
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 127–134
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

127

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

1 
 
 

000 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

025 

026 

027 

028 

029 

030 

031 

032 

033 

034 

035 

036 

037 

038 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

 

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Abstract 

Several tools and resources have been 
developed to deal with Arabic NLP. 
However, a homogenous and flexible 
Arabic environment that gathers these 
components is rarely available. In this 
perspective, we introduce SAFAR which is 
a monolingual framework developed in 
accordance with software engineering 
requirements and dedicated to Arabic 
language, especially, the modern standard 
Arabic and Moroccan dialect. After one 
decade of integration and development, 
SAFAR possesses today more than 50 tools 
and resources that can be exploited either 
using its API or using its web interface.  

1 Introduction 

NLP infrastructures, referred also as NLP 
architectures, represent an efficient way for 
standardization, optimization of efforts, 
collaboration and acceleration of developments in 
the field of NLP. For the last decade, the NLP 
research community witnessed an extensive 
release of these infrastructures. Some become very 
famous such as GATE1  or Stanford CoreNLP2 , 
while others existed only for a very short time. 
Some are multilingual while others are not, some 
are targeting multiple domains while others are 
not, etc.  
However, it is known that only a few of them are 
dedicated to only one language such as AraNLP 
(Althobaiti et al. 2014) or "ITU Turkish Natural 
Language Processing Pipeline" (G. Eryiğit, 2014). 
On another hand, the literature shows that existing 
infrastructures are using randomly three different 
namings: "toolkit", "platform" and "Framework". 
From the Software Engineering (SE) perspective, 

                                                           
1 https://gate.ac.uk 
2 https://stanfordnlp.github.io/CoreNLP/ 

these namings have different meanings. It is then 
necessary to first define them before presenting, 
categorizing, and benchmarking NLP 
infrastructures. Briefly speaking3, a toolkit is a set 
of tools within a single box used for a particular 
purpose. A platform consists of several 
interoperable tools with a homogeneous structure 
but without providing any API to extend their 
components. A framework is a layered structure 
developed to be used as a support and guide to 
build NLP programs and tools. 
In this work, we focus on the Arabic language 
infrastructures. We demonstrate that the "Software 
Architecture for ARabic" (SAFAR) framework4 is 
one of the most interesting frameworks to consider 
when developing any Arabic NLP component. 
The rest of this article is as follows. Section 2 
presents SAFAR in terms of principles, 
architecture and standards. Section 3 describes 
SAFAR content. Section 4 is dedicated to SAFAR 
use and exploitation. Finally, in the last section, we 
conclude the paper. 

2 SAFAR framework 

2.1 Principles 

In most cases, the development of Arabic NLP 
applications requires the use of several tools at 
once, each dealing with a certain level of language. 
Generally, these tools are heterogeneous and raise 
many SE problems such as interoperability, 
reusability, portability, etc. Moreover, researchers 
are usually in need not only of tools but also of 
Language Resources (LRs).  
To overcome the above-mentioned SE issues and 
to suit the needs of the ANLP community in terms 
of processing Arabic effectively and providing 
reusable LRs, we developed SAFAR as a software 

3 https://whatis.techtarget.com/ 
4 http://arabic.emi.ac.ma/safar 

A description and demonstration of SAFAR framework  
 

Karim Bouzoubaa 1, Younes Jaafar 1, Driss Namly 1, Ridouane Tachicart 1,  
Rachida Tajmout 1, Hakima Khamar 2, Hamid Jaafar 3, Si Lhoussain Aouragh 4, Abdellah Yousfi 5 

1 Mohammadia School of Engineers, Mohammed V University in Rabat, Morocco 
2 Faculty of Letters and Human Sciences, Mohammed Vth University, Rabat, Morocco 

3 Polidisciplinary faculty of Safi, Caddi Ayyad University, Morocco 
4 Faculty of Legal, Economic and Social Sciences - Sale, Mohammed V University in Rabat, Morocco. 

