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Abstract

The non-autoregressive models have boosted
the efficiency of neural machine translation
through parallelized decoding at the cost of
effectiveness, when comparing with the au-
toregressive counterparts. In this paper, we
claim that the syntactic and semantic struc-
tures among natural language are critical for
non-autoregressive machine translation and
can further improve the performance. How-
ever, these structures are rarely considered in
existing non-autoregressive models. Inspired
by this intuition, we propose to incorporate
the explicit syntactic and semantic structures
of languages into a non-autoregressive Trans-
former, for the task of neural machine transla-
tion. Moreover, we also consider the interme-
diate latent alignment within target sentences
to better learn the long-term token dependen-
cies. Experimental results on two real-world
datasets (i.e., WMT14 En-De and WMT16 En-
Ro) show that our model achieves a signifi-
cantly faster speed, as well as keeps the transla-
tion quality when compared with several state-
of-the-art non-autoregressive models.

1 Introduction

Recently, non-autoregressive models (Gu et al.,
2018), which aim to enable the parallel genera-
tion of output tokens without sacrificing translation
quality, have attracted much attention. Although
the non-autoregressive models have considerably
sped up the inference process for real-time neural
machine translation (NMT) (Gu et al., 2018), their
performance is considerably worse than that of
autoregressive counterparts. Most previous works
attribute the poor performance to the inevitable con-
ditional independence issue when predicting target
tokens, and many variants have been proposed to
solve it. For example, several techniques in non-
autoregressive models are investigated to mitigate
the trade-off between speedup and performance,

including iterative refinement (Lee et al., 2018),
insertion-based models (Chan et al., 2019; Stern
et al., 2019), latent variable based models (Kaiser
et al., 2018; Shu et al., 2020), CTC models (Li-
bovický and Helcl, 2018; Saharia et al., 2020), al-
ternative loss function based models (Wei et al.,
2019; Wang et al., 2019; Shao et al., 2020), and
masked language models (Ghazvininejad et al.,
2019, 2020).

Although these works have tried to narrow the
performance gap between autoregressive and non-
autoregressive models, and have achieved some
improvements on machine translation, the non-
autoregressive models still suffer from syntactic
and semantic limitations. That is, the translations
of non-autoregressive models tend to contain inco-
herent phrases (e.g., repetitive words), and some
informative tokens on the source side are absent.
It is because in non-autoregressive models, each
token in the target sentence is generated indepen-
dently. Consequently, it will cause the multimodal-
ity issue, i.e., the non-autoregressive models can-
not model the multimodal distribution of target
sequences properly (Gu et al., 2018).

One key observation to mitigate the syntactic and
semantic error is that source and target translated
sentences follow the same structure, which can
be reflected from Part-Of-Speech (POS) tags and
Named Entity Recognition (NER) labels. Briefly,
POS, which aims to assign labels to words to in-
dicate their categories by considering the long-
distance structure of sentences, can help the model
learn the syntactic structure to avoid generating
the repetitive words. Likewise, NER, which dis-
covers the proper nouns and verbs of sentences,
naturally helps the model recognize some meaning-
ful semantic tokens that may improve translation
quality. This observation motivates us to leverage
the syntactic as well as semantic structures of nat-
ural language to improve the performance of non-
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Table 1: A motivating example on WMT14 En→De dataset. English with POS|NER and its corresponding German
translation with POS|NER. The Blue labels show the same tags, while the Red labels show the different tags in
two languages.

EN: A republican strategy to counter the rel-election of Obama .
| | | | | | | | | |

EN POS: DET ADJ NOUN PART VERB DET NOUN ADP PROPN PUNCT
EN NER: O B NORP O O O O O O B PERSON O
DE: Eine republikanische strategie gegen die wiederwahl Obama .

| | | | | | | |
DE POS: DET ADJ NOUN ADP DET NOUN PROPN PUNCT
EN NER: O B NORP O O O O B PERSON O

autoregressive NMT. We present a motivating ex-
ample in Table 1 to better illustrate our idea. From
this table, we can find that although the words are
altered dramatically from the English sentence to
its German translation, the corresponding POS and
NER tags still remain similar. For example, most
POS tags are identical and follow the same pattern,
except that PART, VERB, and ADP in the English
do not match the German ADP, while the NER tags
are exactly the same in both sentences.

