
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, pages 65–72
April 20, 2021 ©2021 Association for Computational Linguistics

65

Graph Convolutional Networks with Multi-headed Attention for
Code-Mixed Sentiment Analysis

Suman Dowlagar
LTRC

IIIT-Hyderabad
suman.dowlagar

@research.iiit.ac.in

Radhika Mamidi
LTRC

IIIT-Hyderabad
radhika.mamidi
@iiit.ac.in

Abstract

Code-mixing is a frequently observed phe-
nomenon in multilingual communities where
a speaker uses multiple languages in an ut-
terance or sentence. Code-mixed texts are
abundant, especially in social media, and pose
a problem for NLP tools as they are typi-
cally trained on monolingual corpora. Re-
cently, finding the sentiment from code-mixed
text has been attempted by some researchers
in SentiMix SemEval 2020 and Dravidian-
CodeMix FIRE 2020 shared tasks. Mostly,
the attempts include traditional methods, long
short term memory, convolutional neural net-
works, and transformer models for code-mixed
sentiment analysis (CMSA). However, no
study has explored graph convolutional neural
networks on CMSA. In this paper, we propose
the graph convolutional networks (GCN) for
sentiment analysis on code-mixed text. We
have used the datasets from the Dravidian-
CodeMix FIRE 2020. Our experimental re-
sults on multiple CMSA datasets demonstrate
that the GCN with multi-headed attention
model has shown an improvement in classifi-
cation metrics.

1 Introduction

Through the advent of social media, people from
around the world can connect and exchange in-
formation instantly. The evolution of social me-
dia texts from blogs and messaging websites
has created many new opportunities for informa-
tion access worldwide (Thavareesan and Mahe-
san, 2019, 2020a,b). Multilingual communities
often express their thoughts on social media by
mixing different languages in the same utterance
(Chakravarthi, 2020a). This mixing or alteration of
two or more languages is known as code-mixing or
code-switching (Wardhaugh, 2011; Chakravarthi,
2020b).

The computational modeling of code-mixed text

is challenging due to the linguistic complexity, na-
ture of mixing, the presence of non-standard vari-
ations in spellings, grammar, and transliteration
(Bali et al., 2014; Jose et al., 2020; Priyadharshini
et al., 2020). Because of such non-standard vari-
ations, CM poses several unseen difficulties in
fundamental fields of natural language processing
(NLP) tasks such as language identification, part-of-
speech tagging, shallow parsing, Natural language
understanding, sentiment analysis, etc.

To encourage research on code-mixing and to
solve the problems related to code-mixed text, the
NLP community organizes several tasks and work-
shops such as Task9: SentiMix, SemEval 2020
(Patwa et al., 2020), and 4th Workshop on Compu-
tational Approaches for Linguistic Code-Switching
(Solorio et al., 2020), Dravidian Code-Mix FIRE
2020 (Chakravarthi et al., 2020c; Mandl et al.,
2020). All of these tasks focus on sentiment analy-
sis on code-mixed text.

Some researchers used traditional methods, such
as support vector machines (SVM’s) (Vapnik,
2013) and Logistic Regression (LR), where the
code-mixed text is represented with sparse linguis-
tic features (e.g., bag-of-words and n-grams). Oth-
ers used deep learning models such as convolu-
tional neural networks (CNN) (Kim, 2014), re-
current neural networks (RNN) (Hochreiter and
Schmidhuber, 1997), transformer models (Vaswani
et al., 2017), etc. The above deep learning mod-
els can capture semantic and syntactic information
well in local consecutive word sequences. Such
position-dependent models are not suitable for Dra-
vidian languages that follow free word order for-
mat.

Recently, an evolving research direction known
as graph neural networks (Zhou et al., 2018) or
graph representation learning has attracted wide
attention. In graph-based approaches, the whole
corpus is viewed as a graph (Yao et al., 2019).

66

Graph convolutional networks have been effective
at tasks for knowledge representation and can pre-
serve global structure information of a graph in
graph embeddings.

In this work, we propose the use of the graph
neural network for code-mixed sentiment analysis.
Our method focuses on constructing a single large
graph from an entire corpus. We modeled the graph
with a Graph Convolutional Network (GCN) (Kipf
and Welling, 2016; Yao et al., 2019) with Multi-
headed attention. A graph neural network captures
high-order neighborhood information well by using
an adjacency matrix. This adjacency matrix helps
the graph neural network to not dependent on con-
secutive word order format. Thus, it is well suited
for the Dravidian language datasets that follow a
free word order.