5 Faculty of Legal, Economic and Social Sciences - Souissi, Mohammed V University in Rabat, Morocco. 
karim.bouzoubaa@emi.ac.ma; jayounes@yahoo.fr; namly_driss@yahoo.fr; tachicart@gmail.com; tajmoutrachida@yahoo.fr; 

khamarhaki@gmail.com; jaafarhamid1973@gmail.com; jaafarhamid1973@gmail.com; l.aouragh@um5r.ac.ma; 
yousfi240ma@yahoo.fr 

 



128

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

2 
 
 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

architecture for Arabic with the following 
principles: 

 Integrate not only tools and programs but 
also LRs; 

 Structure the architecture to integrate two 
types of Arabic, namely MSA, and 
dialects; 

 Respect the Arabic language features in 
the structure of the architecture; 

 Develop tools or LRs when available 
ones are not satisfactory; 

 Provide the architecture to be exploited 
not only by computer scientists but also 
by linguists; 

 Involve in our team computer scientists, 
statisticians and linguists. 

In general, our philosophy is not to develop 
ourselves all the NLP layers and modules, but to 
integrate existing ones consistently. Consequently, 
our approach consists in providing the 
specifications in terms of APIs for each module of 
our architecture and also providing (if any) 
implementations of these APIs with tools that have 
proved to be efficient and published under a free 
license such as GNU GPL, Apache or Non-
Commercial Software. Indeed, the main challenge 
faced during this integration process is to develop 
bridges between different programming languages 
for tools and data structures for resources to use 
them in a single environment. However, when 
modules and LRs are not available, we develop 
them from scratch inside SAFAR. It is worth 
mentioning that after a certain threshold of 
maturity (for instance, it is the case of stemming as 
per the third release), it is useless to continue 
integrating every new implementation of a given 
level, with the flexibility that the framework is 
open enough to allow researchers to do it if needed. 

2.2 Architecture 

SAFAR is a Java-based framework dedicated to 
Arabic Natural Language Processing. As shown in 
Figure 1, SAFAR has several layers that provide 
services directly usable by other layers in 
accordance with the relationships modeled with 
arrows in the figure. 

                                                           
5 http://www.alecso.org/site/ 

 Basic: designed to implement tools 
dealing with morphology, syntax and 
semantics; 

 Tools: includes a set of technical services 
and pre-processing tools as well as 
machine and deep learning utilities; 

 Resources: provides services for 
maintaining, consulting and managing 
Arabic language resources such as 
corpora, dictionaries and ontologies; 

 Application: contains high-level 
applications such as sentiment analysis or 
Question/Answering systems; 

 Client applications: interacts with all 
other layers to serve clients via web 
applications, web services, etc. 

 
Figure 1: SAFAR framework general architecture. 

2.3  Standards 

Concerning the respect of international standards, 
and in order to facilitate their use in different 
contexts, we adopt the interoperability guides for 
all SAFAR components. Indeed, SAFAR tools 
input/output and LRs are formatted using the XML 
representation standard. In addition to the respect 
of representation standard, we use structuring 
standards such as Arab League Educational, 
Cultural and Scientific Organization (ALECSO)5 
recommendations for the design of Arabic 
morphological analyzers, Lexical Markup 
Framework (ISO 24613:2008) (LMF) for lexicons 
and Text Encoding Initiative (Lou Burnard et al. 
2008) (TEI) for corpora. 

3 SAFAR content 

As previously explained, the structure of SAFAR 
is split into three main packages: MSA, Dialects 
and Machine learning models. Since Dialects are 



129

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

3 
 
 

numerous, we have been interested so far to 
integrate only the Moroccan dialect even if the 
architecture is flexible enough to embed any other 
dialects. 

3.1 MSA 

This package is the most populated one. Indeed, for 
almost two decades the research community spent 
all their efforts in developing components (tools 
and resources) for this type of Arabic. 
Table 1 shows all the integrated tools for MSA6. 
These tools have been widely used by the ANLP 
community and it will be very advantageous to use 
them within a homogenous and flexible 
framework. Other tools have been developed from 
scratch such as “SAFAR stemmer”, “SAFAR POS 
tagger”, etc. Tools starting with “SAFAR” in the 

table have been developed from scratch by our 
research team for one of the following reasons 1) 
available tools return incorrect results, 2) there are 
no similar tools within the community, or 3) 
existing tools cannot be reused in several technical 
environments. In addition, the integration of 
multiple implementations for the same layer allows 
their benchmarking. Thus, we were able to make a 
detailed evaluation and/or comparison of stemmers 
(Jaafar and Bouzoubaa, 2016), morphological 
analyzers (Jaafar and Bouzoubaa, 2014) and 
parsers (Jaafar and Bouzoubaa, 2017). 
The column “Per” indicates how many researchers 
have been involved in the development/integration 
of the corresponding tool. The "Vr" column 
indicates SAFAR version from which the tool is 
present. 

