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Abstract
We describe a new addition to the WebVectors
toolkit which is used to serve word embedding
models over the Web. The new ELMoViz mod-
ule adds support for contextualized embedding
architectures, in particular for ELMo mod-
els. The provided visualizations follow the
metaphor of ‘two-dimensional text’ by show-
ing lexical substitutes: words which are most
semantically similar in context to the words
of the input sentence. The system allows the
user to change the ELMo layers from which
token embeddings are inferred. It also con-
veys corpus information about the query words
and their lexical substitutes (namely their fre-
quency tiers and parts of speech). The mod-
ule is well integrated into the rest of the We-
bVectors toolkit, providing lexical hyperlinks
to word representations in static embedding
models. Two web services have already imple-
mented the new functionality with pre-trained
ELMo models for Russian, Norwegian and En-
glish.

1 Introduction

In this demo paper we describe a new module re-
cently added to the free and open-source WebVec-
tors toolkit (Kutuzov and Kuzmenko, 2017)1. Web-
Vectors allows to easily deploy services to demon-
strate the abilities of static distributional word rep-
resentations (word embeddings) (Bengio et al.,
2003; Mikolov et al., 2013) via web browsers. It
currently powers at least two embedding model
hubs:

• NLPL WebVectors2, featuring models for En-
glish, Norwegian and other languages, trained
within the Nordic Language Processing Labo-
ratory initiative.

1A screencast is available at https://www.youtube.
com/watch?v=dDugoV1r_wk.

2http://vectors.nlpl.eu/explore/
embeddings/

Figure 1: Metaphor of two-dimensional text; borrowed
from (Biemann and Riedl, 2013).

• RusVectōrēs3, featuring models for the Rus-
sian language.

The new module (we name it ELMoViz) adds
the functionality to study, probe and compare re-
cently introduced contextualized embedding (or
‘token-based’) models (Melamud et al., 2016). In
particular, at this point we provide support for the
ELMo architecture (Peters et al., 2018a) based on
deep recurrent neural networks. In the future, we
plan to add support for Transformer-based models
like BERT (Devlin et al., 2019) and GPT-3 (Brown
et al., 2020). ELMo architecture is significantly
less computationally expensive than Transformers,
while being almost on par in terms of performance.
Thus, it yields rich possibilities in the context of
non-commercial web services.

For analyzing ELMo representations of an ar-
bitrary input text, we offer the metaphor of ‘two-
dimensional text’ first proposed in (Biemann and
Riedl, 2013) (see Figure 1). This allows a sort
of ‘visualization’ for contextualized embeddings
through finding words which are most semanti-
cally similar to the input words in their current
contexts. From the linguistic point of view, these
are ‘paradigmatic replacements’ (Saussure, 1916)
– words that can to some extent substitute target
words. The two dimensions here are the syntag-
matic one (horizontal) which describes the linear or-
der of the sentence, and the paradigmatic one (ver-
tical) which describes semantic classes to which

3https://rusvectores.org/

https://www.youtube.com/watch?v=dDugoV1r_wk
https://www.youtube.com/watch?v=dDugoV1r_wk
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the words in the sentence belong to. The generated
substitutes in the vertical axis can also be thought
of as ‘semantic variations’ of the input sentence.

The rest of the paper is organized as follows. In
Section 2 we describe the background for this work,
including the WebVectors framework, and explain
the need to develop additional functionality in order
to handle contextualized embeddings. Section 3
describes in detail this functionality, both from the
point of view of the end user and from the point
of view of deployment logistics. In Section 4, we
conclude and outline future work.

2 Background

Since the widespread adoption of prediction-based
word embeddings (Mikolov et al., 2013) started,
there has always been a need to efficiently serve
and demonstrate these representations over the Web.
Researchers and practitioners need this for quick
experimentation and testing hypotheses by com-
paring different distributional models. Those who
teach natural language processing and computa-
tional linguistics need ways to show the students
how dense distributional representations capture
lexical semantics without installing any software or
downloading any models (often it is desirable that
this is shown for a particular language or domain).

In turn, language teachers value tools to demon-
strate lexical variety and degrees of similarity for
words in a foreign language. To this extent, serving
word embeddings over the Web can help both the
teachers with preparing educational materials and
the students with grasping the concepts in a foreign
language.

The WebVectors framework we presented in (Ku-
tuzov and Kuzmenko, 2017) is aimed at all these
purposes. It allows to quickly deploy a stable and
robust web service featuring operations on vector
semantic models, including querying, visualization
and comparison, all available to users of any com-
puter literacy level. It extended already existing
embedding visualization services like Embedding
Projector4 by providing users with the ability to
find nearest semantic neighbors of query words,
perform vector math operations over embeddings,
etc. Since being first presented in 2016, WebVectors
keeps adding new functionality, and now it offers
filtering nearest associates by part of speech tags or
corpus frequency, and can generate semantic ego
graphs, among other features (see Figure 2).

