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Abstract

This paper describes the current milestones
achieved in our ongoing project that aims
to understand the surveillance of, impact
of, and effective interventions against the
COVID-19 misinfodemic on Twitter. Specif-
ically, it introduces a public dashboard
which, in addition to displaying case counts
in an interactive map and a navigational
panel, also provides some unique features
not found in other places. Particularly, the
dashboard uses a curated catalog of COVID-
19 related facts and debunks of misinfor-
mation, and it displays the most prevalent
information from the catalog among Twit-
ter users in user-selected U.S. geographic
regions. The paper explains how to use
BERT-based models to match tweets with
the facts and misinformation and to detect
their stance towards such information. The
paper also discusses the results of prelim-
inary experiments on analyzing the spatio-
temporal spread of misinformation.

1 Introduction

Alongside the COVID-19 pandemic, there is a
raging global misinfodemic (Mian and Khan,
2020; Roozenbeek et al., 2020) just as deadly.
As fear grows, false information related to the
pandemic goes viral on social media and threat-
ens to affect an overwhelmed population. Such
misinformation misleads the public on how the
virus is transmitted, how authorities and people
are responding to the pandemic, as well as its
symptoms, treatments, and so on. This onslaught
exacerbates the vicious impact of the virus, as
the misinformation drowns out credible informa-
tion, interferes with measures to contain the out-
break, depletes resources needed by those at risk,
and overloads the health care system. Although
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health misinformation is not new (Oyeyemi et al.,
2014), such a dangerous interplay between a pan-
demic and a misinfodemic is unprecedented. It
calls for studying not only the outbreak but also
its related misinformation; the fight on these two
fronts must go hand-in-hand.

This demo paper describes the current mile-
stones achieved in our ongoing project that aims
to understand the surveillance of, impact of, and
effective interventions against the COVID-19
misinfodemic. 1) For surveillance, we seek to
discover the patterns by which different types of
COVID-19 misinformation spread. 2) To under-
stand the impact of misinformation, we aim to
compare the spreading of the SARS-CoV-2 virus
and misinformation and derive their correlations.
3) To understand what types of interventions are
effective in containing misinformation, we will
contrast the spreading of misinformation before
and after debunking efforts. 4) To understand
whether the outcomes related to 1), 2) and 3) dif-
fer by geographical locations and demographic
groups, we will study the variability of misinfor-
mation and debunking efforts across geographi-
cal and demographic groups.

While we continue to pursue these directions,
we have built an online dashboard at https://
idir.uta.edu/covid-19/ to directly benefit the pub-
lic. A screencast video of the dashboard is at
bit.ly/3c6v5xf. The dashboard provides a map,
a navigation panel, and timeline charts for look-
ing up numbers of cases, deaths, and recoveries,
similar to a number of COVID-19 tracking dash-
boards. !'?* However, our dashboard also pro-
vides several features not found in other places.

"https://www.covid19-trials.com/
Zhttps://coronavirus.jhu.edu/map.html
3https://www.cdc.gov/covid-data-tracker/index.html
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Figure 1: The user interface of the dashboard for mitigating the COVID-19 misinfodemic

1) It displays the most prevalent factual infor-
mation among Twitter users in any user-selected
U.S. geographic region. 2) The “factual infor-
mation” comes from a catalog that we manually
curated. It includes statements from authoritative
organizations, verdicts, debunks, and explana-
tions of (potentially false) factual claims from
fact-checking websites, and FAQs from credible
sources. The catalog’s entries are further orga-
nized into a taxonomy. For simplicity, we refer to
it as the catalog and taxonomy of COVID-19 facts
or just facts in ensuing discussion. 3) The dash-
board displays COVID-19 related tweets from
local authorities of user-selected geographic re-
gions. 4) It embeds a chatbot built specifically for
COVID-19 related questions. 5) It shows case-
statistics from several popular sources which
sometimes differ.

The codebase of the dashboard’s frontend,
backend, and data collection tools are open-
sourced at https://github.com/idirlab/covid19.
All collected data are at https://github.com/
idirlab/covid19data.  Particularly, the cata-
log and taxonomy of facts are also available
through a SPARQL endpoint at https://cokn.org/
deliverables/7-covid19-kg/ and the correspond-
ing RDF dataset can be requested there.