Layer Package Implementation name Reference Per Vr 

App 

key_words_extractor SAFAR key_words_extractor  3 3 
stopwords_analyzer SAFAR stopwords_analyzer  3 3 
moajam_moaassir SAFAR moajam_moaassir  2 1 
moajam_tafaoli SAFAR moajam_tafaoli  2 1 
Light  summarization SAFAR light_summarization  2 2 
morphosyntactic SAFAR morphosyntactic_processor  2 1 
stem_counter SAFAR stem_counter  2 1 

Syntax 

Farasa parser Zhang et al. 2015 2 2 
Stanford parser Green and Manning 2010 2 3 
Farasa POS tagger Zhang et al. 2015 2 1 
SAFAR POS tagger  3 3 

Morphology 

Alkhalil analyzer Boudlal, et al. 2010 2 2 
Alkhalil 2 analyzer Boudchiche et al. 2017 2 2 
BAMA (Aramorph) analyzer Buckwalter 2002 2 1 
MADAMIRA analyzer Pasha, et al. 2014 2 1 
Farasa lemmatizer Abdelali, et al. 2016 2 3 
SAFAR lemmatizer Namly et al. 2020 3 3 
ISRI stemmer Algasaier 2005 2 2 
Khoja stemmer Khoja 2002 2 1 
Light10 stemmer Larkey et al. 2007 2 1 
Motaz stemmer Motaz and Ashour 2010 2 2 
Tashaphyne stemmer Zerrouki 2012 2 2 
SAFAR stemmer  Jaafar et al. 2016 2 2 

Util 

StopWords SAFAR StopWords remover  3 3 

Benchmark 
SAFAR Analyzers benchmark Jaafar and Bouzoubaa, 2014 2 2 
SAFAR Stemmers benchmark Jaafar et al. 2016 2 2 
SAFAR Parsers benchmark Jaafar and Bouzoubaa, 2017 2 2 

Normalization SAFAR Normalizer  3 1 
Splitting SAFARS sentence Splitter  2 1 
Tokenization SAFAR Tokenizer  2 1 
Pattern detector SAFAR Pattern detector  2 3  
Transliteration SAFAR Transliterator  2 1 

Table 1: MSA tools implemented in SAFAR 

                                                           
6 Almost all integrated MSA tools have their own license. 
Users are invited to be aware of these third party licenses and 
respect them. 

 



130

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

4 
 
 

On another hand, Table 2 shows all integrated 
resources for MSA. The LRs building process is 
based on the Arabic language structure. The 
concatenative inflection denotes that the lemma 
concatenates to affixes to produce the stem, which 
in turn concatenates to clitics to yield the word. 
And according to their features, a lemma is either 
a verb, a noun or a particle. From this, we identify 
the basic components taking part in the 
composition of the Arabic words which are the 
lemmas (particle, verb and noun), stems and clitics. 
Thus, SAFAR follows the above Arabic language 
structure for lexical resources and contains the 
three basic alphabets (Loukili and Bouzoubaa 
2011, Namly et al. 2016), clitics (Namly et al. 
2015) and particles lexicon. We also make use of 
existing and known dictionaries (Contemporary 
and Interactive). It is worth mentioning that 
SAFAR contains currently one of the most 
comprehensive lexicons with more than 7 million 
stems and corresponding lemmas (Namly et al. 
2019). 

