Finite-state script normalization and processing utilities:
The Nisaba Brahmic library

Cibu Johny' Lawrence Wolf-Sonkin* Alexander Gutkin Brian Roark?
Google Research
TUnited Kingdom and *United States
{cibu,wolfsonkin,agutkin, roark}@google.com
Abstract In addition to such normalization issues, some

This paper presents an open-source library
for efficient low-level processing of ten ma-
jor South Asian Brahmic scripts. The library
provides a flexible and extensible framework
for supporting crucial operations on Brahmic
scripts, such as NFC, visual normalization,
reversible transliteration, and validity checks,
implemented in Python within a finite-state
transducer formalism. We survey some com-
mon Brahmic script issues that may adversely
affect the performance of downstream NLP
tasks, and provide the rationale for finite-state
design and system implementation details.

1 Introduction

The Unicode Standard separates the representation
of text from its specific graphical rendering: text
is encoded as a sequence of characters, which, at
presentation time are then collectively rendered
into the appropriate sequence of glyphs for display.
This can occasionally result in many-to-one map-
pings, where several distinctly-encoded strings can
result in identical display. For example, Latin
script letters with diacritics such as “é” can gener-
ally be encoded as either: (a) a pair of the base let-
ter (e.g., “e¢” which is U+0065 from Unicode’s Ba-
sic Latin block, corresponding to ASCII) and a dia-
critic (in this case U+0301 from the Combining Dia-
critical Marks block); or (b) a single character that
represents the grapheme directly (U+00E9 from the
Latin-1 Supplement Unicode block). Both encod-
ings yield visually identical text, hence text is of-
ten normalized to a conventionalized normal form,
such as the well-known Normalization Form C
(NFC), so that visually identical words are mapped
to a conventionalized representative of their equiv-
alence class for downstream processing. Critically,
NFC normalization falls far short of a complete
handling of such many-to-one phenomena in Uni-
code.
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scripts also have well-formedness constraints, i.e.,
not all strings of Unicode characters from a single
script correspond to a valid (i.e., legible) grapheme
sequence in the script. Such constraints do not ap-
ply in the basic Latin alphabet, where any permuta-
tion of letters can be rendered as a valid string (e.g.,
for use as an acronym). The Brahmic family of
scripts, however, including the Devanagari script
used to write Hindi, Marathi and many other South
Asian languages, do have such constraints. These
scripts are alphasyllabaries, meaning that they are
structured around orthographic syllables (aksara)
as the basic unit.! One or more Unicode characters
combine when rendering one of thousands of leg-
ible aksara, but many combinations do not corre-
spond to any aksara. Given a token in these scripts,
one may want to (a) normalize it to a canonical
form; and (b) check whether it is a well-formed
sequence of aksara.

Brahmic scripts are heavily used across South
Asia and have official status in India, Bangladesh,
Nepal, Sri Lanka and beyond (Cardona and Jain,
2007; Steever, 2019). Despite evident progress
in localization standards (Unicode Consortium,
2019) and improvements in associated technolo-
gies such as input methods (Hinkle et al., 2013) and
character recognition (Pal et al., 2012), Brahmic
script processing still poses important challenges
due to the inherent differences between these writ-
ing systems and those which historically have been
more dominant in information technology (Sinha,
2009; Bhattacharyya et al., 2019).

In this paper, we present Nisaba, an open-source
software library,” which provides processing utili-
ties for ten major Brahmic scripts of South Asia:
Bengali, Devanagari, Gujarati, Gurmukhi, Kan-
nada, Malayalam, Oriya (Odia), Sinhala, Tamil,

!See §3 for details on the scripts.
Zhttps://github.com/google-research/nisaba/

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 14-23

April 19 - 23, 2021. ©2021 Association for Computational Linguistics


https://github.com/google-research/nisaba/

and Telugu. In addition to string normaliza-
tion and well-formedness processing, the library
also includes utilities for the deterministic and re-
versible romanization of these scripts, i.e., translit-
eration from each script to and from the Latin
script (Wellisch, 1978). While the resulting roman-
izations are standardized in a way that may or may
not correspond to how native speakers tend to ro-
manize the text in informal communication (see,
e.g., Roark et al., 2020), such a default romaniza-
tion can permit easy inspection of an approximate
version of the linguistic strings for those who read
the Latin script but not the specific Brahmic script
being examined.

