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Abstract

Language model (LM) pretraining has led
to consistent improvements in many NLP
downstream tasks, including named entity
recognition (NER). In this paper, we present
T-NER1 (Transformer-based Named Entity
Recognition), a Python library for NER LM
finetuning. In addition to its practical utility,
T-NER facilitates the study and investigation
of the cross-domain and cross-lingual general-
ization ability of LMs finetuned on NER. Our
library also provides a web app where users
can get model predictions interactively for ar-
bitrary text, which facilitates qualitative model
evaluation for non-expert programmers. We
show the potential of the library by compil-
ing nine public NER datasets into a unified for-
mat and evaluating the cross-domain and cross-
lingual performance across the datasets. The
results from our initial experiments show that
in-domain performance is generally competi-
tive across datasets. However, cross-domain
generalization is challenging even with a large
pretrained LM, which has nevertheless capac-
ity to learn domain-specific features if fine-
tuned on a combined dataset. To facilitate
future research, we also release all our LM
checkpoints via the Hugging Face model hub2

1 Introduction

Language model (LM) pretraining has become one
of the most common strategies within the natural
language processing (NLP) community to solve
downstream tasks (Peters et al., 2018; Howard and
Ruder, 2018; Radford et al., 2018, 2019; Devlin
et al., 2019). LMs trained over large textual data
only need to be finetuned on downstream tasks
to outperform most of the task-specific designed
models. Among the NLP tasks impacted by LM

1https://github.com/asahi417/tner
2https://huggingface.co/models?search=

asahi417/tner.

Figure 1: System overview of T-NER.

pretraining, named entity recognition (NER) is one
of the most prevailing and practical applications.
However, the availability of open-source NER li-
braries for LM training is limited.3

In this paper, we introduce T-NER, an open-
source Python library for cross-domain analysis
for NER with pretrained Transformer-based LMs.
Figure 1 shows a brief overview of our library and
its functionalities. The library facilitates NER ex-
perimental design including easy-to-use features
such as model training and evaluation. Most no-
tably, it enables to organize cross-domain analyses
such as training a NER model and testing it on a
different domain, with a small configuration. We
also report initial experiment results, by which we
show that although cross-domain NER is challeng-
ing, if it has an access to new domains, LM can
successfully learn new domain knowledge. The
results give us an insight that LM is capable to
learn a variety of domain knowledge, but an or-
dinary finetuning scheme on single dataset most
likely causes overfitting and results in poor domain
generalization.

As a system design, T-NER is implemented in

3Recently, spaCy (https://spacy.io/) has released
a general NLP pipeline with pretrained models including a
NER feature. Although it provides a very efficient pipeline
for processing text, it is not suitable for LM finetuning or
evaluation on arbitrary NER data.

https://github.com/asahi417/tner
https://huggingface.co/models?search=asahi417/tner
https://huggingface.co/models?search=asahi417/tner
https://spacy.io/
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Pytorch (Paszke et al., 2019) on top of the Trans-
formers library (Wolf et al., 2019). Moreover, the
interfaces of our training and evaluation modules
are highly inspired by Scikit-learn (Pedregosa et al.,
2011), enabling an interoperability with recent
models as well as integrating them in an intuitive
way. In addition to the versatility of our toolkit for
NER experimentation, we also include an online
demo and robust pre-trained models trained across
domains. In the following sections, we provide a
brief overview about NER in Section 2, explain
the system architecture of T-NER with a few ba-
sic usages in Section 3 and describe experiment
results on cross-domain transfer with our library in
Section 4.

2 Named Entity Recognition

Given an arbitrary text, the task of NER consists
of detecting named entities and identifying their
type. For example, given a sentence ”Dante was
born in Florence.”, a NER model are would iden-
tify ”Dante” as a person and ”Florence” as a loca-
tion. Traditionally, NER systems have relied on a
classification model on top of hand-engineered fea-
ture sets extracted from corpora (Ratinov and Roth,
2009; Collobert et al., 2011), which was improved
by carefully designed neural network approaches
(Lample et al., 2016; Chiu and Nichols, 2016; Ma
and Hovy, 2016). This paradigm shift was mainly
due to its efficient access to contextual information
and flexibility, as human-crafted feature sets were
no longer required. Later, contextual representa-
tions produced by pretrained LMs have improved
the generalization abilities of neural network archi-
tectures in many NLP tasks, including NER (Peters
et al., 2018; Devlin et al., 2019).