4https://projector.tensorflow.org/

Figure 2: Screenshot of a WebVectors instance at http:
//vectors.nlpl.eu/explore/embeddings/

Until the introduction of ELMoViz, these fea-
tures were limited to the so-called ‘static word
embeddings’, that is, architectures like word2vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017) or GloVe (Pennington et al., 2014). In these
architectures, after the training is finished, each
word type in the vocabulary is rigidly associated
with a single dense vector. However, in the recent
years NLP saw a surge of pre-trained ‘contextual-
ized’ embedding architectures, like ELMo (Peters
et al., 2018a), BERT (Devlin et al., 2019), GPT-3
(Brown et al., 2020) and many others. One of the
changes these deep learning models brought was
that even at inference time, each word token rep-
resentation (embedding) depends on its immediate
context. This means that ambiguous words will
receive different representations depending on the
sense in which they are used, which opens rich new
possibilities for natural language understanding.

Libraries used in WebVectors to deal with static
word embeddings (Gensim, (Řehůřek and Sojka,
2010)) were not fit to power operations on contex-
tualized models. That is why we decided to imple-
ment an entirely new WebVectors module, which
would take a query phrase as an input, and produce
paradigmatic replacements (lexical substitutions)
for each content word in this phrase, based on a
given pre-trained contextualized ELMo language
model.

One can find a number of existing frameworks
for online experimentation with contextualized
models: among others, we should mention Lan-
guage Interpretability Tool (Tenney et al., 2020),
exBert by (Hoover et al., 2019) and the hosted infer-

https://projector.tensorflow.org/
http://vectors.nlpl.eu/explore/embeddings/
http://vectors.nlpl.eu/explore/embeddings/
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ence API at the HuggingFace Community Model
Hub (Wolf et al., 2020). However, these projects
are aimed exclusively at the Transformer-based ar-
chitectures. The system we present in this demo
paper, on the other hand, is aimed more towards
RNN-based architectures like ELMo. As it was
shown, for example, in the field of semantic change
detection (Kutuzov and Giulianelli, 2020), ELMo
can often outperform BERT or be on par with it,
while requiring significantly less computational re-
sources. We believe it is especially important for
teaching activities.

Additionally, our system is more lexically ori-
ented and is integrated with the existing WebVectors
functionality, as we will show in the next section.

3 System description

After turning on the contextualized embedding re-
lated functionality in the WebVectors configuration
file,5 the person deploying the service has to pro-
vide three data sources for each ELMo model:

1. a pre-trained ELMo model itself in the stan-
dard format (*.HDF5 file with the weights
and options.json file with the model ar-
chitecture description);

2. a tab-separated frequency dictionary file to use
when determining the frequency tier of word
types (it is recommended to derive it from the
same corpus the ELMo model was trained on,
but technically this is not required);

3. a set of static (type-based) word embeddings
produced by averaging contextualized token
embeddings inferred with the same ELMo
model.

The last item of this list requires some explana-
tion. Our aim is to provide the end user with a set
of lexical substitutes for each word token in con-
text from the input sentence (see Figure 3). With
static embedding architectures, this boils down to
looking up the vector of the target word x and then
finding n other words in the model vocabulary with
the vectors closest to x. However, this is obviously
impossible with contextualized language models:
there are no static vector lookup tables to begin
with. One can easily infer contextualized represen-
tations for each word in the input sentence: but

5In principle, it is also possible to use only ELMoViz,
without other WebVectors modules.

Figure 3: Examples of two-dimensional text inferred
from an ELMo model (n = 5).

what to compare them with in order to illustrate
their meaning?

To cope with this issue, we adopted the approach
described in (Liu et al., 2019). They employed
the so called type-level context averaging in order
to align pre-trained contextualized models cross-
linguistically. In our case, we needed only the
first stage of their workflow. The idea is to obtain
static type-level word representations located in
the same vector space as the contextualized embed-
dings. Given a large enough reference text corpus
and a pre-trained contextualized language model,
one takes the average of all token representations
for each target word occurrence in the corpus. This
averaged type embedding is comparable to contex-
tualized token embeddings routinely produced by
the model.

In practice, we found that one does not even
need to average token embeddings: it is enough
to sum them, and then unit-normalize the resulting
summed vector. As for the list of target words, we
simply use top 10 000 (or any other amount found
suitable) most frequent words from the correspond-
ing ELMo model vocabulary or from a reference
corpus (excluding functional parts of speech and
digits). Low frequent words are usually not needed
in this case anyway, since the quality of their em-
beddings is also lower. We provide a simple script
to extract type embeddings from an ELMo model
and a given corpus in our GitHub repository.6

As a result, when an end user enters an input
phrase or sentence (typically from 5 to 15 words),

6https://github.com/akutuzov/
webvectors/tree/master/elmo/

https://github.com/akutuzov/webvectors/tree/master/elmo/
https://github.com/akutuzov/webvectors/tree/master/elmo/
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WebVectors produces contextualized token embed-
dings for each token in the query, and finds top n
words in the type embedding model, which are the
closest (by cosine similarity) to each of the token
embeddings. These predictions are lexical substi-
tutes or paradigmatic replacements; they demon-
strate what other words could fill these positions in
the query, depending on the context.