As a whole, the library provides important utili-
ties for language processing applications of South
Asian languages using Brahmic scripts. The de-
sign is based on the observation that, while there
are considerable superficial differences between
these scripts, they follow the same encoding model
in Unicode, and maintain a very similar char-
acter repertoire having evolved from the same
source — the Brahmi script (Salomon, 1996; Fe-
dorova, 2012). This observation lends itself to the
script-agnostic design (outlined in §4) that, unlike
other approaches reviewed in §2, is based on the
weighted finite state transducer (WFST) formal-
ism (Mobhri, 2004). The details of our system are
provided in §5.

2 Related Work

The computational processing of Brahmic scripts
is not a new topic, with the first applications
dating back to the early formal syntactic work
by Datta (1984). With an increased focus on the
South Asian languages within the NLP commu-
nity, facilitated by advances in machine learning
and the increased availability of relevant corpora,
multiple script processing solutions have emerged.
Some of these toolkits, such as statistical ma-
chine translation-based Brahmi-Net (Kunchukut-
tan et al.,, 2015), are model-based, while oth-
ers, such as URoman (Hermjakob et al., 2018),
IndicNLP (Kunchukuttan, 2020), and Akshar-
mukha (Rajan, 2020), employ rules. The main fo-
cus of these libraries is script conversion and ro-
manization. In this capacity they were success-
fully employed in diverse downstream multilin-
gual NLP tasks such as neural machine transla-
tion (Zhang et al., 2020; Amrhein and Sennrich,
2020), morphological analysis (Hauer et al., 2019;
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Murikinati et al., 2020), named entity recogni-
tion (Huang et al., 2019) and part-of-speech tag-
ging (Cardenas et al., 2019).

Similar to the software mentioned above, our li-
brary does provide romanization, but unlike some
of the packages, such as URoman, we guarantee
reversibility from Latin back to the native script.
Similar to others we do not focus on faithful in-
vertible transliteration of named entities which
typically requires model-based approaches (Se-
quiera et al., 2014). Unlike the IndicNLP pack-
age, our software does not provide morphologi-
cal analysis, but instead offers significantly richer
script normalization capabilities than other pack-
ages. These capabilities are functionally sepa-
rated into normalization to Normalization Form
C (NFC) and visual normalization. Additionally,
our library provides extensive script-specific well-
formedness grammars. Finally, in contrast to these
other approaches, grammars in our library are
maintained separately from the code for compila-
tion and application, allowing for maintenance of
existing scripts and languages plus extension to
new ones without having to modify any code. This
is particularly important given that Unicode stan-
dards do change over time and there remain many
languages left to cover.

To the best of our knowledge this is the first
publicly available general finite-state grammar ap-
proach for low-level processing of multiple Brah-
mic scripts since the early formal syntactic work
by Datta (1984) and is the first such library de-
signed based on an observation by Sproat (2003)
that the fundamental organizing principles of the
Brahmic scripts can be algebraically formalized.
In particular, all the core components of our li-
brary (inverse romanization, normalization and
well-formedness) are compactly and efficiently
represented as finite state transducers. Such for-
malization lends itself particularly well to run-time
or offline integration with any finite state process-
ing pipeline, such as decoder components of in-
put methods (Ouyang et al., 2017; Hellsten et al.,
2017), text normalization for automatic speech
recognition and text-to-speech synthesis (Zhang
et al.,, 2019), among other natural language and
speech applications.

3 Brahmic Scripts: An Overview

The scripts of interest have evolved from the an-
cient Brahm1 writing system that was recorded



Name Id IV DV c co
Bengali BENG 16 13 43 5
Devanagari DEVA 19 17 45 4
Gujarati GUIR 16 15 39 5
Gurmukhi GURU 12 9 39 8
Kannada KNDA 17 15 39 3
Malayalam MLYM 16 16 38 10
Oriya ORYA 14 13 38 5
Sinhala SINH 18 17 41 2
Tamil TAML 12 11 27 1
Telugu TELU 16 15 38 5

Table 1: Sizes of core graphemic classes: Independent
vowels (1v), dependent vowel diacritics (DV), conso-
nants (c), coda symbols (co).