In particular, LMs see millions of plain texts dur-
ing pretraining, a knowledge that then can be lever-
aged in downstream NLP applications. This prop-
erty has been studied in the recently literature by
probing their generalization capacity (Hendrycks
et al., 2020; Aharoni and Goldberg, 2020; Desai
and Durrett, 2020; Gururangan et al., 2020). When
it comes to LM generalization studies in NER, the
literature is more limited and mainly restricted to in-
domain (Agarwal et al., 2021) or multilingual set-
tings (Pfeiffer et al., 2020a; Hu et al., 2020b). Our
library facilitates future research in cross-domain
and cross-lingual generalization by providing a
unified benchmark for several languages and do-
main as well as a straightforward implementation

of NER LM finetuning.

3 T-NER: An Overview

A key design goal was to create a self-contained
universal system to train, evaluate, and utilize NER
models in an easy way, not only for research pur-
pose but also practical use cases in industry. More-
over, we provide a demo web app (Figure 2) where
users can get predictions from a trained model
given a sentence interactively. This way, users
(even those without programming experience) can
conduct qualitative analyses on their own or exist-
ing pre-trained models.

In the following we provide details on the techni-
calities of the package provided, including details
on how to train and evaluate any LM-based archi-
tecture. Our package, T-NER, allows practitioners
in NLP to get started working on NER with a few
lines of code while diving into the recent progress
in LM finetuning. We employ Python as our core
implementation, as is one of the most prevailing
languages in the machine learning and NLP com-
munities. Our library enables Python users to ac-
cess its various kinds of features such as model
training, in- and cross-domain model evaluation,
and an interface to get predictions from trained
models with minimum effort.

3.1 Datasets

For model training and evaluation, we compiled
nine public NER datasets from different domains,
unifying them into same format: OntoNotes5
(Hovy et al., 2006), CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003), WNUT 2017 (Derczynski
et al., 2017), WikiAnn (Pan et al., 2017), FIN (Sali-
nas Alvarado et al., 2015), BioNLP 2004 (Collier
and Kim, 2004), BioCreative V CDR4 (Wei et al.,
2015), MIT movie review semantic corpus,5 and
MIT restaurant review.6 These unified datasets are
also made available as part of our T-NER library.
Except for WikiAnn that contains 282 languages,
all the datasets are in English, and only the MIT
corpora are lowercased. As MIT corpora are com-

4The original dataset consists of long documents which
cannot be fed on LM because of the length, so we split them
into sentences to reduce their size.

5The movie corpus includes two datasets (eng and
trivia10k13) coming from different data sources. While both
have been integrated into our library, we only used the largest
trivia10k13 in our experiments.

6The original MIT NER corpora can be downloaded
from https://groups.csail.mit.edu/sls/
downloads/.

https://groups.csail.mit.edu/sls/downloads/
https://groups.csail.mit.edu/sls/downloads/


55

Figure 2: A screenshot from the demo web app. In this example, the NER transformer model is fine-tuned on
OntoNotes 5 and a sample sentence is fetched from Wikipedia (en.wikipedia.org/wiki/Sergio_Mendes).

monly used for slot filling task in spoken language
understanding (Liu and Lane, 2017), the charac-
teristics of the entities and annotation guidelines
are quite different from the other datasets, but we
included them for completeness and to analyze the
differences across datasets.

Table 1 shows statistics of each dataset. In Sec-
tion 4, we train models on each dataset, and assess
the in- and cross-domain accuracy over them.