In this paper, we propose an end-to-end
Syntactic and semantic structure-aware Non-
Autoregressive Transformer model (SNAT) for
NMT. We take the structure labels and words as
inputs of the model. With the guidance of extra
sentence structural information, the model greatly
mitigates the multimodality issue’s negative impact.
The core contributions of this paper can be summa-
rized as that we propose 1) a syntax and semantic
structure-aware Transformer which takes sequen-
tial texts and the structural labels as input and gen-
erates words conditioned on the predicted structural
labels, and 2) an intermediate alignment regular-
ization which aligns the intermediate decoder layer
with the target to capture coarse target informa-
tion. We conduct experiments on four benchmark
tasks over two datasets, including WMT14 En→De
and WMT16 En→Ro. Experimental results indi-
cate that our proposed method achieves competitive
results compared with existing state-of-the-art non-
autoregressive and autoregressive neural machine
translation models, as well as significantly reduces
the decoding time.

2 Background

Regardless of its convenience and effectiveness,
the autoregressive decoding methods suffer two
major drawbacks. One is that they cannot generate
multiple tokens simultaneously, leading to ineffi-

cient use of parallel hardware such as GPUs. The
other is that beam search has been found to output
low-quality translation with large beam size and
deteriorates when applied to larger search spaces.
However, non-autoregressive transformer (NAT)
could potentially address these issues. Particularly,
they aim at speeding up decoding through remov-
ing the sequential dependencies within the target
sentence and generating multiple target tokens in
one pass, as indicated by the following equation:

PNAT(y|x;φ) =
m∏
t=1

p (yt|x̂,x;φ) , (1)

where x̂ = {x̂1, . . . , x̂m} is the copied source sen-
tence. Since the conditional dependencies within
the target sentence (yt depends on y<t) are removed
from the decoder input, the decoder is unable to
leverage the inherent sentence structure for pre-
diction. Hence the decoder is supposed to figure
out such target-side information by itself given the
source-side information during training. This is a
much more challenging task compared to the au-
toregressive counterparts. From our investigation,
we find the NAT models fail to handle the target
sentence generation well. It usually generates repet-
itive and semantically incoherent sentences with
missing words. Therefore, strong conditional sig-
nals should be introduced as the decoder input to
help the model better learn internal dependencies
within a sentence.

3 Methodology

In this section, we present our model SNAT to
incorporate the syntactic and semantic structure
information into a NAT model as well as an inter-
mediate latent space alignment within the target.
Figure 1 gives an overview of the network struc-
ture of our proposed SNAT. In SNAT, the input
sequence is segmented into sub-words by byte-pair
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Figure 1: An overview of the proposed SNAT for neural machine translation.

tokenizer (Sennrich et al., 2016). In parallel, words
in the input sequence are passed to POS and NER
annotators to extract explicit syntactic and semantic
structures, and the corresponding embeddings are
aggregated by a linear layer to form the final syn-
tax and semantic structure-aware embedding. The
SNAT model copies the structured encoder input
as the decoder input and generates the translated
sentences and labels.

One of the most important properties of SNAT is
that it naturally introduces syntactic and semantic
information when taking the structure-aware infor-
mation as inputs and generating both words and
labels. More precisely, given a source sentence x,
as well as its label sequence Lx, the conditional
probability of a target translation y and its label
sequence Ly is:

PSNAT(y,Ly|x,Lx;ϕ)

=

m∏
t=1

p
(
yt, Lyt |x̂, L̂x,x,Lx;ϕ

)
,

(2)

where x and Lx are first fed into the encoder of
SNAT model. x̂ and L̂x with lengthm are syntactic
and semantic structure-aware copying of word and
label from encoder inputs, respectively. We show
the details in the following sections.