On another hand, because of the importance of 
ontologies in many NLP processes, we enriched 
and integrated the existing Arabic WordNet 
(Abouenour et al. 2013) (AWN). We note that 
enriched AWN is approved as the official version 
of the Global WordNet association7. 
Finally, we also developed and integrated corpora 
used as reference and evaluation corpora. Indeed, 
as mentioned above, these corpora as exploited to 
benchmark integrated tools at the stemming and 
morphological levels. 
SAFAR resources are freely available for the 
community. They can be downloaded from our 
team website8. Indeed, in order to contribute in 
their wide dissemination within the community, 
we advertise on SAFAR resources in some well-
known catalogs and repositories such as European 
Language Resources Association (ELRA) 9  and 
Common Language Resources and Technology 
Infrastructure (CLARIN)10. 
Finally, let us mention that a more detailed survey 
and a software engineering comparative study 
with similar Arabic frameworks can be found in 
(Jaafar and Bouzoubaa, 2018). 

Layer Package  Processing level Implementation name Size11 Per Vr 

Resource 

Lexicon 

Alphabet SAFAR Alphabet 42 3 1 
Clitics SAFAR Clitics 167 3 1 
Particles SAFAR Particles 413 5 1 
Contemporary  Contemporary dictionary 32.300 2 2 
Interactive Interactive dictionary 61.101 2 2 
CALEM SAFAR Stems Lemmas 7.133.106 3 3 
Arabic WordNet  SAFAR Arabic WordNet 56.164 3 2 

Corpus 
NAFIS SAFAR Stemming gold standard 172 4 3 
Morpho evaluation morphological analysis evaluation 100 3 2 
Stems evaluation Quranic stemming evaluation  1000 3 2 

Table 2: MSA resources implemented in SAFAR 

3.2 Moroccan Dialect 

Besides being interested in processing the 
Arabic language, we take into consideration the 
informal variety of Moroccan Arabic dialect (MD). 
Regarding resources, a Moroccan dialect 
electronic Dictionary (Tachicart et al. 2014) 
(MDED) has been developed containing almost 
12,000 entries with useful annotations. Another 
lexicon is the Moroccan reference vocabulary 
(Tachicart et al. 2019) (MRV), which compiles 
4.5M possible Moroccan words with respect to a 
normalization guideline. 

                                                           
7 http://globalwordnet.org/resources/arabic-wordnet/ 
8 http://arabic.emi.ac.ma/alelm/?q=Resources 
9 http://www.elra.info/en/ 

Also, a corpus for language identification tasks 
is available with SAFAR. It is composed of 57k 
comments collected from social media and then 
manually classified into three categories: MSA, 
MD, and code-switched. Besides and based on 
neural models, a lexicon of orthographic variants 
that covers almost 54% of the MRV has been 
generated. It can be useful for several dialectal 
NLP tasks such as spelling normalization. 
Table 3 shows all integrated resources for the 
Moroccan dialect. Concerning tools, a language 
identification system (Tachicart et al. 2018) has 
been developed and integrated within SAFAR in 

10 https://www.clarin.eu 
11 Entries for lexicons and words for corpora 



131

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

5 
 
 

order to distinguish between MD and MSA. 
Besides, we developed and integrated a spelling 
normalization systems that helps to convert a given 

Moroccan dialectal word into its standard form 
without taking into consideration the word context.  

Layer Package  Processing level Implementation name Size4 Per Vr 

Resources 
Lexicon 

Mded SAFAR Mded 12.000 2 3 
Moroccan_vocabulary SAFAR MRV 4.500.000 2 3 
Orthographic_variants SAFAR OV 2.385.000 2 3 

Corpus LID SAFAR Lang. Identification 519.000 2 3 

Util 
LID sys SAFAR Lang. Identification SAFAR Lang._Identification -- 2 3 
Spell Spelling_normalization SAFAR SPELL -- 2 4 

Table 3: Moroccan dialect resources and tools implemented in SAFAR 

3.3 Machine learning models 

Our tools have been developed combining both the 
rule-based approach, embedded in lexicons and 
hardcoded, and the ML approach. Thus, SAFAR 
includes a set of popular ML libraries (Table 4) 
geared at different purposes, without the need to 
perform external tasks. For instance, the SAFAR 
POS tool exploited weka to output a Decision tree 
model (Tnaji et al., 2020), the SAFAR lemmatizer 
exploited HMM (Namly et al., 2020), while the 
Spelling normalization for the Moroccan dialect 
used fastText (Tachicart and Bouzoubaa, 2019). 
Consequently, a researcher making use of SAFAR 
has the possibility to code calling all integrated 
Arabic NLP tools and resources in addition to 
exploiting the integrated ML libraries.  
 