Dataset format and customization. Users can
utilize their own datasets for both model training
and evaluation by formatting them into the IOB
scheme (Tjong Kim Sang and De Meulder, 2003)
which we used to unify all datasets. In the IOB
format, all data files contain one word per line with
empty lines representing sentence boundaries. At
the end of each line there is a tag which states
whether the current word is inside a named entity
or not. The tag also encodes the type of named
entity. Here is an example from CoNLL 2003:

EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
. O

3.2 Model Training
We provide modules to facilitate LM finetuning on
any given NER dataset. Following Devlin et al.
(2019), we add a linear layer on top of the last em-
bedding layer in each token, and train all weights
with cross-entropy loss. The model training compo-
nent relies on the Huggingface transformers library
(Wolf et al., 2019), one of the largest Python frame-
works for distributing pretrained LM checkpoint
files. Our library is therefore fully compatible with
the Transformers framework: once new model was
deployed on the Transformer hub, one can imme-
diately try those models out with our library as a
NER model. To reduce computational complexity,
in addition to enabling multi-GPU support, we im-
plement mixture precision during model training
by using the apex library7.

The instance of model training in a given
dataset8 can be used in an intuitive way as dis-
played below:

from tner import TrainTransformersNER
model = TrainTransformersNER(

dataset="ontonotes5",
transformer="roberta-base")

model.train()

With this sample code, we would finetune
7https://github.com/NVIDIA/apex
8To use custom datasets, the path to a custom dataset folder

can simply be included in the dataset argument.

en.wikipedia.org/wiki/Sergio_Mendes
https://github.com/NVIDIA/apex
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Name Domain Entity types Data size
OntoNotes5 News, Blog, Dialogue 18 59,924/8,582/8,262
CoNLL 2003 News 4 14,041/3,250/3,453
WNUT 2017 SNS 6 1,000/1,008/1,287
WikiAnn Wikipedia (282 languages) 3 20,000/10,000/10,000
FIN Finance 4 1,164/-/303
BioNLP 2004 Biochemical 5 18,546/-/3,856
BioCreative V Biomedical 5 5,228/5,330/5,865
MIT Restaurant Restaurant review 8 7,660/-/1,521
MIT Movie Movie review 12 7,816/-/1,953

Table 1: Overview of the NER datasets used in our evaluation and included in T-NER. Data size is the number of
sentence in training/validation/test set.

RoBERTaBASE (Liu et al., 2019) on the
OntoNotes5 dataset. We also provide an easy ex-
tension to train on multiple datasets at the same
time:

TrainTransformersNER(
dataset=[

"ontonotes5", "wnut2017"
],

transformer="roberta-base")

Once training is completed, checkpoint files with
model weights and other statistics are generated.
These are automatically organized for each config-
uration and can be easily uploaded to the Hugging
Face model hub. Ready-to-use code samples can be
found in our Google Colab notebook9, and details
for additional options and arguments are included
in the github repository. Finally, our library sup-
ports Tensorboard10 to visualize learning curves.

3.3 Model Evaluation
Once a NER model is trained, users may want to
test the models in the same dataset or a different one
to assess its general performance across domains.
To this end, we implemented flexible evaluation
modules to facilitate cross-domain evaluation com-
parison, which is also aided by the unification of
datasets into the same format (see Section 3.1) with
a unique label reference lookup.

The basic usage of the evaluation module is de-
scribed below.

from tner import TrainTransformersNER
model = TrainTransformersNER(

"path-to-model-checkpoint"
)

model.test("ontonotes5")

9https://colab.research.google.com/
drive/1AlcTbEsp8W11yflT7SyT0L4C4HG6MXYr?
usp=sharing

10www.tensorflow.org/tensorboard

Here, the model would be tested on OntoNotes5
dataset, and it could be evaluated on any other test
set including custom dataset. As with the model
training module, we prepared a Google Colab note-
book11 for an example use case, and further details
can be found in our github repository.

4 Evaluation

In this section, we assess the reliability of T-NER
with experiments in standard NER datasets.

4.1 Experimental Setting

4.1.1 Implementation details
Through the experiments, we use XLM-R (Liu et al.,
2019), which has shown to be one of the most re-
liable multi-lingual pretrained LMs for discrimi-
native tasks at the moment. In all experiments we
make use of the default configuration and hyper-
pameters of Huggingface’s XLM-R implementation.
For WikiAnn/ja (Japanese), we convert the original
character-level tokenization into proper morpholog-
ical chunk by MeCab12.