What is particularly worth noting about the
underlying implementation of the dashboard is
the adaptation of state-of-the-art textual semantic
similarity and stance detection models. Tweets

are first passed through a claim-matching model,
which selects the tweets that semantically match
the facts in our catalog. Then, the stance detec-
tion model determines whether the tweets agree
with, disagree with, or merely discuss these facts.
This enables us to pinpoint pieces of misinforma-
tion (i.e., tweets that disagree with known facts)
and analyze their spread.

A few studies analyzed and quantified the
spread of COVID-19 misinformation on Twit-
ter (Kouzy et al., 2020; Memon and Carley, 2020;
Al-Rakhami and Al-Amri, 2020) and other social
media platforms (Brennen et al., 2020). However,
these studies conducted mostly manual inspec-
tion of small datasets, while our system automati-
cally sifts through millions of tweets and matches
tweets with our catalog of facts.

2 The Dashboard

Figure 1 shows the dashboard’s user interface,
with its components highlighted.

Geographic region selection panel (Compo-
nent 1). A user can select a specific country, a
U.S. state, or a U.S. county by using this panel
or the interactive map (Component 2). Once a
region is selected, the panel shows the counts
of confirmed cases, deaths and recovered cases
for the region in collapsed or expanded modes.
When a region is expanded by the user, counts
from all available sources are displayed; on the
other hand, if it is collapsed, only counts from
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the default (which the user can customize) data
source are displayed. These sources do not pro-
vide identical numbers.

Interactive map (Component 2). On each
country and each U.S. state, a red circle is dis-
played, with an area size proportional to its num-
ber of confirmed cases. When a state is selected,
the circle is replaced with its counties’ polygons
in different shades of red, proportional to the
counties’ confirmed cases.

Timeline chart (Component 3). It plots the
counts of the selected region over time and can
be viewed in linear or logarithmic scale.

Panel of facts (Component 4). For the se-
lected region, this panel displays facts from our
catalog, and the distribution of people discussing,
agreeing, or disagreeing with them on Twitter. A
large number of people refuting these facts would
indicate wide spread of misinformation. To avoid
repeating misconceptions, the dashboard displays
facts from authoritative sources only.

Government tweets (Component 5). It dis-
plays COVID-19 related tweets in the past seven
days from officials of the user-selected geo-
graphic region. These tweets are from a curated
list of 3,744 Twitter handles that belong to gov-
ernments, officials, and public health authorities
at U.S. federal and state levels.

Chatbot (Component 6). This component
embeds the Jennifer Chatbot built by the New
Voices project of the National Academies of
Sciences, Engineering and Medicine (Li et al.,
2020), which was built specifically for answer-
ing COVID-19 related questions. As part of the
collaborative team behind this chatbot, we are
expanding it using the aforementioned catalog.

3 The Datasets

The dashboard uses the following three datasets.
1) Counts of confirmed cases, deaths, and re-
coveries. We collected these counts daily from
Johns Hopkins University, * the New York Times
(NYT) 3 and the COVID Tracking Project. ©
These sources provide statistics at various ge-
ographic granularities (country, state, county).
2) Tweets. We are using a collection of
approximately 250 million COVID-19 related

*https://github.com/CSSEGISandData/COVID- 19
Shttps://github.com/nytimes/covid- 19-data
®https://covidtracking.com/

tweets from January 1st, 2020 to May 16th, 2020,
obtained from (Banda et al., 2020) (version 10.0).
We removed tweets and Twitter handles (and their
tweets) that do not have location information, re-
sulting in 34.6 million remaining tweets. We then
randomly selected 10.4% of each month’s tweets,
leading to 3.6 million remaining tweets. We used
the OpenStreetMap (Quinion et al., 2020) API
to map the locations of Twitter accounts from
user-entered free text to U.S. county names. We
used the ArcGIS API 7 to map the locations of
tweets from longitude/latitude to counties.

3) A catalog and a taxonomy of COVID-19
related facts.