3.1 Syntactic and Semantic Labeling
We use POS and NER to introduce the syntactic and
semantic information existing in natural language,
respectively. During the data pre-processing, each
sentence is annotated into a semantic sequence us-
ing an open-source pre-trained semantic annotator.
In particular, we take the Treebank style (Marcus

et al., 1999) for POS and PropBank style (Palmer
et al., 2005) for NER to annotate every token of
input sequence with semantic labels. Given a spe-
cific sentence, there would be predicate-argument
structures. Since the input sequence is segmented
into subword units using byte-pair encoding (Sen-
nrich et al., 2016), we assign the same label to all
subwords tokenized from the same word. As shown
in Figure 1, the word “Ancelotti” is tokenized as
“An@@” and “Celotti”. The corresponding POS
tags are PRON and PRON while the corresponding
NER tags are B PERSON and I PERSON. For the
text “Is An@@ Celotti the man for the job ?”, the
corresponding POS tag set is {AUX, PRON, PRON,
DET, NOUN, ADP, DET, NOUN, PUNCT} and
the NER tag set is {O, B PERSON, I PERSON,
O, O, O, O, O, O}. The data flow of the proposed
model is also shown in Figure 1.

3.2 Encoder

Following Transformer (Vaswani et al., 2017), we
use a stack of 6 identical Transformer blocks as
encoder. In addition to the word embedding and po-
sition embedding in the traditional Transformer, we
add structure-aware label embedding. The input to
the encoder block is the addition of the normalized
word, labels (NER and POS) and position embed-
ding, which is represented as H0 = [h0

1, . . . ,h
0
n].

The input representation H0 = [h0
1, . . . ,h

0
n]

is encoded into contextual layer representations
through the Transformer blocks. For each layer,
the layer representation Hl = [hl

1, . . . ,h
l
n] is com-

puted by the l-th layer Transformer block Hl =
Transformerl(H

l−1), l ∈ {1, 2, . . . , 6}. In each
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Transformer block, multiple self-attention heads
are used to aggregate the output vectors of the pre-
vious layer. A general attention mechanism can be
formulated as the weighted sum of the value vector
V using the query vector Q and the key vector K:

Att(Q,K,V) = softmax

(
QKT

√
dmodel

)
·V, (3)

where dmodel represents the dimension of hidden
representations. For self-attention, Q, K, and V
are mappings of previous hidden representation
by different linear functions, i.e., Q = Hl−1Wl

Q,
K = Hl−1Wl

K , and V = Hl−1Wl
V , respectively.

At last, the encoder produces a final contextual rep-
resentation H6 = [h6

1, . . . ,h
6
n], which is obtained

from the last Transformer block.

3.3 Decoder

The decoder also consists of 6 identical Trans-
former blocks, but with several key differences
from the encoder. More concretely, we denote the
contextual representations in the i-th decoder layer
is Zi(1 ≤ i ≤ 6). The input to the decoder block
as Z0 = [z01, . . . , z

0
m], which is produced by the ad-

dition of the word, labels (NER and POS) copying
from encoder input and positional embedding.

For the target side input [x̂, L̂x], most previous
works simply copied partial source sentence with
the length ratio n

m where n refers to the source
length and m is the target length as the decoder
input. More concretely, the decoder input yi at the
i-th position is simply a copy of the b nm × icth
contextual representation, i.e., xb n

m
×ic from the en-

coder. From our investigation, in most cases, the
gap between source length and target length is rel-
atively small (e.g. 2). Therefore, it deletes or du-
plicates the copy of the last a few tokens of the
source. If the last token is meaningful, the deletion
will neglect important information. Otherwise, if
the last token is trivial, multiple copies will add
noise to the model.

Instead, we propose a syntactic and semantic
structure-aware mapping method considering the
POS and NER labels to construct the decoder in-
puts. Our model first picks out the informative
words with NOUN and VERB POS tags, and the
ones recognized as entities by the NER module. If
the source length is longer than the target length,
we retain all informative words, and randomly
delete the rest of the words. On the other hand,
if the source length is shorter than the target, we

retain all words and randomly duplicate the infor-
mative words. The corresponding label of a word
is also deleted or preserved. Moreover, by copying
the similar structural words from the source, it can
provide more information to the target input than
just copying the source token, which is greatly dif-
ferent from the target token. The POS and NER
labels of those structure-aware copied words from
the source sentence are also copied as the decoder
input. So by using the structure-aware mapping, we
can assign [x̂, L̂x] as decoder input.

For positional attention which aims to learn the
local word orders within the sentence (Gu et al.,
2018), we set positional embedding (Vaswani et al.,
2017) as both Q and K, and hidden representations
of the previous layer as V.