4.1.2 Evaluation metrics and protocols
As customary in the NER literature, we report span
micro-F1 score computed by seqeval13, a Python
library to compute metrics for sequence predic-
tion evaluation. We refer to this F1 score as type-
aware F1 score to distinguish it from the the type-
ignored metric used to assess the cross-domain
performance, which we explain below.

11https://colab.research.google.com/
drive/1jHVGnFN4AU8uS-ozWJIXXe2fV8HUj8NZ?
usp=sharing

12https://pypi.org/project/
mecab-python3/

13https://pypi.org/project/seqeval/

https://colab.research.google.com/drive/1AlcTbEsp8W11yflT7SyT0L4C4HG6MXYr?usp=sharing
https://colab.research.google.com/drive/1AlcTbEsp8W11yflT7SyT0L4C4HG6MXYr?usp=sharing
https://colab.research.google.com/drive/1AlcTbEsp8W11yflT7SyT0L4C4HG6MXYr?usp=sharing
www.tensorflow.org/tensorboard
https://colab.research.google.com/drive/1jHVGnFN4AU8uS-ozWJIXXe2fV8HUj8NZ?usp=sharing
https://colab.research.google.com/drive/1jHVGnFN4AU8uS-ozWJIXXe2fV8HUj8NZ?usp=sharing
https://colab.research.google.com/drive/1jHVGnFN4AU8uS-ozWJIXXe2fV8HUj8NZ?usp=sharing
https://pypi.org/project/mecab-python3/
https://pypi.org/project/mecab-python3/
https://pypi.org/project/seqeval/
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In a cross-domain evaluation setting, the type-
aware F1 score easily fails to represent the cross-
domain performance if the granularity of entity
types differ across datasets. For instance, the MIT
restaurant corpus has entities such as amenity and
rating, while plot and actor are entities from the
MIT movie corpus. Thus, we report type-ignored
F1 score for cross-domain analysis. In this type-
ignored evaluation, the entity type from both of
predictions and true labels is disregarded, reducing
the task into a simpler entity span detection task.
This evaluation protocol can be customized by the
user at test time.

4.2 Results

We conduct three experiments on the nine datasets
described in Table 1: (i) in-domain evaluation (Sec-
tion 4.2.1), (ii) cross-domain evaluation (Section
4.2.2), and (iii) cross-lingual evaluation (Section
4.2.3). While the first experiment tests our imple-
mentation in standard datasets, the second exper-
iment is aimed at investigating the cross-domain
performance of transformer-based NER models.
Finally, as a direct extension of our evaluation mod-
ule, we show the zero-shot cross-lingual perfor-
mance of NER models on the WikiAnn dataset.

4.2.1 In-domain results

The main results are displayed in Table 2, where we
report the type-aware F1 score from XLM-RBASE

and XLM-RLARGE models along with current state-
of-the-art (SoTA). One can confirm that our frame-
work with XLM-RLARGE achieves a comparable
SoTA score, even surpassing it in the WNUT 2017
dataset. In general, XLM-RLARGE performs consis-
tently better than XLM-RBASE but, interestingly, the
base model performs better than large on the FIN
dataset. This can be attributed to the limited train-
ing data in this dataset, which may have caused
overfitting in the large model.

Generally, it can be expected to get better accu-
racy with domain-specific or larger language mod-
els that can be integrated into our library. Nonethe-
less, our goal for these experiments were not to
achieve SoTA but rather to provide a competitive
and easy-to-use framework. In the remaining ex-
periments we report results for XLM-RLARGE only,
but the results for XLM-RBASE can be found in the
appendix.