The paper is organized as follows. Section 2
provides related work on code-mixed sentiment
analysis. Section 3 describes the proposed work.
Section 4 presents the experimental setup and the
performance of the model. Section 5 concludes our
work.

2 Related work

In this section, we study the related work in the
field of code-mixed sentiment analysis.

2.1 Traditional methods for CMSA

Traditional methods for CMSA studies mainly fo-
cus on feature engineering and traditional text clas-
sification algorithms such as Support Vector Ma-
chines (SVMs), Decision Trees (DTs), Logistic
Regression (LR) (Chakravarthi et al., 2020c). The
most commonly used feature repreentation is the
bag-of-words. Some linguistic and complex fea-
tures have been designed to capture the features,
such as n-grams, chunking, capturing phonetics of
words, etc.

2.2 Deep Learning for CMSA

Deep learning studies focus on using deep neural
network classifiers for CMSA. Kumar et al. (2020)
used CNN for code-mixed sentiment analysis. Ma-
hata et al. (2020); Lakshmanan and Ravindranath
(2020) used LSTM, a specific type of Recurrent
neural network, to learn text representation. To
further increase the representation ability of neu-
ral network models, attention mechanisms, and
transformer models have been introduced for code-
switched sentiment analysis (Chakravarthi et al.,

2020c). These methods mainly focus on the po-
sition of the word and local consecutive word se-
quences and do not explicitly model global word
co-occurrence information in a corpus.

2.3 Graph Neural Networks

Recently, Graph Neural Networks has received
growing attention in the field of natural language
processing. The authors used Text GCN (Yao
et al., 2019) to construct a heterogeneous graph
that helped them in text classification and achieved
great results. Graph Neural Networks have also
been used in intent slot labeling (Zhang et al.,
2020), semantic role labeling (Marcheggiani and
Titov, 2017), knowledge base construction (Wang
et al., 2019), relation classification (Sahu et al.,
2019), and machine translation (Marcheggiani
et al., 2018).

The use of graph convolutional networks with
undirected graphs to model the free word order lan-
guages for CMSA has never been explored before.

3 Proposed Work

In this section, we describe our proposed work.
First, we present the pre-processing steps to filter
the data, and then we describe graph-convolutional
networks with multi-headed attention for code-
mixed sentiment analysis.

The data we have used for CMSA consists of
code-mixed Tamil-English and Malayalam-English
youtube comments, and it has many irregularities.
Such as the Roman script is used to write Tamil and
Malayalam text with variations in the spelling, ir-
regular grammatical structure, mixing of languages
at the word level, informal abbreviations, slang,
and use of emoticons in text. We can minimize
some of these irregularities by using pre-processing
methods.

3.1 Pre-processing

In pre-processing

• We tokenized the text on whitespaces and sym-
bols, including colons, commas, and semi-
colons. It was followed by the removal of
hashtags, URLs, mentions, numbers.

• In the sentiment analysis scenarios, emoticons
help in understanding the polarity of the text.
We used the emoji PyPI library to map the
emoticons to their corresponding text.

67

• We know that the code-mixed text document
contains multiple scripts involving multiple
languages. Each language may or may not use
its own native script. When a word is repre-
sented in a different script, spelling variations
can occur across document(s). This will cre-
ate unnecessary complexity for the classifier
to learn a meaningful representation of a word
(that is written in two or more languages in
the same document), which results in poor
performance of the classifier. In order to re-
solve such ambiguities, it is necessary to bring
the words to a common format. i.e., back
transliteration of each word in its native script.
We have used AI4Bharat-Transliteration1 (a
python deep transliteration engine for translit-
eration from roman to native text).

3.2 Word embeddings
After transliteration, we have used the pre-trained
fastText model (Grave et al., 2018) to obtain the
word embeddings. We didn’t rely on extracting
word-embeddings from the same corpora as its size
is small, and we need a large code mixed corpora
with cross-lingual mapping or cross-lingual dic-
tionary to obtain better word-embeddings. Even
Khanuja et al. (2020) has suggested that we can
use pre-trained models to learn representations of
words. Their paper has shown an improved per-
formance in accuracy when pre-trained models are
used on the code-mixed datasets.