The manually curated catalog currently has
9,512 entries from 21 credible websites, includ-
ing statements from authoritative organizations
(e.g., WHO, CDC), verdicts, debunks, and ex-
planations of factual claims (of which the truth-
fulness varies) from fact-checking websites (e.g.,
the IFCN CoronaVirusFacts Alliance Database, 8
PolitiFact), and FAQs both from credible sources
(e.g., FDA, NYT) and a dataset curated by (Wei
et al., 2020).

We organized the entries in this catalog into
a taxonomy of categories, by integrating and
consolidating the available categories from a
number of source websites, placing entries from
other websites into these categories or creating
new categories, and organizing the categories
into a hierarchical structure based on their in-
clusion relationship. The taxonomy is as fol-
lows, in the format of {level-1 categories [level-
2 categories (level-3 categories)]}: °
{Animals, Basic Information [Causes, Definition, Dis-
ease Alongside, Recovery, Spreading, Symptoms, Test-
ing], Cases, Contribution, Diplomacy, Economics/Finance
[Crisis, Grants/Stimulus, Tax, Unemployment], Family
Preparation, Funeral, Government Control [Administra-
Staff), Law, Medical
Support, Military], Mental Health, Prevention [Actions

tion (Lockdown, Reopen,

to Prevent (Hand Hygiene, Isolation, Masks,

Social Distancing), Medication, Vaccines], Reli-
gion, Schools/Universities, Travel, Treatment [Medication,
Minor Symptom, Severe Symptom], Violence/Crime}.

We also stored the catalog and the taxonomy

https://developers.arcgis.com/python/guide/
reverse-geocoding/

8https://www.poynter.org/
ifcn-covid- 19-misinformation/

Not every level-1 or level-2 category has subcategories.
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Figure 2: Matching tweets with facts and stance detection

Tweet Fact Taxonomy  Similarity Stance
Categories

Coronavirus cannot be passed by  There has been no evidence that pets such ~ Animals, 0.817 agree

dogs or cats but they can test posi- as dogs or cats can spread the coronavirus.  Spreading

tive.

More people die from the flu in the  Right now, it appears that COVID-19, the = Cases 0.816 disagree

U.S. in 1 day than have died of the
Coronavirus across the world ever.

disease caused by the new coronavirus,
causes more cases of severe disease and

more deaths than the seasonal flu.

Table 1: Example results of matching tweets with facts and stance detection

as an RDF dataset, in which each entry of the cat-
alog is identified by a unique resource identifier
(URD). It is connected to a mediator node that rep-
resents the multiary relation associated with the
entry. For example, Figure 3 shows a question
about COVID-19, its answer and source, and the
lowest-level taxonomy nodes that the entry be-
longs to, all connected to a mediator node. This
RDF dataset, with 12 relations and 78,495 triples,
is published in four popular RDF formats—N-
Triples, Turtle, N3, and RDF/XML. Furthermore,
we have set up a SPARQL query endpoint at
https://cokn.org/deliverables/7-covid19-kg/ us-
ing OpenLink Virtuoso.'’

4 Matching Tweets with Facts and
Stance Detection

Given the catalog of COVID-19 related facts F
and the tweets T', we first employ claim-matching
to locate a set of tweets t/ € T that discuss each
fact f € F. Next, we apply stance detection
on pairs p/ = {(t,f) | t € t/} to determine
whether each ¢ is agreeing with, disagreeing with,
or neutrally discussing f. Finally, aggregate re-
sults are displayed on Component 4 of the dash-
board to summarize the public’s view on each
fact. Figure 2 depicts the overall claim-matching

Yhttps://virtuoso.openlinksw.com/

and stance detection pipeline. For both tasks, we
employed Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019).
Table 1 shows some example results of claim
matching and stance detection.

How does COVID-19
type spread?
T question

/ Human coronaviruses

—answer_detail| typically spread through the

\ air by coughing and ...

source.

URI —URI>! mediator
node

lllinois Department of Public
Health

Figure 3: An entry of the catalog stored in RDF

Claim matching.

