for English and Turk-
ish, and non-significant improvements for Chinese,
Italian and Japanese. A tentative conclusion is
therefore that composition is most effective when
restricted to (but not enforced for) nucleus-internal
relations.

Before we try to analyze the results in more de-
tail, it is worth noting that most of the improve-
ments due to composition are far below the im-
provements of the oracle parser.13 However, it is
important to keep in mind that, whereas the be-
havior of a composition parser is only affected
after a nucleus has been constructed, the oracle

13The exception is generalized composition for Hindi,
which exceeds the corresponding oracle parser with respect to
CLAS.
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Arabic Basque Chinese English Finnish Hebrew Hindi Italian Japanese Korean Swedish Turkish
−1
0
1
2 H S G

(a) All relations

Arabic Basque Chinese English Finnish Hebrew Hindi Italian Japanese Korean Swedish Turkish
−1
0
1
2

(b) Nucleus-external relations

Arabic Basque Chinese English Finnish Hebrew Hindi Italian Japanese Korean Swedish Turkish
−1
0
1
2

(c) Nucleus-internal relations

Figure 4: Absolute improvement (or degradation) in labeled F-score with respect to the baseline for hard (H), soft
(S) and generalized (G) composition for different sets of relations: (a) all relations (corresponding to LAS scores),
(b) nucleus-external relations (corresponding to CLAS scores), (c) nucleus-internal relations.
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Figure 5: Improvement (or degradation) in labeled F-score with respect to the baseline for different UD relations
(soft composition), weighted by the relative frequency of each relation and averaged across all languages.

parser improves also with respect to the prediction
of the nuclei themselves. This explains why the
oracle parser generally improves more with respect
to LAS than CLAS, and sometimes by a substan-
tial margin (2.5 points for Chinese, 1.4 points for
Basque and 1.3 points for Swedish).

Figure 4 visualizes the impact of hard, soft and
generalized nucleus composition for different lan-
guages, with a breakdown into (a) all relations,
which corresponds to the difference in LAS com-
pared to the baseline, (b) nucleus-external relations,
which corresponds to the difference in CLAS, and
(c) nucleus-internal relations. Overall, these graphs
are consistent with the hypothesis that using com-
position to create parser-internal representations
of (dissociated) nuclei primarily affects the predic-
tion of nucleus-external relations, as the (a) and (b)
graphs are very similar and the (c) graphs mostly
show very small differences. There are, however,

two notable exceptions. For Finnish, all three com-
position methods clearly improve the prediction
of nucleus-internal relations as well as nucleus-
external relations, by over 1 F-score point for gen-
eralized composition. Conversely, for Turkish, es-
pecially the soft versions of composition has a detri-
mental effect on the prediction of nucleus-internal
relations, reaching 1 F-score point for generalized
composition. Turkish is also exceptional in show-
ing opposite effects overall for soft and generalized
composition, the former having a positive effect
and the latter a negative one, whereas all other lan-
guages either show consistent trends or fluctuations
around zero. Further research will be needed to ex-
plain what causes these deviant patterns.

Figure 5 shows the improvement (or degrada-
tion) for individual UD relations, weighted by rel-
ative frequency and averaged over all languages,
for the best performing soft composition parser.
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Finnish Chinese Swedish Turkish Hindi
conj 0.09 det 0.03 xcomp 0.07 obj 0.12 obj 0.03
root 0.07 case 0.02 advmod 0.05 conj 0.10 compound 0.02
nmod 0.06 cop 0.01 nmod 0.05 root 0.05 nmod 0.02
obl 0.06 conj 0.01 acl 0.04 acl 0.04 case 0.02
ccomp 0.03 clf 0.01 conj 0.04 nummod 0.03 aux 0.01
acl 0.03 ccomp 0.00 obl 0.04 obl 0.03 det 0.00
obj 0.02 dep 0.00 obj 0.04 nmod 0.01 nummod 0.00
xcomp 0.01 aux 0.00 mark 0.03 ccomp 0.01 amod 0.00
nsubj 0.01 advcl 0.00 nsubj 0.02 det 0.01 advmod 0.00
amod 0.01 cc 0.00 amod 0.02 cc 0.01 advcl 0.00

Table 2: Improvement (or degradation) in labeled F-score, weighted by relative frequency, for the 10 best UD
relations in the 5 languages with greatest LAS improvements over the baseline (soft composition).

The most important improvements are observed
for nmod, conj, root and obj. The nmod relation
covers all nominal modifiers inside noun phrases,
including prepositional phrase modifiers; the conj
relation holds between conjuncts in a coordination
structure; the root relation is assigned to the main
predicate of a sentence; and obj is the direct object
relation. In addition, we see smaller improvements
for a number of relations, including major clause re-
lations like advcl (adverbial clauses), obl (oblique
modifiers), ccomp (complement clauses), and nsubj
(nominal subjects), as well as noun phrase internal
relations like acl (adnominal clauses, including
relative clauses), det (determiner), and nummod
(numeral modifier). Of these, only det is a nucleus-
internal relation, so the results further support the
hypothesis that richer internal representations of
(dissociated) nuclei primarily improve the predic-
tion of nucleus-external dependency relations, es-
pecially major clause relations.

It is important to remember that the results in Fig-
ure 5 are averaged over all languages and may hide
interesting differences between languages. A full
investigation of this variation is beyond the scope
of this paper, but Table 2 presents a further zoom-in
by presenting statistics on the top 10 relations in the
5 languages where LAS improves the most com-
pared to the baseline. To a large extent, we find the
same relations as in the aggregated statistics, but
there are also interesting language-specific patterns.
For Chinese the top three relations (det, case, cop)
are all nucleus-internal relations; for Swedish the
two top relations are xcomp (open clausal comple-
ments) and advmod (adverbial modifiers), neither
of which show positive improvements on average;
and for Hindi the compound relation shows the

second largest improvement. These differences
definitely deserve further investigation.

6 Conclusion

We have explored how the concept of syntactic nu-
cleus can be used to enrich the representations of a
transition-based dependency parser, relying on UD
treebanks for supervision and evaluation in experi-
ments on a wide range of languages. We conclude
that the use of composition operations for building
internal representations of syntactic nuclei, in par-
ticular the technique that we have called soft com-
position, can lead to small but significant improve-
ments in parsing accuracy for nucleus-external re-
lations, notably for nominal modifiers, relations of
coordination, main predicates, and direct objects.
In future work we want to study the behavior of
different types of nuclei in more detail, in particular
how the different internal relations of nominal and
verbal nuclei contribute to overall parsing accuracy.
We also want to analyze the variation between dif-
ferent languages in more detail and see if it can be
explained in terms of typological properties.

Acknowledgments

We thank Daniel Dakota, Artur Kulmizev, Sara
Stymne and Gongbo Tang for useful discussions
and the EACL reviewers for constructive criticism.
We acknowledge the computational resources pro-
vided by CSC in Helsinki and Sigma2 in Oslo
through NeIC-NLPL (www.nlpl.eu).

References
S. Abney. Parsing by chunks. In R. Berwick, S. Ab-

ney, and C. Tenny, editors, Principle-Based Parsing,
pages 257–278. Kluwer, 1991.



1385

M. Ballesteros and J. Nivre. Going to the roots of de-
pendency parsing. Computational Linguistics, 39
(1):5–13, 2013.
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A. Lenci, S. Lertpradit, H. Leung, C. Y. Li, J. Li,

K. Li, K. Lim, N. Ljubešić, O. Loginova, O. Lya-
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tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

J. Nivre, M.-C. de Marneffe, F. Ginter, J. Hajič, C. D.
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