from the 3rd century BCE and fell out of use
by the 5th century CE (Salomon, 1996; Strauch,
2012; Fedorova, 2012). The main unit of lin-
ear graphemic representation in Brahmic scripts
is known by its traditional Sanskrit-derived name
aksara. As Bright (1999) notes, it is often trans-
lated as “syllable” although it does not bear di-
rect correspondence to a syllable of speech, but
rather to an orthographic syllable. The structure,
or “grammar” of an aksara is based on the follow-
ing common principles: an aksara often consists
of a consonant symbol C, by default bearing an
unmarked inherent vowel or attached diacritic (de-
pendent) vowel sign v (C); but it may also be an
independent vowel symbol V, or a consonant sym-
bol with its inherent vowel “muted” by a special
virama diacritic () (C?). In any of these preceding
scenarios, the base consonant C' can be replaced
by a consonant cluster where all but the last conso-
nant lose their inherent vowel. When the individ-
ual component consonants of the cluster combine
to form a composite form, precluding the use of an
overt virama diacritic, this is known as a “conso-
nant conjunct” (e.g., CYCYCy, vs [C,C,CJ*) (Fe-
dorova, 2013; Bright, 1999; Coulmas, 1999; Share
and Daniels, 2016).

The elements of the aksara grammar described
above can be grouped into several natural classes.
The sizes of the core classes are shown in Ta-
ble 1 for each writing system and its correspond-
ing ISO 15924 identifier in uppercase format (ISO,
2004). The major classes are the independent vow-
els (e.g., the Devanagari diphthong 3ft), the depen-
dent vowel diacritics (e.g., the Gujarati :1), and the
consonants (e.g., the Gurmukhi 3). Another im-
portant class consists of the coda consonant sym-
mnding the consonants in square brackets will

serve to indicate that the enclosed consonants form a conjunct
together.
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Visual Legacy sequence NFC normalized
Bl NA NUKTA (U+0928 U+093C) NNNA (U+0929)
& QA (U+0958) KA NUKTA (U+0915 U+093C)

Table 2: NFC examples for Devanagari.

bols, like anusvara, chandrabindu, and visarga,
which modify the aksara as a whole (and follow
and vowel signs in the memory representation). Fi-
nally, there is a class of special characters, such as
the religious symbol Om 3, that behave like inde-
pendent aksara.*

Unicode Normalization Unicode defines sev-
eral normalization forms which are used for check-
ing whether the two Unicode strings are equiv-
alent to each other (Unicode Consortium, 2019).
In our library we support Normalization Form C
(NFC) which is well suited for comparing visu-
ally identical strings. This normalization gener-
ally converts strings to the equivalent form that
uses composite characters. Table 2 shows two ex-
amples of legacy sequences corresponding canon-
ically equivalent forms for Devanagari.

Visual Normalization As was mentioned above,
an aksara may be represented by multiple Unicode
character sequences and the goal of NFC normal-
ization is to convert them to their unique canonical
form. However, there are many Unicode character
sequences that fall outside the scope of NFC algo-
rithm. We provide visual normalization that, in ad-
dition to providing the NFC functionality, also sup-
ports transforming such legacy sequences. Some
of the rules are provided as “Do Not Use” tables by
the Unicode Consortium (2019) that recommends
transformations from legacy sequences to their cor-
responding canonical form, such as Devanagari {
a1 (U+0905), ~ (U+0945) } — 3F (U+0972). We also
included transformations for visually identical se-
quences (under many implementations) which are
commonly found on the Web, such as Devanagari
{® (U+0910),” (U+0947) } — T (U+0910).°

Well-formedness Check A well-formedness ac-
ceptor verifies whether the given text is readable in
a particular script or not. It would be hard for the
native reader to visually parse the text if the script
rules are not followed. For example, the reader

4These classes are documented in https://github.com/
google-research/nisaba/blob/main/nisaba/brahmic/
mappings.md.

SHere the combining vowel sign U+0947 does not affect
the compound glyph’s visual appearance hence is removed.
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Script ID  Visual Character(s) Translit.
BENG Q KHANDA TA ")
DEVA 3 Non-word initial VOWEL I iy
GUJR 3 Religious sign OM (6rn)
GURU ADDAK )
MLYM @  CHILLU N (n*)
SINH @ JNYA (N
TAML Sl VISARGA, PA (f)

Table 3: Examples for additions to ISO 15919.

does not expect two vowels signs on a single con-
sonant and such a thing may not even be possible
to reasonably draw. Furthermore, unlike the Latin
script, acronyms are not written using arbitrary let-
ter sequences, they are formed only as a sequence
of aksara. Our approach verifies whether the text is
a sequence of well-formed aksara using the gram-
mar described above.