Dataset BASE LARGE SoTA
OntoNotes5 89.0 89.1 92.1
CoNLL 2003 90.8 92.9 94.3
WNUT 2017 52.8 58.5 50.3
FIN 81.3 76.4 82.7
BioNLP 2004 73.4 74.3 77.4
BioCreative V 88.0 88.6 89.9
MIT Restaurant 79.4 79.6 -
MIT Movie 69.9 71.2 -
WikiAnn/en 82.7 84.0 84.8
WikiAnn/ja 83.8 86.5 73.3
WikiAnn/ru 88.6 90.0 91.4
WikiAnn/es 90.9 92.1 -
WikiAnn/ko 87.5 89.6 -
WikiAnn/ar 88.9 90.3 -

Table 2: In-domain type-aware F1 score for test set
on each dataset with current SoTA. SoTA on each
dataset is attained from the result of BERT-MRC-DSC
(Li et al., 2019) for OntoNotes5, LUKE (?) for CoNLL
2003, CrossWeigh (Wang et al., 2019) for WNUT 2017,
(Pfeiffer et al., 2020a) for WikiAnn (en, ja, ru, es,
ko, ar), (Salinas Alvarado et al., 2015) for FIN, (Lee
et al., 2020) for BioNLP 2004, (Nooralahzadeh et al.,
2019) for BioCreative V and (Pfeiffer et al., 2020a) for
WikiAnn/en.

4.2.2 Cross-domain results
In this section, we show cross-domain evalua-
tion results on the English datasets14: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), FIN (fin). We also
report the accuracy of the same XLM-R model
trained over a combined dataset resulting from con-
catenation of all the above datasets.

In Table 3, we present the type-ignored F1 re-
sults across datasets. Overall cross-domain scores
are not as competitive as in-domain results. This
gap reveals the difficulty of transferring NER mod-
els into different domains, which may also be at-
tributed to different annotation guidelines or data
construction procedures across datasets. Especially,
training on the bionlp and bc5cdr datasets lead to
a null accuracy when they are evaluated on other
datasets, as well as others evaluated on them. Those
datasets are very domain specific dataset, as they
have entities such as DNA, Protein, Chemical, and
Disease, which results in a poor adaptation to other
domains. On the other hand, there are datasets

14We excluded the MIT datasets in this setting since they
are all lowercased.
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train\test ontonotes conll wnut wiki bionlp bc5cdr fin avg
ontonotes 91.6 65.4 53.6 47.5 0.0 0.0 18.3 40.8
conll 62.2 96.0 69.1 61.7 0.0 0.0 22.7 35.1
wnut 41.8 85.7 68.3 54.5 0.0 0.0 20.0 31.7
wiki 32.8 73.3 53.6 93.4 0.0 0.0 12.2 29.6
bionlp 0.0 0.0 0.0 0.0 79.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.8 0.0 9.8
fin 48.2 73.2 60.9 58.9 0.0 0.0 82.0 38.1
all 90.9 93.8 60.9 91.3 78.3 84.6 75.5 81.7

Table 3: Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets. We compute
average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown as all.

test
train en ja ru ko es ar
en 84.0 46.3 73.1 58.1 71.4 53.2
ja 53.0 86.5 45.7 57.1 74.5 55.4
ru 60.4 53.3 90.0 68.1 76.8 54.9
ko 57.8 62.0 68.6 89.6 66.2 57.2
es 70.5 50.6 75.8 61.8 92.1 62.1
ar 60.1 55.7 55.7 70.7 79.7 90.3

Table 4: Cross-lingual type-aware F1 results on vari-
ous languages for the WikiAnn dataset.

that are more easily transferable, such as wnut and
conll. The wnut-trained model achieves 85.7 on
the conll dataset and, surprisingly, the conll-trained
model actually works better than the wnut-trained
model when evaluated on the wnut test set. This
could be also attributed to the data size, as wnut
only has 1,000 sentences, while conll has 14,041.
Nevertheless, the fact that ontonotes has 59,924
sentences but does not perform better than conll on
wnut reveals a certain domain similarity between
conll and wnut.

Finally, the model trained on the training sets
of all datasets achieves a type-ignored F1 score
close to the in-domain baselines. This indicates
that a LM is capable of learning representations of
different domains. Moreover, leveraging domain
similarity as explained above can lead to better
results as, for example, distant datasets such as
bionlp and bc5cdr surely cause performance drops.
This is an example of the type of experiments that
could be facilited by T-NER, which we leave for
future work.