For inter-attention, Q refers to hidden represen-
tations of the previous layer, whereas K and V
are contextual vectors H6 from the encoder. We
modify the attention mask so that it does not mask
out the future tokens, and every token is depen-
dent on both its preceding and succeeding tokens
in every layer. Therefore, the generation of each
token can use bi-directional attention. The position-
wise Feed-Forward Network (FFN) is applied after
multi-head attention in both encoder and decoder.
It consists of two fully-connected layers and a layer
normalization (Ba et al., 2016). The FFN takes Z6

as input and calculates the final representation Zf ,
which is used to predict the whole target sentence
and label:

p
(
y | x̂, L̂x,x,Lx

)
= f

(
ZfW>

w + bw

)
, (4)

q
(
Ly | x̂, L̂x,x,Lx

)
= f

(
ZfW>

l + bl

)
, (5)

where f is a GeLU activation function (Hendrycks
and Gimpel, 2016). Ww and Wl are the token em-
bedding and structural label embedding in the input
representation, respectively. We use different FFNs
for POS and NER labels. To avoid redundancy, we
just use q

(
Ly | x̂, L̂x,x,Lx

)
to represent the two

predicted label likelihood in general.

3.4 Training

We use (x, Lx, y∗, L∗y) to denote a training in-
stance. To introduce the label information, our
proposed SNAT contains a discrete sequential la-
tent variable Ly1:m with conditional posterior dis-
tribution p(Ly1:m |x̂, L̂x,x,Lx;ϕ). It can be ap-
proximated using a proposal distribution q(Ly |
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x̂, L̂x,x,Lx). The approximation also provides a
variational bound for the maximum log-likelihood:

logPSNAT = log
m∑
t=1

q
(
Lyt |x̂, L̂x,x,Lx;ϕ

)
× p

(
yt|Lyt , x̂, L̂x,x,Lx;ϕ

)
≥ E

Ly1:m∼q

{ m∑
t=1

log q
(
Lyt | x̂, L̂x,x,Lx;ϕ

)
︸ ︷︷ ︸

Label likelihood

+
m∑
t=1

log p
(
yt | Lyt , x̂, L̂x,x,Lx;ϕ

)
︸ ︷︷ ︸

Structure-aware word likelihood

}
+H(q).

(6)

Note that, the resulting likelihood function, con-
sisting of the two bracketed terms in Eq. (6), allows
us to train the entire model in a supervised fashion.
The inferred label can be utilized to train the label
predicting model q and simultaneously supervise
the structure-aware word model p. The label loss
can be calculated by the cross-entropy H of L∗yt
and Eq. (5):

Llabel =
m∑
t=1

H
(
L∗yt , q(Lyt | x̂, L̂x,x,Lx)

)
,

(7)
The structure-aware word likelihood is conditioned
on the generation result of the label. Since the
Eq. (4) does not depend on the predicted label,
we propose to bring the structure-aware word mask
Mwl ∈ R|Vword|×|Vlabel|, where |Vword| and |Vlabel|
are vocabulary sizes of word and label, respectively.
The mask Mwl

is defined as follows:

Mwl
(i, j) =

{
1, A(yi) = labelj ,
ε, A(yi) 6= labelj ,

(8)

which can be obtained at the preprocessing stage,
and A denotes the open-source pre-trained POS or
NER annotator mentioned above. It aims to penal-
ize the case when the word yi does not belong to
the label labelj with ε, which is a small number
defined within the range of (0, 1) and will be tuned
in our experiments. For example, the word “great”
does not belong to VERB. The structure-aware
word likelihood can be reformulated as:

p(yt | Lyt , x̂, L̂x,x,Lx;ϕ) = p(yt | x̂, L̂x,x,Lx)

×Mwl
× q(Lyt | x̂, L̂x,x,Lx).

(9)

Consequently, the structure-aware word
loss Lword is defined as the cross-entropy
between true p

′
(y∗t |L∗yt) and predicted

p(yt | Lyt , x̂, L̂x,x,Lx;ϕ), where p
′
(y∗t |L∗yt)

∈ R|Vword|×|Vlabel| is a matrix where only item
at the index of (y∗t , L

∗
yt) equals to 1, otherwise

equals to 0. We reshape p
′
(y∗t |L∗yt) and p(yt|Lyt)

to vectors when calculating the loss.