Reversible ISO Transliteration ISO 15919 rep-
resents a unified 8-bit Latin transliteration scheme
for major South Asian Brahmic scripts (ISO, 2001).
Since it has not been updated with the characters
that were introduced to the Unicode standard af-
ter 2001, we have added additional mappings, with
some examples shown in Table 3. These additions
are crucial because they allow us to reverse the
romanizations to get the original Brahmic strings
back reliably. This property allows various data
processing pipelines to use the romanized text as
an internal representation and convert it back to the
original native script at the output stage.

Language-specific Logic Several South Asian
languages often share the same script with some,
often minor, language-specific differences. Our
library supports language-specific customizations
that can be combined with language-agnostic
script logic. For example, the modern Bengali—
Assamese script (Beng) is shared by both Bengali
and Assamese languages, among others (Brandt
and Sohoni, 2018). For both of these languages
our library provides customizations,® such as
the transformations required for visual normal-
ization of Assamese that transform Bengali let-
ter ra into its Assamese equivalent when it par-
ticipates in a consonant conjunct (which gener-
ally occurs when following or preceding virama,
e.g., { T (U+09B0), = (U+09CD) } — { I (U+Q9F0),
£ (U+Q9CD) }).

®https://github.com/google-research/nisaba/
tree/main/nisaba/brahmic/data/lang
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U+0AA6  U+0ABS
(=)
. OXEQ . 0xAAOxA6@xEOBxAAOxB8
€ A

Figure 1: String acceptors for Gujarati word €1 ({(dasa),
“ten”) over an alphabet of Unicode code points (top) and
bytes (bottom).

Require: FSAs: consonant, vowel, vowel_sign, coda, standalone, virama,
dead_consonant, accept.

1: function W (consonant, vowel, vowel sign, coda, standalone, virama,
dead_consonant, accept)
cluster < (consonant + virama)* + consonant
.2 ?
codable + (vowel U (cluster + vowel_sign’ ) U accept) U coda
akshara + codable U (cluster + virama + dead_consonant”)
T « akshara U standalone
return 7"

> Kleene plus

Figure 2: Simplified construction of the well-formed
automaton W.

4 The Finite-State Approach

The Brahmic script manipulation operations
described above have a natural intepretation
grounded in formal language theory. We treat the
text corpus in a given script as a set of strings
over some finite alphabet 3 that defines a set of
admissable script symbols. The set of zero or
more strings is known as language which, in its
simplest (regular) form, can be succintly described
(or recognized) by a finite state automaton (FSA)
or acceptor (Yu, 1997). Two simple FSAs that
represent the Gujarati word €t are shown in
Figure 1, where the top automaton represents the
word over an alphabet of Unicode code points
for Gujarati, while the bottom one represents the
same string over the corresponding byte symbols
in UTF-8 encoding (Unicode Consortium, 2019).
Our library supports both representations.

The aksara grammar outlined in the previous
section can be expressed via elementary formal op-
erations on the FSAs that describe grammar con-
stituents. Such set-theoretic operations include
union (U), concatenation (4) and closure, where
closure is defined as an arbitrary natural number
of concatenations of a language L over X with it-
self, either accepting an empty input {e} or not,
denoted L* (Kleene star) and L™ (Kleene plus),
respectively (Kuich and Salomaa, 1986). These
operations represent non-trivial automata which
are compiled offline resulting in compact and ef-
ficient representations. A simplified process for
constructing the automaton W to perform the well-
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Figure 3: Romanization of Sinhala words & (“one”
and e (“two”) into {(eka) and (deka), respectively.

formed check from the previous section is shown
in Figure 2. In this simplified example, the paths
through the automaton that define a legal conso-
nant cluster (line 2 of the algorithm) are repre-
sented by a sub-automaton that recognizes the lan-
guage that consists of strings formed from the con-
sonant and virama symbols only, where each con-
sonant, apart from the last one, must be followed
by the virama that removes an inherent vowel.