4.2.3 Cross-lingual results
Finally, we present some results for zero-shot cross-
lingual NER over the WikiAnn dataset, where

we include six distinct languages: English (en),
Japanese (ja), Russian (ru), Korean (ko), Spanish
(es), and Arabic (ar). In Table 4, we show the cross-
lingual evaluation results. The diagonal includes
the results of the model trained on the training data
of the same target language. There are a few inter-
esting findings. First, we observe a high correlation
between Russian and Spanish, which are generally
considered to be distant languages and do not share
the alphabet. Second, Arabic also transfers well to
Spanish which, despite the Arabic (lexical) influ-
ence on the Spanish language (Stewart et al., 1999),
are still languages from distant families.

Clearly, this is a shallow cross-lingual analysis,
but it highlights the possibilities of our library for
research in cross-lingual NER. Recently, (Hu et al.,
2020a) proposed a compilation of multilingual
benchmark tasks including the WikiAnn datasets
as a part of it, and XLM-R proved to be a strong
baseline on multilingual NER. This is in line with
the results of Conneau et al. (2020), which showed
a high capacity of zero-shot cross-lingual trans-
ferability. On this respect, Pfeiffer et al. (2020b)
proposed a language/task specific adapter module
that can further improve cross-lingual adaptation in
NER. Given the possibilities and recent advances
in cross-lingual language models in recent years,
we expect our library to help practitioners to exper-
iment and test these advances in NER.

5 Conclusion

In this paper, we have presented a Python library
to get started with Transformer-based NER mod-
els. This paper especially focuses on LM finetun-
ing, and empirically shows the difficulty of cross-
domain generalization in NER. Our framework is
designed to be as simple as possible so that any
level of users can start running experiments on
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NER on any given dataset. To this end, we have
also facilitated the evaluation by unifying some of
the most popular NER datasets in the literature,
including languages other than English. We be-
lieve that our initial experiment results emphasize
the importance of NER generalization analysis, for
which we hope that our open-source library can
help NLP community to convey relevant research
in an efficient and accessible way.
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A Appendices

In all experiments we make use of the default
configuration and hyperpameters of Huggingface’s
XLM-R implementation.

A.1 Cross-lingual Results
In this section, we show cross-lingual analysis
on XLM-RBASE, where the result is shown in Ta-
ble 5. For these cross-lingual results, we rely on
the WikiAnn dataset where zero-shot cross-lingual
NER over six distinct languages is conducted: En-
glish (en), Japanese (ja), Russian (ru), Korean (ko),
Spanish (es), and Arabic (ar).

A.2 Cross-domain Results
In this section, we show a few more results on
our cross-domain analysis, which is based on
non-lowercased English datasets: OntoNotes5
(ontonotes), CoNLL 2003 (conll), WNUT 2017
(wnut), WikiAnn/en (wiki), BioNLP 2004 (bionlp),
and BioCreative V (bc5cdr), and FIN (fin). Table 6
shows the type-aware F1 score of the XLM-RLARGE

and XLM-RBASE models trained on all the datasets.
Furthermore, Table 7 shows additional results for
XLM-RBASE in the type-ignored evaluation.

test
train en ja ru ko es ar
en 82.8 38.6 65.7 50.4 73.8 44.5
ja 53.8 83.9 46.9 60.1 71.3 46.3
ru 51.9 39.9 88.7 51.9 66.8 51.0
ko 54.7 51.6 53.3 87.5 63.3 52.3
es 65.7 44.0 66.5 54.1 90.9 59.4
ar 53.1 49.2 49.4 59.7 73.6 88.9

Table 5: Cross-lingual type-aware F1 score over
WikiAnn dataset with XLM-RBASE.