Intermediate Alignment Regularization One
main problem of NAT is that the decoder gener-
ation process does not depend on the previously
generated tokens. Based on the bidirectional na-
ture of SNAT decoder, the token can depend on
every token of the decoder input. However, since
the input of decoder [x̂, L̂x] is the duplicate of en-
coder input [x,Lx], the generation depends on the
encoder tokens rather than the target y∗.

To solve this problem, we align the output of the
intermediate layer of the decoder with the target.
The alignment makes the generation of following
layers dependent on the coarse target-side infor-
mation instead of the mere encoder input. This
alignment idea is inspired by (Guo et al., 2019),
which directly feeds target-side tokens as inputs
of the decoder by linearly mapping the source to-
ken embeddings to target embeddings. However,
using one FFN layer to map different languages to
the same space can hardly provide promising re-
sults. Thus, instead of aligning the input of decoder
with the target, we use the intermediate layer of
decoder to align with the target. In this case, our
model avoids adding additional training parameters
and manages to train the alignment together with
SNAT model in an end-to-end fashion. Formally,
we define the intermediate alignment regularization
as cross-entropy loss between the predicted word
and the true word:

Lreg =
m∑
t=1

H
(
y∗t , FFN(Zmd

t )
)
, (10)

where Zmd (1 < md < 6) represents the output
of each intermediate layer. Consequently, the final
loss of SNAT can be represented with the coeffi-
cient λ as:

LSNAT = Lword + Llabel + λLreg. (11)

4 Experiment

In this section, we conduct experiments to evaluate
the effectiveness and efficiency of our proposed
model, with comprehensive analysis.
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Table 2: Performance of BLEU score on WMT14 En↔De and WMT16 En↔Ro tasks. “-” denotes that the results
are not reported. LSTM-based results are from (Wu et al., 2016); CNN-based results are from (Gehring et al.,
2017). †The Transformer (Vaswani et al., 2017) results are based on our own reproduction.

En→De De→En En→Ro Ro→En
Autoregressive Models Latency Speedup
LSTM Seq2Seq (Bahdanau et al., 2017) 24.60 - - - - -
Conv S2S (Gehring et al., 2017) 26.43 - 30.02 - - -
Transformer† (Vaswani et al., 2017) 27.48 31.29 34.36 33.82 642ms 1.00X
Non-autoregressive Models Latency Speedup
NAT (Gu et al., 2018) 17.69 20.62 29.79 - 39ms 15.6X
NAT, rescoring 10 (Gu et al., 2018) 18.66 22.41 - - 79ms 7.68X
NAT, rescoring 100 (Gu et al., 2018) 19.17 23.20 - - 257ms 2.36X
iNAT (Lee et al., 2018) 21.54 25.43 29.32 - - 5.78X
Hint-NAT (Li et al., 2020) 21.11 25.24 - - 26ms 23.36X
FlowSeq-base (Ma et al., 2019) 21.45 26.16 - 29.34 - -
ENAT-P (Guo et al., 2019) 20.26 23.23 29.85 - 25ms 24.3X
ENAT-P, rescoring 9 23.22 26.67 34.04 - 50ms 12.1X
ENAT-E 20.65 23.02 30.08 - 24ms 25.3X
ENAT-E, rescoring 19 24.28 26.10 34.51 - 49ms 12.4X
DCRF-NAT (Sun et al., 2019) 23.44 27.22 - - 37ms 16.4X
DCRF-NAT, rescoring 9 26.07 29.68 - - 63ms 6.1X
DCRF-NAT, rescoring 19 26.80 30.04 - - 88ms 4.4X
NAR-MT(rescoring 11) (Zhou and Keung, 2020) 23.57 29.01 31.21 32.06 - -
NAR-MT(rescoring 11) + monolingual 25.53 29.96 31.91 33.46 - -
AXE CMLM (Ghazvininejad et al., 2020) 23.53 27.90 30.75 31.54 - -
SNAT 24.64 28.42 32.87 32.21 26.88ms 22.6X
SNAT, rescoring 9 26.87 30.12 34.93 33.11 54.63ms 11.1X
SNAT, rescoring 19 27.50 30.82 35.19 33.98 65.62ms 9.3X