Implementation name Type Per Vr 
Hidden markov model Model 3 3 
Language model Model 2 3 
Levenshtein  Model 2 3 
Weka Tool 1 3 
FastText Tool 1 3 

Table 4: Machine learning models and tools in SAFAR 
 

4 SAFAR use and exploitation 

As previously mentioned, SAFAR tools and 
integrated resources can be exploited either as an 
API or from client applications.  

4.1 API 

 For each level of processing, we standardize all 
aspects shared by the same type of tools according 
to APIs and models so that they become 
homogenous and flexible in their exploitation. This 
ensures the standardization inside SAFAR. Users 
have several possibilities when calling methods by 
                                                           
12 http://arabic.emi.ac.ma/safar-api/SAFAR_v3.jar 
13 https://checkstyle.sourceforge.io/ 

specifying appropriate parameters according to 
their needs. 
The execution of a normalizer within SAFAR can 
be simple as calling “normalizer.normalize(text)”. 
If the normalization should be customized, 
overloaded methods can be called. It is worth 
mentioning that when developing the SAFAR 
API 12 , we fully respect “Checkstyle” 13  and 
“FindBugs” 14  which are two development tools 
that help adhering to coding standards. 
Users could also easily create customizable 
pipelines where the output of one component is the 
input of another (Jaafar and Bouzoubaa, 2015). All 
these aspects of SAFAR help solving SE issues 
especially the interoperability, the reuse and the 
flexibility of exploitation. 

 

Figure 2:  A pipeline using SAFAR API. 
 
As mentioned in Figure 2, at line 3, we specify the 
input text. At line 5, we call the 

14 http://findbugs.sourceforge.net/ 



132

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

6 
 
 

0150

0151

0152

0153

0154

0155

0156

0157

0158

0159

0160

0161

0162

0163

0164

0165

0166

0167

0168

0169

0170

0171

0172

0173

0174

0175

0176

0177

0178

0179

0180

0181

0182

0183

0184

0185

0186

0187

0188

0189

0190

0191

0192

0193

0194

0195

0196

0197

0198

0199

“SAFARNormalizer” tool to normalize the text. At 
line 7 we call SAFAR “IParticleService” (Namly, 
et al. 2015) in order to delete stop words. At line 
10, we instantiate the “SAFARTokenizer” tool 
which takes a text as input and outputs all tokens 
of the text. At line 13, we proceed to stemming 
tokens by calling the “IStemmer” service and 
specifying the Light10 stemmer in this case. At line 
18, we call “ILexiconService” to detect stems 
sentiments and then print the sentiments of each 
word according to the predefined lexicon. 
Executing the whole process with another stemmer 
is simply to keep the same code and change only 
line 13 such as “.getKhojaImpletation”. 

4.2 Web application 

For non-developers such as linguists, SAFAR 
framework can be executed using an online 
application 15  in which all SAFAR levels are 
developed as online processing. Accessing the 
website allows the user to have access to all tools 
and resources mentioned above. Results can be 
either printed on the same page or downloaded as 
XML files. 

 

Figure 3: Alkhalil morphological analysis within 
SAFAR web. 

 
As an example, Figure 3 shows the online 
morphological analysis for the word “يأكلان” (they 
eat). After selecting the morphological analyzer to 
use via the drop-down menu (Alkhalil in this case) 
and clicking on the “Analyze & display” button, 
the output is displayed in a table format. 

                                                           
15 http://arabic.emi.ac.ma:8080/SW_V3/ 

Figure 4:  Language identification system. 
 
Furthermore, the language identification system 
(Tachicart et al. 2018) demonstrated in Figure 4, 
aims to distinguish between Moroccan Dialect and 
MSA using two different methods. Indeed, the first 
is rule-based and relies on stop word frequency, 
while the second is statically-based and is based on 
an SVM machine learning classifier.  