3.3 Graph Convolutional Networks (GCN)
with Multi-headed Attention

A Graph Convolutional Network is a neural net-
work that operates on graph-like representations.
Given a graph with V as the number of vertices
and E as the number of edges G = (V,E),

A GCN takes as input an input feature matrix X
of size (N,F 0) feature matrix, whereN is the num-
ber of nodes or vertices, and F 0 is the number of in-
put features or node embeddings for each node, and
An adjacency matrix A for graph G of size (N,N).
A Degree matrix D of size (1, N). A hidden layer
in the GCN can be defined as H i = f(H i−1, A))
where H0 = X and f is a propagation rule. Each
layer H i corresponds to an (N,F i) feature ma-
trix where each row is a feature representation of
a node. The neighboring features are aggregated
at each layer to form the next layer’s features by

1https://pypi.org/project/
ai4bharat-transliteration/

using the propagation rule f . In this way, features
become increasingly more abstract at each consec-
utive layer.

A simple propagation rule in GCN is given as:

f(H i, A) = σ(AH iW i) (1)

Where W i is the weight matrix for layer i, and
σ is a non-linear activation function. The weight
matrix has dimensions (F i, F i+1). Equation 1 can
be explained as a feature transformation that occurs
with information borrowed from the neighborhood
nodes. But the transformation in the equation 1
focuses only on neighborhood information and ig-
nores its own node features, so we add the identity
matrix to the adjacency matrix. Later we normal-
ize the feature representations w.r.t degree of each
node. So the initial propagation rule is modified as
given in equation 2

f(H i, A) = σ(ÃH iW i) (2)

where Ã = D−1/2(A+ I)D−1/2 is the normal-
ized symmetric adjacency matrix.

The multiheaded attention is applied on the Hid-
den layer representation of each graph convolu-
tional layer. The multiheaded attention is given
by,

Attention = softmax

(
QKT

√
dk

)
.V (3)

Multi-headed attention gives high weightage to
the words of importance for a given query word in
a sentence.

3.4 GCN with Multi-headed Attention on
Text

As mentioned earlier, we use graph-neural net-
works for code-mixed sentiment analysis. Our ap-
proach considers the whole corpus as a graph. Then
we perform graph convolutions for CMSA.

In order to construct the whole text as a graph,
we use the approach given in the paper Yao et al.
(2019). Initially, we build a large corpus graph that
contains each word and each document as nodes.
The number of nodes or vertices in the text graph
|V | is the number of documents plus the number
of unique words. We build edges based on word
occurrence in documents(document-to-word) and
word co-occurrence (word-to-word) in the whole
corpus. The weights of edges between word-to-
word and document-to-word are given as

https://pypi.org/project/ai4bharat-transliteration/
https://pypi.org/project/ai4bharat-transliteration/

68

• Document-to-word: The weight of the edge
between a document node and a word node
is the term frequency-inverse document fre-
quency (TF-IDF) measure of the word in the
document.

• Word-to-word: We use point-wise mutual
information (PMI), to calculate weights be-
tween two nodes. A positive PMI value in-
dicates a high semantic correlation of words
in a corpus, whereas a negative PMI value
indicates little or no semantic correlation in
the corpus. As suggested in the paper, we
only add edges between word pairs with pos-
itive PMI values. Note: There are no direct
document-to-document relations in the graph.

Adjacency matrix,

Aij =


PMI(i, j) i, j are words
TF − IDFi,j i is document, j is word
0 otherwise

(4)
where PMI(i, j) > 0 and PMI value of a word

pair i, j is computed as

PMI(i, j) = log
p(i, j)

p(i)p(j)
(5)

where p(i, j) is the probability of sliding win-
dow occurences that contains both the words i and
j. p(i) and p(j) are the individual probability dis-
tribution of words i and j respectively.

And Identity matrix is given as,

Iij =

{
1 i = j
0 otherwise

(6)

After building the global text graphs, we apply
GCN with multilayer GCN as described above. We
used a 3-layer of GCN with multi-headed attention,
followed by a global max pooling and then a linear
layer to obtain the code-mixed text’s polarity. A
three-layer GCN can allow message passing among
neighborhood nodes that are at a maximum of three
steps away. This approach resulted in obtaining a
better graph representation.

4 Experiments

In this section, we compare our method with sev-
eral baselines. We used only the back transliterated
dataset to run all the models.

• TF-IDF + SVM: A bag-of-words model with
term frequency-inverse document frequency
measure. Support Vector machines (SVM) is
used as the classifier.

• CNN: A Convolutional Neural Network
model for CMSA. The CNN model uses pre-
trained fastText word embeddings.

• LSTM: The LSTM model uses the last hidden
state to represent the whole sentence. We used
fastText pre-trained word embeddings.