We generate sentence embeddings s and s/,
for ¢t and f respectively, using the mean-tokens
pooling strategy in Sentence-BERT (Reimers and
Gurevych, 2019). The relevance between ¢ and f
is then calculated as:

St~Sf

Rt’f _
lIs]1 > [Is 7]

(¢Y)
Given R/, we model claim-matching as a rank-
ing task on the relevance between facts and
tweets. Thus, the output of this stage is t/ =
{t € T|R" > 6} for each fact f € F, where
the threshold € is 0.8 in our implementation.
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Stance detection. Given t/, we detect the
stance that each tweet ¢ takes toward fact f.
There could be 3 classes of stance: agree (¢ sup-
ports f), discuss (¢ neutrally discusses f), and
disagree (t refutes f). For this task, we obtained
a pre-trained BERT .5, model ' and trained it
on the Fake-News Challenge Stage 1 (FNC-1)
dataset. '> We denote this model Stance-BERT.

We first pre-process p/ to conform with BERT
input conventions by 1) applying W (-), the Word-
Piece tokenizer (Wu et al., 2016), 2) applying
C(ay,az,...,ay), a function that concatenates
arguments in appearance order, and 3) insert-
ing specialized BERT tokens [CLS] and [SEP].
Since BERT has a maximum input length of
M = 512 and some facts can exceed this limit,
we propose a sliding-window approach inspired
by (Devlin et al., 2019) to form input x/:

x! = {{C(CLS], W (1), [SEP, W (f)sasiies 11,
serp o <i< [y e per} @

where S defines the distance between successive
windows and L = M — (|W(t)| + 3) is the se-
quence length available for each fact. If ¢ % S+ L
is an out-of-bounds index for W( f), the extra
space is padded using null tokens.

Each element w € x/ contains a set of win-
dows representing a tweet-fact pair. Each win-
dow w; € w is passed into Stance-BERT, which
returns probability distributions (each containing
3 entries, 1 for each class) y{; for each window.

Stance aggregation. For each fact f,
the stance detection results are accumu-
lated to generate scores Sé, where C €
{agree, discuss, disagree} that denote the per-
centage of tweets that agree, discuss, and dis-
agree with f: 13

> [argmaxo({gh, | wi € w}) = ]

[xf]

3

where o (-) is a function that averages the model’s
output scores for each class across all windows
of tweet-fact pair. The 3 final stance scores are
passed to the dashboard’s panel of facts (Compo-
nent 4) for display.
"https://github.com/google-research/bert

Phttp://www.fakenewschallenge.org/
3We use the Iverson bracket: [P] = 1if P is true, else 0

5 [Evaluation and Results

5.1 Performance of Claim Matching

To evaluate the performance of the claim match-
ing component, we first created a Cartesian prod-
uct of the 3.6 million tweets with 500 “facts”
from the catalog (see Section 3 for description
of datasets), followed by randomly selecting 800
tweet-fact pairs from the Cartesian product. To
retain a balanced dataset, 400 pairs were drawn
from those pairs scored over 0.8 by the claim
matching component, and another 400 pairs were
drawn from the rest. To obtain the ground-truth
labels on these 800 pairs, we used three human
annotators. 183 pairs were labeled “matched”
(i.e., the tweet and the fact have matching top-
ics) and 617 pairs “unmatched”. Table 2 shows
the claim matching component’s performance
on these 800 pairs, measured by precision@k
and nDCG @k(normalized Discounted Cumula-
tive Gain at k). Both precision@k and nDCG@k
are metrics of ranking widely used in classifi-
cation problem, the order of top k prediction is
considered in nDCG @Kk but not in precision @k.

Metric @5 @10 @20 @50 @100
Precision 080 080 0.70 056  0.52
nDCG 062 072 078 0.81 0.83

Table 2: Performance of claim matching on the 800 tweet-
fact pairs

5.2 Performance of Stance-BERT

F1 score

Model - -

agree discuss disagree macro
Stance-BERTyindow (FNC-1) 0.65 0.45 0.84 0.65
Stance-BERT ¢y (FNC-1) 0.66 0.41 0.82 0.63
(Xu et al., 2018)(FNC-1) 0.55 0.15 0.73 0.48

Stance-BERTyingow (COVID-19) 075 0.03 058 045

Table 3: Performance of Stance-BERT on the FNC-1 test
dataset and 200 matched tweet-fact pairs

Table 3 shows Stance-BERT’s performance on
the FNC-1 competition test dataset and our tweet-
fact pairs, using F1 scores for all 3 classes as
well as macro-F1. On FNC-1, we tested 2 vari-
ations of the same model: Stance-BERT indow>
which uses the sliding-window approach (Sec-
tion 4), and Stance-BERT,ync, @ model that trun-
cates/discards all inputs after M tokens but is
otherwise identical to Stance-BERT indow- Both
variants significantly outperformed the method
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used in (Xu et al., 2018), one of the recent com-
petitive methods on FNC-1.