5 Conclusion 

SAFAR is a monolingual framework dedicated to 
Arabic language. It is considered as a repository 
and collaborative work where multiple developers 
of Arabic tools and resources can meet and share 
their products. It is in its second decade of 
existence and integrates more than 50 tools and 
resources. The next steps of our journey are to: 

 Concentrate on less considered layers such 
as semantics and applications; 

 Integrate and develop other tools and 
resources for dialects and standard Arabic; 

 Build bridges with multilingual or other 
language frameworks for developers 
interested to consider more than one 
language in their projects such as machine 
translation. 

References  

Abdelali, A., Darwish, K., Durrani, N., and Mubarak, 
H. 2016. Farasa: A fast and furious segmenter for 
Arabic. In Proceedings of the 2016 conference of the 
North American chapter of the association for 
computational linguistics: Demonstrations, pp. 11-
16.  

Abouenour, L., Bouzoubaa, K., and Rosso, P. 2013. 
On the evaluation and improvement of Arabic 
WordNet coverage and usability. Language 
Resources and Evaluation, vol. 47, n° 13, pp. 891-
917. 



133

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

7 
 
 

Algasaier, H. The ISRI Arabic Stemmer. 2005. 
http://www.nltk.org/_modules/nltk/stem/isri.html 
(accessed February 1, 2015). 

Althobaiti, M., Kruschwitz, U., and Poesio, M. 2014. 
AraNLP: a Java-Based Library for the Processing of 
Arabic Text. In Proceedings of the 9th Language 
Resources and Evaluation Conference (LREC’14), 
Reykjavik, Iceland. 

Boudchiche, M., Mazroui, A., Bebah, M. O. A. O., 
Lakhouaja, A., and Boudlal, A. 2017. AlKhalil 
Morpho Sys 2: A robust Arabic morphosyntactic 
analyzer. Journal of King Saud University-
Computer and Information Sciences 29, no. 2: 141-
146. 

Boudlal, A., Lakhouaja, A., Mazroui, A., Meziane, A., 
Bebah, M. O. A. O., and Shoul, M. 2010. Alkhalil 
Morpho Sys1: A Morphosyntactic analysis System 
for Arabic texts. Proceedings of the 11th 
International Arab Conference on Information 
Technology (ACIT’10). Benghazi. 1-6. 

Buckwalter, T. 2002. Buckwalter Arabic 
Morphological Analyzer Version 1.0." Linguistic 
Data Consortium. 

Green, S., and Manning, C. D. 2010. Better Arabic 
parsing: baselines, evaluations, and analysis. The 
23rd International Conference on Computational 
Linguistics (COLING '10). Beijing: Association for 
Computational Linguistics. 394-402. 

Jaafar, Y. and Bouzoubaa, K. 2014. Benchmark of 
Arabic morphological analyzers: Challenges and 
Solutions. 9th International Conference on 
Intelligent Systems: Theories and Applications 
(SITA'14), Rabat, 

Jaafar, Y. and Bouzoubaa, K. 2015. Arabic Natural 
Language Processing from Software Engineering to 
Complex Pipelines Cicling Cairo, Egypt. 

Jaafar, Y., Namly, D., Bouzoubaa, K., Yousfi, A. 2016. 
Enhancing Arabic Stemming Process Using 
Resources and Benchmarking Tool. King Saud 
University - Computer and Information Sciences 
(JKSU-CIS). 

Jaafar, Y., and Bouzoubaa, K. 2017. A New Tool for 
Benchmarking and Assessing Arabic Syntactic 
Parsers. 6th International Conference on Arabic 
Language Processing CITALA 2017, Fes, Morocco 
Fes, Morocco. 

Jaafar, Y., Nasri, M., and Bouzoubaa, K. 2018. 
Semantic Analysis of Arabic Texts within SAFAR 
Framework. In proceedings of the 5th International 
IEEE Congress on Information Science and 
Technology (CIST'18), Marrakech, Morocco. 

Jaafar, Y., and Bouzoubaa, K. (2018). A Survey and 
Comparative Study of Arabic NLP Architectures. In: 
Shaalan K., Hassanien A., and Tolba F. 2018. (eds) 
Intelligent Natural Language Processing: Trends 

and Applications. Studies in Computational 
Intelligence, volume 740. Springer, Cham. 