Cross-domain results with lowercased datasets.
In this section, we show cross-domain results on the
English datasets including lowercased corpora such
as MIT Restaurant (restaurant) and MIT Movie
(movie). Since those datasets are lowercasd, we

uppercase lowercase
Datasets BASE LARGE BASE LARGE
ontonotes 85.8 87.8 81.7 85.6
conll 87.2 90.3 82.8 87.6
wnut 49.6 55.1 43.7 51.3
wiki 79.1 82.7 75.2 80.8
bionlp 72.9 74.1 71.7 74.0
bc5cdr 79.4 85.0 78.0 84.2
fin 72.4 72.4 72.4 73.5
restaurant - - 76.8 80.9
movie - - 67.8 71.8

Table 6: Type-aware F1 score across different test sets
of models trained on all uppercase/lowercase English
datasets with XLM-RBASE or XLM-RLARGE.

converted all datasets into lowercase. Tables 8 and
Table 9 show the type-ignored F1 score across mod-
els trained on different English datasets including
lowercased corpora with XLM-RLARGE and XLM-
RBASE, respectively.
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train\test ontonotes conll wnut wiki bionlp bc5cdr fin avg
ontonotes 91.8 62.2 51.7 44.7 0.0 0.0 31.8 40.3
conll 60.5 95.7 66.6 60.8 0.0 0.0 33.5 45.3
wnut 41.3 81.3 63.0 56.3 0.0 0.0 20.5 37.5
wiki 30.2 71.8 45.3 92.6 0.0 0.0 11.5 35.9
bionlp 0.0 0.0 0.0 0.0 78.5 0.0 0.0 11.2
bc5cdr 0.0 0.0 0.0 0.0 0.0 87.5 0.0 12.5
fin 49.0 73.5 62.2 60.7 0.0 0.0 82.8 46.9
all 89.7 92.4 55.8 89.3 78.2 80.0 74.8 80.0

Table 7: Type-ignored F1 score in cross-domain setting over non-lower-cased English datasets with XLM-RBASE.
We compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is
shown as all.

train\test ontonotes conll wnut wiki bionlp bc5cdr fin restaurant movie avg
ontonotes 89.3 59.9 50.1 44.7 0.0 0.0 15.1 4.5 88.6 39.1
conll 57.7 94.8 67.0 57.9 0.0 0.0 20.5 23.9 0.0 35.7
wnut 39.8 80.3 61.3 52.3 0.0 0.0 19.5 18.8 0.0 30.2
wiki 28.5 69.7 51.2 92.4 0.0 0.0 12.0 3.0 0.0 28.5
bionlp 0.0 0.0 0.0 0.0 79.0 0.0 0.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.9 0.0 0.0 0.0 9.8
fin 46 72.0 61.5 54.8 0.0 0.0 83.0 24.5 0.0 37.9
restaurant 4.6 21.7 22.9 22.3 0.0 0.0 5.4 83.4 0.0 17.8
movie 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 9.3
all 88.5 92.1 58.0 90.0 79.0 84.6 74.5 85.3 74.1 80.7

Table 8: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-RLARGE. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown
as all.

train\test ontonotes conll wnut wiki bionlp bc5cdr fin restaurant movie avg
ontonotes 88.3 56.7 49.0 41.4 0.0 0.0 11.7 4.2 88.3 37.7
conll 55.1 93.7 60.5 56.8 0.0 0.0 20.4 21.9 0.0 34.3
wnut 38.1 73.0 57.5 49.1 0.0 0.0 21.1 20.4 0.0 28.8
wiki 26.3 66.5 41.4 90.9 0.0 0.0 9.7 7.6 0.0 26.9
bionlp 0.0 0.0 0.0 0.0 78.7 0.0 0.0 0.0 0.0 8.7
bc5cdr 0.0 0.0 0.0 0.0 0.0 88.0 0.0 0.0 0.0 9.8
fin 41.3 64.4 45.8 57.8 0.0 0.0 81.5 22.0 0.0 34.8
restaurant 8.1 19.1 19.6 19.1 0.0 0.0 13.5 83.6 0.0 18.1
movie 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.1 9.7
all 86.1 89.5 49.9 86.2 76.9 78.8 75.4 82.4 72.2 77.5

Table 9: Type-ignored F1 score in cross-domain setting over lower-cased English datasets with XLM-RBASE. We
compute average of accuracy in each test set, named as avg. The model trained on all datasets listed here, is shown
as all.