4.1 Experimental Setup

Data We evaluate SNAT performance on both
the WMT14 En-De (around 4.5M sentence pairs)
and the WMT16 En-Ro (around 610k sentence
pairs) parallel corpora. For the parallel data, we
use the processed data from (Ghazvininejad et al.,
2019) to be consistent with previous publications.
The dataset is processed with Moses script (Hoang
and Koehn, 2008), and the words are segmented
into subword units using byte-pair encoding (Sen-
nrich et al., 2016). The WMT14 En-De task
uses newstest-2013 and newstest-2014 as devel-
opment and test sets, and WMT16 En-Ro task uses
newsdev-2016 and newstest-2016 as development
and test sets. We report all results on test sets. The
vocabulary is shared between source and target
languages and has ∼36k units and ∼34k units in
WMT14 En-De and WMT16 En-Ro, respectively.

Model Configuration Our implementation is
based on the PyTorch sequence modeling toolkit
Fairseq.1 We follow the weights initialization
scheme from BERT and follow the settings of the
base Transformer configuration in (Vaswani et al.,

1https://github.com/pytorch/fairseq

2017) for all the models: 6 layers per stack, 8 at-
tention heads per layer, 512 model dimensions and
2,048 hidden dimensions. The dimension of POS
and NER embedding is set to 512 which is the same
as the word embedding dimension. The autoregres-
sive and non-autoregressive model have the same
encoder-decoder structure, except for the decoder
attention mask and the decoding input for the non-
autoregressive model as described in Sec. 3. We
try different values for the label mismatch penalty
ε from {0.01, 0.1, 0.5} and find that 0.1 gives
the best performance. The coefficient λ is tested
with different values from {0.25, 0.5, 0.75, 1}, and
λ = 0.75 outperforms other settings. We set the
initial learning rate as values from {8e-6, 1e-5, 2e-
5, 3e-5}, with a warm-up rate of 0.1 and L2 weight
decay of 0.01. Sentences are tokenized and the
maximum number of tokens in each step is set to
8,000. The maximum iteration step is set to 30,000,
and we train the model with early stopping.

Baselines We choose the following models as
baselines: NAT is a vanilla non-autoregressive
Transformer model for NMT which is first intro-
duced in (Gu et al., 2018). iNAT (Lee et al., 2018)
extends the vanilla NAT model by iteratively read-

https://github.com/pytorch/fairseq
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ing and refining the translation. The number of
iterations is set to 10 for decoding. Hint-NAT (Li
et al., 2020) utilizes the intermediate hidden states
from an autoregressive teacher to improve the NAT
model. FlowSeq (Ma et al., 2019) adopts normal-
izing flows (Kingma and Dhariwal, 2018) as latent
variables for generation. ENAT (Guo et al., 2019)
proposes two ways to enhance the decoder inputs
to improve NAT models. The first one leverages a
phrase table to translate source tokens to target to-
kens ENAT-P. The second one transforms source-
side word embedding into target-side word em-
beddings ENAT-E. DCRF-NAT (Sun et al., 2019)
designs an approximation of CRF for NAT models
and further uses a dynamic transition technique
to model positional context in the CRF. NAR-
MT (Zhou and Keung, 2020) uses a large num-
ber of source texts from monolingual corpora to
generate additional teacher outputs for NAR-MT
training. AXE CMLM (Ghazvininejad et al., 2020)
trains the conditional masked language models us-
ing a differentiable dynamic program to assign loss
based on the best possible monotonic alignment
between target tokens and model predictions.

4.2 Training and Inference Details
To obtain the part-of-speech and named entity la-
bels, we use industrial-strength spaCy2 to acquire
the label for English, German, and Romanian input.
In our implementation, there are 17 labels for POS
in total, i.e., ADJ (adjective), ADV (adverb), ADP
(ad-position), AUX (auxiliary), CCONJ (coordi-
nating conjunction), DET (determiner), INTJ (in-
terjection), NOUN (noun), NUM (numeral), PART
(particle), PRON (pronoun), PROPN (proper noun),
PUNCT (punctuation), SCONJ (subordinating con-
junction), SYM (symbol), VERB (verb), and X
(other). The NER task is trained on OntoNotes
v5.0 benchmark dataset (Pradhan et al., 2013) using
formatted BIO labels and defines 18 entity types:
CARDINAL, DATE, EVENT, FAC, GPE, LAN-
GUAGE, LAW, LOC, MONEY, NORP, ORDINAL,
ORG, PERCENT, PERSON, PRODUCT, QUAN-
TITY, TIME, and WORK OF ART.