Khoja, S. Khoja stemmer. 2002. 
http://zeus.cs.pacificu.edu/shereen/research.htm#ste
mming (accessed February 1, 2015). 

Larkey, L. S., Ballesteros, L., and Connell, M. E. 2007. 
Light Stemming for Arabic Information Retrieval. In 
Arabic computational morphology: knowledge-
based and empirical methods, 221-243. Springer 
Netherlands. 

Lou B., and Syd, B. 2008. TEI P5: Guidelines for 
electronic text encoding and interchange". TEI 
Consortium. 

Loukili,T., and Bouzoubaa, K. 2011. Structuration et 
Standardisation des ressources linguistiques de 
l'Arabe - cas de l'alphabet, préfixes et suffixes, 
Journées Doctorales en Technologies de 
l'Information et Communication, Tangier, Morocco, 
7/ 2011. 

Saad, M. K., and Ashour, W. M. 2010. Arabic 
morphological tools for text mining. 6th 
International Conference on Electrical and 
Computer Systems (EECS’10). Lefke, North Cyprus. 

Namly, D., Bouzoubaa, K., Tajmout, R., Tahir, Y., and 
Khamar, H. 2015. A Complex Arabic stop-words list 
design. The Second National Doctoral Symposium 
On Arabic Language Engineering (JDILA'2015) 
ENSA of Fez USMBA. 

Namly, D., Regragui, Y., and Bouzoubaa, K. 2016. 
Interoperable Arabic language resources building 
and exploitation in SAFAR platform. In Proceeding 
of the 13th ACS/IEEE International Conference on 
Computer Systems and Applications (AICCSA’16), 
Agadir, Morocco. 

Namly, D., Bouzoubaa, K., El Jihad, A., and Aouragh, 
S. L. (2020). Improving Arabic Lemmatization 
Through a Lemmas Database and a Machine-
Learning Technique. In Recent Advances in NLP: 
The Case of Arabic Language, pp. 81-100. Springer, 
Cham. 

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., 
Eskander, R., Habash, N., Pooleery, M., Rambow, 
O., and Roth R. M. 2014. MADAMIRA: A Fast, 
Comprehensive Tool for Morphological Analysis 
and Disambiguation of Arabic. In Proceedings of the 
9th Language Resources and Evaluation Conference 
(LREC’14), Reykjavik, Iceland. 

Gülşen, E. 2014. ITU Turkish NLP Web Service. in 
European Chapter of the Association for 
Computational Linguistics, Sweden 

Tachicart, R., Bouzoubaa, K., and Jaafar, H. 2014. 
Building a Moroccan dialect electronic Dictionary 
(MDED). In Proceedings of the 5th International 
Conference on Arabic Language Processing 
(CITALA'14), Oujda, Morocco.  



134

EACL 2021 Submission ***. Confidential review Copy. DO NOT DISTRIBUTE. 
 

8 
 
 

 
Tachicart, R., and Bouzoubaa, K. 2019. Towards 

Automatic Normalization of the Moroccan Dialectal 
Arabic User Generated Text. In Arabic Language 
Processing: From Theory to Practice, Springer 
International Publishing, 2019, pp. 264-275. 

Tachicart, R., Bouzoubaa, K., Aouragh, S. L., and 
Jaafar, H. 2018. Automatic Identification of 
Moroccan Colloquial Arabic. Arabic Language 
Processing: From Theory to Practice, Springer 
International Publishing, Cham, vol. 782, pp. 201-
214. 

Tnaji, K., Bouzoubaa, K., and Aouragh, S.L. 2021, A 
light Arabic POS Tagger using a hybrid approach. In 
the international conference on digital technologies 
and applications, January 29-30, 2021. 

Zerrouki, T. Tashaphyne 0.2. 2012. 
https://pypi.python.org/pypi/Tashaphyne. Retrieved 
April 14, 2016. 

Zhang, Y., Li, C., Barzilay, R., and Darwish, K. 2015. 
Randomized greedy inference for joint 
segmentation, POS tagging and dependency parsing. 
In Proceedings of the 2015 Conference of the North 
American Chapter of the Association for 
Computational Linguistics: Human Language 
Technologies, pp. 42-52.  