Note that FNC-1 also includes a fourth “un-
related” class that we discarded, since we al-
ready have a claim-matching component. Be-
cause other recent stance detection methods (Mo-
htarami et al., 2018; Fang et al., 2019) only re-
ported macro-F1 scores calculated using all four
classes including “unrelated”, we cannot report
a direct comparison with their methods. How-
ever, we argue that our macro-F1 of 0.65 remains
highly competitive. The model of (Xu et al.,
2018) achieved a 0.98 F1 score on “unrelated”,
which suggests that “unrelated” (i.e., separating
related and unrelated pairs) is far easier than the
other 3 classes (i.e., discerning between different
classes of related pairs). Given that Stance-BERT
significantly outperformed (Xu et al., 2018) on all
other 3 classes, it is plausible that Stance-BERT
will remain a top performer under all four classes.

To evaluate Stance-BERT’s performance on
our tweet-fact pairs, the three human annotators
produced ground-truth labels on another set of
481 randomly selected tweet-fact pairs. 200 pairs
are labeled as “matched”. These 200 pairs are
further labeled as “agree”/“discuss”/“disagree”,
in a distribution of 110/73/17 tweet-fact pairs.
Ultimately, we discovered that Stance-BERT per-
forms remarkably well on “agree” and “disagree”
classes but falters on “discuss”.

5.3 Misinformation Analysis

Monthly Cumulative Misinformation Count
10000

1000

100

Number of Misinformation Tweets

1 w
01-01-2020 02-01-2020 03-01-2020 04-01-2020 05-01-2020 05-17-2020

—e—United States United Kingdom india

Canada +-Australia Philippines

Figure 4: 6 countries with the most misinformation tweets

Figure 4 is the cumulative timeline for the top-
6 countries with the most COVID-19 misinfor-
mation tweets in the dataset. “Misinformation
tweets” refer to tweets that go against known
facts as judged by our stance detection model.

We also conducted a study on the correla-

tion between misinformation tweet counts and
COVID-19 case counts. We looked at the per-
centage of cases relative to a country’s popula-
tion size, and the percentage of misinformation
tweets relative to the total number of tweets from
a country. The Pearson correlation coefficients
between them are in Table 4. We find that the
number of misinformation tweets most positively
correlates with the number of confirmed cases.
In contrast, its correlation with the number of
recovered cases is weaker.

Country Confirm Death Recover
United States 0.763 0.738 0.712
United Kingdom 0.862 0.833 -
India 0.794 0.798 0.755
Canada 0.706 0.667 0.663
Australia 0.954 0.922 0.887
Philippines 0.720 0.696 0.618

Table 4: Correlation between the percentage of con-
firmed/deceased/recovered cases and the percentage of mis-
information tweets. The number of recovered cases in U.K.
after April 13th is missing from the data source.

Finally, we manually categorized the misin-
formation tweets based on the taxonomy (Sec-
tion 3). Table 5 lists the five most frequent cate-
gories of misinformation tweets. These five cat-
egories make up 49.9% of all misinformation
tweets, with the other 50.1% being spread out
over the other 33 categories.

Category Count  Percentage
Definition 2503 15.1
Spreading 2118 12.7
Other 1450 8.7
Testing 1301 7.8
Disease Alongside 936 5.6
Total 8308 49.9

Table 5: Most frequent categories of misinformation tweets

6 Conclusion

This paper introduces an information dashboard
constructed in the context of our ongoing project
regarding the COVID-19 misinfodemic. Going
forward, we will focus on developing the dash-
board at scale, including more comprehensive
tweet collection and catalog discovery and collec-
tion. We will also introduce more functions into
the dashboard that are aligned with our project
goal of studying the surveillance of, impact of,
and intervention on COVID-19 misinfodemic.
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