Knowledge Distillation Similar to previous
works on non-autoregressive translation (Gu et al.,
2018; Shu et al., 2020; Ghazvininejad et al.,
2019), we use sequence-level knowledge distil-
lation by training SNAT on translations gener-
ated by a standard left-to-right Transformer model

2https://spacy.io/usage/models

(i.e., Transformer-large for WMT14 EN→DE, and
Transformer-base for WMT16 EN→RO). Specif-
ically, we use scaling NMT (Ott et al., 2018) as
the teacher model. We report the performance of
standard autoregressive Transformer trained on
distilled data for WMT14 EN→DE and WMT16
EN→RO. We average the last 5 checkpoints to
obtain the final model. We train the model with
cross-entropy loss and label smoothing (ε = 0.1).

Inference During training, we do not need to pre-
dict the target length m since the target sentence is
given. During inference, we use a simple method
to select the target length for SNAT (Wang et al.,
2019; Li et al., 2020). First, we set the target length
to m′ = n+C, where n is the length of the source
sentence and C is a constant bias term estimated
from the overall length statistics of the training data.
Then, we create a list of candidate target lengths
with a range of [m′ − B,m′ + B] where B is the
half-width of the interval. Finally, the model picks
the best one from the generated 2B + 1 candidate
sentences. In our experiments, we set the constant
bias term C to 2 for WMT 14 EN→DE, -2 for
WMT 14 DE→EN, 3 for WMT 16 EN→RO, and
-3 for WMT 14 RO→EN according to the aver-
age lengths of different languages in the training
sets. We set B to 4 or 9, and obtain corresponding
9 or 19 candidate translations for each sentence.
Then we employ an autoregressive teacher model
to rescore these candidates.

4.3 Results and Analysis

Experimental results are shown in Table 2. We first
compare the proposed method against autoregres-
sive counterparts in terms of translation quality,
which is measured by BLEU (Papineni et al., 2002).
For all our tasks, we obtain results comparable
with the Transformer, the state-of-the-art autore-
gressive model. Our best model achieves 27.50
(+0.02 gain over Transformer), 30.82 (-0.46 gap
with Transformer), 35.19 (+0.82 gain), and 33.98
(+0.16 gain) BLEU score on WMT14 En↔De and
WMT16 EN↔Ro, respectively. More importantly,
our SNAT decodes much faster than the Trans-
former, which is a big improvement regarding the
speed-accuracy trade-off in AT and NAT models.

Comparing our models with other NAT models,
we observe that the best SNAT model achieves
a significant performance boost over NAT, iNAT,
Hint-NAT, FlowSeq, ENAT, NAR-MT and AXE
CMLM by +8.33, +5.96, +6.39, +6.05, +3.22, 3.93

https://spacy.io/usage/models
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and +3.97 in BLEU on WMT14 En→De, respec-
tively. This indicates that the incorporation of the
syntactic and semantic structure greatly helps re-
duce the impact of the multimodality problem and
thus narrows the performance gap between Autore-
gressive Transformer (AT) and Non-Autoregressive
Transformer (NAT) models. In addition, we see
a +0.69, +0.78, +0.68, and 0.52 gain of BLEU
score over the best baselines on WMT14 En→De,
WMT14 De→En, WMT16 En→Ro and WMT16
Ro→En, respectively.

From the result of our methods at the last group
in Table 2, we find that the rescoring technique sub-
stantially assists in improving the performance, and
dynamic decoding significantly reduces the time
spent on rescoring while further accelerating the
decoding process. On En→De, rescoring 9 candi-
dates leads to a gain of +2.23 BLEU, and rescoring
19 candidates gives a +2.86 BLEU score increment.