The rest of the operations on the Brahmic scripts,
namely the normalization and transliteration, in-
volve modifications of the Brahmic script inputs.
Such operations are naturally expressed by finite
state transducers (FSTs), which are a generaliza-
tion of the FSA concept used to encode string-
string relations (or transductions), by modifying
the automata arcs to have pairs of labels from in-
put and output alphabets, instead of single labels.
A trivial romanization in our representation of the
two Sinhala words &2 ({eka), “one”) and &z
({deka), “two”) is shown in Figure 3. Note the
“vocalization” of the final consonant by insertion
of a schwa via an input e-transition. Also note that
the path accepting the second word is longer. The
word ez consists of three aksara and requires
modification of the inherent vowel by the depen-
dent vowel in order to produce (de).

The basic operations on the FSAs outlined
above also extend to the FST case and allow
for similarly succinct final compiled representa-
tions (Mohri, 2000), such as the simplified con-
struction of the ISO romanization transducer J for
converting from Brahmic scripts to Latin alpha-
bet, shown in Figure 4. An important extension
of FSAs and FSTs are the weighted finite state au-
tomata (WFSAs) and transducers (WFSTs) (Mohri,
2004, 2009) that equip each arc in the automaton or
transducer with a weight, thus allowing optimiza-
tion and search algorithms to compute the costs of
distinct paths, which can be used to determine their
relative importance. We use weights in some of our
grammars to indicate the relative priority of a par-
ticular aksara modification. For example, in Fig-
ure 4, the paths corresponding to consonants fol-
lowed by dependent vowels (line 6) have priority
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Require: FSTs: consonant, vowel, vowel_sign, coda, standalone, virama.

1: function J(consonant, vowel, vowel_sign, coda, standalone, virama)
2 del_virama < virama x @ > Delete virama

3: ins_schwa + @ x {(a)} > Insert inherent vowel
4 deweight + (e, €,w |) > De-prioritize the path
5: T+ (

(consonant + vowel _sign) U > (6n0,(sa)) + (:,(u)) — (s1ue,(su))
(consonant + del_virama + deweight) U

(consonant + ins_schwa + deweight) U

9: (vowel + deweight) U coda U standalone U
10:
11:

> Further logic

return 7 > Kleene star

Figure 4: Simplified construction of the transliteration
transducer J.

over the aksara-initial independent vowels (line 9).

The two remaining operations on aksara,
namely NFC and visual normalization, are repre-
sented in our library using the context-dependent
rewrite rules from the formal approach pop-
ularized by Chomsky and Halle (1968). The
normalization rules are represented as a sequence
{¢ — /X _ p}, where the source ¢ is rewritten
as 1 if its left and right contexts are A and p. For
an earlier example from §3, a single NFC normal-
ization rule rewrites the Devanagari string ¢p = “4”
(na, U+0928) + *’ (nukta sign, U+093C) into its
canonical composition ¢ = “d@” (nnna, U+0929).
Kaplan and Kay (1994) proposed an algorithm
for compiling such sequences into an FST. This
approach was further improved and extended
to WFSTs by Mohri and Sproat (1996), whose
algorithm we use to compile sequences of NFC
and visual normalization rules into transducers
denoted NV and V.

Finally, the transducers representing language-
specific customizations of a particular script op-
eration are compiled by composing the generic
language-agnostic transducer, such as the Devana-
gari visual normalizer, with the transducer rep-
resenting transformations that capture language-
specific use of the script, e.g., Devanagari for
Nepali.

5 System Details and Demo

The core of the Nisaba Brahmic script manipula-
tion library resides under the brahmic directory
of the distribution. In this section we provide de-
tails for how to build and use the library and also
explore its application to visual normalization of
Wikipedia-based text in 9 of these scripts.