Another option to produce such substitutes
would be to feed the input sentence to the ELMo
model and then for each word token choose the
strongest activations at the final softmax layer of
the language model and map them to words in the
model vocabulary. However, in practice we found
that this approach is slightly slower than the one
described above. Additionally, ELMo models are
often published online without the vocabulary they
were trained on. Since the input layer of ELMo is
purely character-based, it does not hinder inferring
token embeddings, but it effectively blocks using
these weights as language models per se. Our ap-
proach allows one to use any given ELMo model
with any desired corpus to produce a set of refer-
ence type embeddings.

System maintainers can provide several models
for the service to work with, including models for
different languages; one of the models should be
specified in the configuration files as the default
one. When entering the query sentence, users can
choose the model which will process the input.

Apart from choosing between different models,
WebVectors also allows users to choose the exact
ELMo layer from which token representations will
be inferred; it was shown in (Peters et al., 2018b)
that different neural network layers convey infor-
mation related to different linguistic tiers: syntax,
semantics, pragmatics, etc. At this point, one can
choose between the top ELMo layer and the aver-
age of all layers. Note that for all operations with
pre-trained ELMo models we use simple_elmo:
a lightweight TensorFlow-based Python package
also developed by us.7 If need be, simple_elmo
can also be used as a standalone library to handle
ELMo models.

Both the words from the input sentence and the
lexical substitutes are colored according to their
frequency tier in the reference corpus (green for
‘high’, blue for ‘mid’ and red for ‘low’), in accor-
dance with other WebVectors components. Simi-
larly, each word is hyperlinked to its ‘landing page’

7https://pypi.org/project/simple-elmo/

bound to one of the static embedding models served
by a particular WebVectors installation (like the one
in Figure 2), allowing easy and playful exploration
of the semantic space. The font size of the lexical
substitute corresponds to cosine similarity between
the token embedding and the substitute type em-
bedding: thus, users can instantly see what word
tokens the model is unsure about. The service per-
forms fast under-the-hood part-of-speech tagging
of the query,8 so for functional words we always
yield themselves as substitutes (see ‘her’, ‘that’ and
‘can’ in Figure 3). They are also uncolored and not
hyperlinked, so that a user might focus on con-
tent words, while at the same time still having an
impression of ‘full sentence variations’.

The users should be aware that the lexical sub-
stitutes potentially contain all the biases inherited
from the corpus the model was trained on. Thus,
the paradigmatic axis might include slander words
and stereotypes, if they were frequent enough in the
data. We did not address this issue in the present
work, but we advise the users to take this into
account when dealing with any unsupervised lan-
guage models.

Importantly, we keep a short history of substitute
queries, so that it is possible to see at a glance the
changes brought by a different context, a different
word order or a different contextualized model (if
the web service offers several models). Figure 4
shows an example from our Russian live demo at
the RusVectōrēs web service. In the first sentence,
the word закладку ‘zakladku’ is used in the newer
sense of ‘a secret place to store illegal drugs’, while
in the second sentence it is used in the older sense
of ‘the act of founding a building’. The generated
substitutes reflect the differences in word meaning
depending on the context. In the first example the
substitutes include such words as ‘meeting, sale,
operation’, and in the second example the substi-
tutes are ‘opening, building, repair’.

4 Conclusion

The described system for generating two-
dimensional text using pre-trained ELMo models
is now deployed at the two model hubs mentioned
in Section 1. NLPL WebVectors features ELMo
models trained on English Wikipedia and on
Norwegian corpora9, while RusVectōrēs features a

8Using UDPipe (Straka and Straková, 2017).
9http://vectors.nlpl.eu/explore/

embeddings/en/contextual

https://pypi.org/project/simple-elmo/
http://vectors.nlpl.eu/explore/embeddings/en/contextual
http://vectors.nlpl.eu/explore/embeddings/en/contextual
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Figure 4: History of lexical substitute queries with a
Russian ELMo model.

model trained on concatenated Russian Wikipedia
and Russian National Corpus.10

The presented component for the WebVectors
framework allows users to explore pre-trained
ELMo models and to visualize contextualized em-
beddings as a two-dimensional text for faster anal-
ysis of early research prototypes. While previously
the framework provided interface only to static
vector semantic models, introducing support for
contextualized architectures allows for more intri-
cate exploration of linguistic phenomena, such as
lexical ambiguity and contextual semantic change.

We hope that the new functionality will provide
language teachers, NLP researchers and practition-
ers with a powerful tool to study word meaning
in context and at the same time keep the audi-
ence up-to-date with recent advances in the field
of distributional semantics and deep learning based
NLP. A separate important contribution is our
simple_elmo library which makes using ELMo
models in Python much easier, especially for re-
searchers with linguistic background.

In the future, we plan to add support for other
contextualized embedding architectures like BERT,
to allow inter-architectural comparisons. Another
interesting room for future work is integrating with
other exploratory services for neural NLP models,
like the ones mentioned in Section 2.

10https://rusvectores.org/en/
contextual/
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