Decoding Speed Following previous works (Gu
et al., 2018; Lee et al., 2018; Guo et al., 2019),
we evaluate the average per-sentence decoding la-
tency on WMT14 En→De test sets with batch size
being 1, under an environment of NVIDIA Titan
RTX GPU for the Transformer model and the NAT
models to measure the speedup. The latencies are
obtained by taking an average of five runs. More
clearly, We reproduce the Transformer on our ma-
chine. We copy the runtime of other models but the
speedup ratio is between the runtime of their imple-
mented Transformer and their proposed model. We
think it’s reasonable to compare the speedup ratio
because it is independent of the influence caused
by different implementation software or machines.
And to clarify, the latency does not include prepro-
cessing of tagging, because it’s a very fast process
as executing around 7000 sentences in one second.

We can see from Table 2 that the best SNAT
gets a 9.3 times decoding speedup than the Trans-
former, while achieving comparable or even better
performance. Compared to other NAT models, we
observe that the SNAT model is almost the fastest
(only a little bit behind of ENAT and Hint-NAT)
in terms of latency, and is surprisingly faster than
DCRF-NAT with better performance.

4.4 Ablation Analysis

Effect of Syntactic and Semantic Structure In-
formation We investigate the effect of using the
syntactic and semantic tag on the model perfor-
mance. Experimental results are shown in Table 3.

Table 3: The performance of different vision of SNAT
models on WMT14 En→De development set. 4 means
selecting the label tag.

Model POS tag NER tag BLEU
SNAT-V1 4 24.21
SNAT-V2 4 24.09
SNAT-V3 22.84

Table 4: The performance with respect to using differ-
ent layer of intermediate interaction. Evaluated by the
BLEU score on WMT14 En→De|WMT14 De→En.

Method WMT14 En→ De WMT14 De→ En
w/o 23.11 27.03
w/ Z2 24.32 28.21
w/ Z3 24.57 28.42

It demonstrates that incorporating POS informa-
tion boosts the translating performance (+1.37 on
WMT14 En→De) and NER information can also
enhance the translating performance (+1.25 on
WMT14 En→De). The POS label enriches the
model with the syntactic structure, while the NER
label supplements the semantic information to the
model which are critical elements for SNAT model
to exhibit better translation performance.

Effect of Intermediate Representation Align-
ment We conduct experiments for our SNAT
model on WMT14 En→De with various align-
ments between decoder layers and target. As shown
in Table 4, using the second layer Z2 in the de-
coder as intermediate alignment can gain +1.21
improvement, while using the third layer Z3 in the
decoder as intermediate alignment can gain +1.46
improvement. This is in line with our expectation
that aggregating layer-wise token information in
intermediate layers can help improve the decoder’s
ability to capture token-token dependencies.

Effect of Sentence Length To evaluate differ-
ent models on different sentence lengths, we con-
duct experiments on the WMT14 En→De develop-
ment set and divide the sentence pairs into different
length buckets according to the length of the refer-
ence sentences. As shown in Table 5, the column
of 100 calculates the BLEU score of sentences that
the length of the reference sentence is larger than
50 but smaller or equal to 100. We can see that
the performance of vanilla NAT drops quickly as
the sentence length increases from 10 to 50, while
AT model and the proposed SNAT model have
relatively stable performance over different sen-
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Table 5: The performance with respect to different
sentence lengths. Evaluated by the BLEU score on
WMT14 En→De.

Model 10 20 30 50 100
AT 28.35 28.32 28.30 24.26 20.73
NAT 21.31 19.55 17.19 16.31 11.35
SNAT 28.67 28.50 27.33 25.41 17.69

tence lengths. This result confirms the power of
the proposed model in modeling long-term token
dependencies.

5 Conclusion

In this paper, we have proposed a novel syntactic
and semantic structure-aware non-autoregressive
Transformer model SNAT for NMT. The proposed
model aims at reducing the computational cost in
inference as well as keeping the quality of transla-
tion by incorporating both syntactic and semantic
structures existing among natural languages into
a non-autoregressive Transformer. In addition, we
have also designed an intermediate latent align-
ment regularization within target sentences to bet-
ter learn the long-term token dependencies. Com-
prehensive experiments and analysis on two real-
world datasets (i.e., WMT14 En→De and WMT16
En→Ro) verify the efficiency and effectiveness of
our proposed approach.
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