Prerequisites We use Bazel (Google, 2020) as
a primary build environment. For compiling the



Script

Op. Symb. Prop. pove pEvA  GUIR GURU  KNDA  MLYM  ORVA  SINH  TAML  TELU

A N, 127 130 113 93 119 122 105 122 75 112
Unicode s

; N, 475 546 476 418 487 522 452 513 326 485

- N, 248 235 195 171 210 201 178 192 126 181

N, 384 399 334 288 350 345 305 339 229 318

Unicode Ve 9 17 1 8 21 8 9 17 1 4

~ N, 158 248 75 78 349 261 160 352 228 163

Byte N, 31 55 1 28 70 27 31 55 37 14

N, 1,812 1,841 255 1,047 2,884 2322 1813 2,611 3,098 1,543

Unicode Ns 103 51,710 98 119 1764 287 60 182 209 57

» N, 2423 121,157 2234 2322 6136 3021 1,732 2,129 1280 2249

Byte N, 369 165,168 356 425 5,611 965 232 624 703 225

N, 18896 266441 18,684 20,733 30422 18,598 16,146 15363 11,830 18,717

Unicode Vs 1 7 7 7 10 10 7 7 4 6

W N, 427 446 388 341 465 485 380 361 158 335

Byte N, 38 23 21 23 33 33 2 2 1 19

N, 297 320 284 257 309 297 279 195 130 239

Table 4: Properties of script FSTs arranged by operation and symbol types (Unicode code points and UTF-8 bytes),
where J denotes the ISO transliteration operation, N is the NFC normalization, 1V denotes visual normalization,
and W is the well-formed check. The numbers of states and arcs are denoted by IV, and IV, respectively.

Brahmic

Brahmic Brahmic
Runtime: Python Runtime: C++
{ Pynini } { Thrax J
{ Opent } { Orentst J

Figure 5: Software dependency diagrams for the three
modes of operation: compile stage (left), Python run-
time (center) and C++ run-time (right).

Offline: Compile

‘A
{ Thrax }

automata and transducers we employ Pynini’, a
Python library for constructing finite-state gram-
mars and for performing operations on WEF-
STs (Gorman, 2016; Gorman and Sproat, in press).
In addition, the library depends on Thrax®, an older
relative of Pynini, that provides a custom gram-
mar manipulation language for WFSTs (Tai et al.,
2011; Roark et al., 2012). Although Thrax has
been mostly superseded by Pynini, we still rely on
some of its utilities for unit testing and its C++ run-
time components. At their core, both Pynini and
Thrax depend on the OpenFst library” for the im-
plementation of most WFST algorithms (Allauzen
et al., 2007; Riley et al., 2009). The overall depen-
dency diagram is shown on the left-hand side of
Figure 5 (the minimal dependency on Thrax is in-
dicated by a dotted arrow). At build time, Bazel
pulls in these dependencies remotely from their re-
spective repositories.

"http://pynini.opengrm.org/
8http://thrax.opengrm.org
http://www.openfst.org
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Compiling the Transducers Figure 6 presents
the sequence of steps to compile the transduc-
ers, including downloading the repository (line 2),
compiling the library and its artifacts (line 5) and
running the unit tests (line 7). The artifacts are
compiled by Bazel using Pynini and consist of the
finite state archive (FAR) files that contain collec-
tions of WFSTs (Roark et al., 2012). For each
of the four Brahmic script operations we generate
two FAR files: one for WFSTs over the byte al-
phabet, and another over the Unicode code point
alphabet.!® Each FAR file contains ten script-
specific transducers whose names correspond to
the upper-case ISO 15924 script codes. Since the
transliteration operation is bidirectional, the name
of each script-specific transliteration transducer
has the prefix FROM_ for the native-to-Latin direc-
tion, and TO_ for the inverse. The numbers of states
(IV,) and arcs (IV,) of the resulting transliteration
(7), NFC (), visual normalization (V) transduc-
ers and well-formedness acceptors (W) for each
script and alphabet type are shown in Table 4.

Offline and Online Usage Once the transduc-
ers are compiled, they can be applied offline to
the input files using the rewrite-tester tool pro-
vided by Thrax, as shown in lines 8—13 of the ex-
ample in Figure 6, where the visual normalization
transducer V for Kannada that resides in the vi-
sual_norm.far archive is applied to words in in-
put file words. txt.

We provide lightweight run-time interfaces for

0The Unicode code point FARs rather misleadingly have
the suffix utf8 in their name for historical reasons.
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# Download Nisaba repository.

git clone https://github.com/google-research/nisaba.git

cd nisaba

# Compile the transducers and tests.

bazel build -c opt //nisaba/brahmic/...

# Run the unit tests.

bazel test -c opt //nisaba/brahmic/...

# Compile Thrax rewrite helper tool.

bazel build -c opt @org_opengrm_thrax//:rewrite-tester

# Run visual normalization for Kannada.

bazel-bin/external/org_opengrm_thrax/rewrite-tester \
--far=bazel-bin/nisaba/brahmic/visual_norm.far \
--rules=KNDA < words.txt

[ I - N N O N

Figure 6: Compiling the transducers.

import unittest
from nisaba import brahmic

class BrahmicTest(unittest.TestCase):
def testBasicOperations(self)
# Check romanization
iso_to_deva = brahmic.IsoTo(’Deva’)
self.assertEqual(&ea’,
iso_to_deva.ApplyOnText(’(k'laba)’))
# Check valid inputs.
wellformed_mlym = brahmic.WellFormed(’Mlym’)
self.assertTrue(wellformed_mlym.AcceptText(’ qui@o’))
# Visual normalizer
visual_norm_deva = brahmic.VisualNorm(’Deva’)
self.assertEqual(’sft’, visual_norm_deva.ApplyOnText(’sft’))

Figure 7: Run-time Python interface example.

both Python and C++, their dependencies shown
in the center and the right-hand side of Figure 5,
respectively. The Python interface is provided via
several wrappers around the pynini.Fst abstrac-
tion, with a simple example shown in Figure 7.
In addition to performing simple operations on in-
dividual strings, more WFST-specific operations,
such as transducer composition, are provided by
Pynini. The C++ interface is provided by the Gram-
mar helper class, shown in Figure 8, that includes
the necessary methods for initializing the WFSTs
and performing rewrites (for transducers) and ac-
ceptance tests (for acceptors). In addition, many
more operations on WFSTs are available through
the OpenFst library, if required.

Prevalence of Normalization To demonstrate
the prevalence of text requiring normalization in

#include <string>

// Generic wrapper around FST archive with Brahmic transducers.
class Grammar {
public:
// Constructs given the FAR path, its name and the name of WFST.
Grammar(const std::stringd& far_path, const std::string& far_name,
const std::string& fst_name);
// Initializes the transducer.
bool Load();
// Rewrites <input> into <output>.
bool Rewrite(const std::string& input, std::string *output) const;
// Checks whether the grammar accepts <input>.
bool Accept(const std::string& input) const;

Figure 8: Run-time C++ interface.
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% Changed

Language Script Types Tokens
Bengali BENG 0.53 0.06
Gujarati GUJR 0.46 0.09
Hindi DEVA 1.41 0.18
Kannada KNDA 4.19 1.66
Malayalam  MLYM 6.33 4.19
Marathi DEVA 1.51 0.40
Punjabi GURU 1.67 0.33
Sinhala SINH 3.55 0.71
Tamil TAML 0.59 0.17
Telugu TELU 1.97 0.63

Table 5: Percentage of types and tokens changed by vi-
sual normalization from native script Wikipedia train-
ing partitions of the Dakshina dataset.

these scripts, we normalized publicly available cor-
pora and measured how frequently words in the
samples were modified. The Dakshina dataset
(Roark et al., 2020) includes (among other things)
collections of monolingual Wikipedia sentences in
12 South Asian languages, 10 of which use Brah-
mic scripts. We applied visual normalization to the
training partitions of the collections in these 10 lan-
guages, and Table 5 presents the percentage of both
types and tokens that were changed by the normal-
ization.!! Malayalam is the language with the high-
est percentage of both types and tokens changed by
visual normalization, largely due to frequent con-
version to chillu letters from alternative encodings.
For example, the relatively frequent word @meag
(“yours”) is normalized to the encoding with the
chillu letter o instead of m.

6 Conclusion and Future Work

We presented finite-state automata-based utilities
for processing the major Brahmic scripts. The fi-
nite state transducer formalism provides an effi-
cient and scalable framework for expressing Brah-
mic script operations and is suitable for many NLP
applications, such as those reported in Kumar et al.
(2020) and Kakwani et al. (2020), which may ben-
efit from the reduction in “noise” present in unnor-
malized text. In the future, we will continue to im-
prove the support for existing scripts and extend
our work to other Brahmic scripts.

" Tokenization was simply based on whitespace, with no
other processing such as punctuation separation, so the total
number of distinct types is accordingly relatively high. The
texts from that dataset were already NFC normalized.
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