• ELMO + SVM: Deep Contextualised Word
Representations (Peters et al., 2018) uses
a deep, bi-directional LSTM model to cre-
ate word representations. ELMo obtained
the word representations by analyzing words
within the context that they are used. It also
uses character-based embeddings to model the
representations for out-of-vocabulary words.

• BERT(pre-trained multilingual): We used
pre-trained multilingual bi-directional en-
coder representations using transformers
(BERT) (Devlin et al., 2018) for CMSA.

• TextGCN: It is a graph convolutional network
implemented for text classification.

4.1 Dataset
For Dravidian code-mixed sentiment analysis, we
used the dataset provided by the organizers of
Dravidian Code-mixed FIRE-2020. The dataset
consists of 15,744 Tamil-English Code-mixed and
6,739 Malayalam-English Code-mixed youtube
video comments. The data statistics are given in
table 1. Each sentence’s sentiment can be classified
into five categories: positive, negative, not-Tamil
or not-Malayalam, unknown state, mixed feelings.
The dataset details and the initial benchmarks
on the corpus are given in Chakravarthi et al.
(2020a,b).

4.2 Model parameters and settings
For GCN with multi-headed attention model, we
set the embedding size to 300. The embeddings
are obtained by using fastText pre-trained models.
We used adam optimizer with cross-entropy loss.
We tuned other parameters and set the learning rate
as 0.02, dropout as 0.25, and we trained the GCN
for a maximum of 100 epochs. We stopped the
model if the validation loss does not decrease for

69

Dataset #Docs #Train #Dev #Test #classes
Tamil-English CM 15744 11335 1260 3149 5
Malayalam-English CM 6739 4851 540 1348 5

Table 1: Data Statistics

Model Pos Neg not-mal Mixed Unknown Macro Weight Acc
TF-IDF+SVM 0.72 0.40 0.98 0.27 0.58 0.59 0.68 0.67
CNN 0.76 0.39 0.93 0.23 0.63 0.59 0.68 0.69
LSTM 0.74 0.44 0.93 0.26 0.63 0.60 0.68 0.69
ELMO+SVM 0.75 0.45 0.96 0.26 0.63 0.61 0.69 0.69
mBERT 0.77 0.53 0.99 0.26 0.69 0.65 0.72 0.72
Text-GCN 0.79 0.55 0.98 0.30 0.67 0.66 0.74 0.73
Our approach 0.80 0.55 0.99 0.30 0.69 0.66 0.75 0.73

Table 2: Classification Metrics of our GCN with multi-headed approach when compared to baselines on code-
mixed Malayalam-English Dataset

Model Pos Neg not-Tamil Mixed Unknown Macro Weight Acc
TF-IDF+SVM 0.80 0.19 0.93 0.06 0.12 0.42 0.56 0.68
CNN 0.81 0.04 0.82 0.01 0.00 0.34 0.56 0.68
LSTM 0.81 0.16 0.85 0.01 0.15 0.40 0.59 0.68
ELMO+SVM 0.81 0.17 0.88 0.04 0.15 0.43 0.58 0.69
mBERT 0.77 0.53 0.99 0.26 0.69 0.65 0.72 0.72
Text-GCN 0.81 0.30 0.98 0.05 0.02 0.43 0.61 0.70
Our approach 0.81 0.43 0.98 0.16 0.15 0.45 0.64 0.71

Table 3: Classification Metrics of our GCN with multi-headed approach when compared to baselines on code-
mixed Tamil-English Dataset

ten consecutive epochs. We used default parameter
settings for baseline models as given in their origi-
nal papers or implementations and used the same
pre-trained embeddings obtained from the fastText
model. We ran the model more than ten times, and
the average metrics are recorded. For baseline mod-
els, we used default parameter settings as in their
original papers or implementations. For baseline
models using pre-trained word embeddings, we
used 300-dimensional FastText word embeddings.

We used pytorch-geometric2 library to imple-
ment the graph convolutional networks. Pytorch-
geometric library has a set of predefined graph neu-
ral network models that can be accessed by calling
a simple method. We have used the hugging face
transformers library (Wolf et al., 2019) to down-
load the pre-trained multilingual BERT model. The
scikit-learn library (Pedregosa et al., 2011) is used
to obtain the classification metrics.

2https://pytorch-geometric.readthedocs.
io/en/latest/index.html

4.3 Results and Analysis

Table 3 and 2 presents F1-scores and accuracy
of each model on Tamil-English and Malayalam-
English datasets respectively. For the Malayalam-
English dataset, GCN with Multi-headed atten-
tion outperforms all baseline models. It show-
cases the proposed method’s effectiveness on short
text datasets. For the Tamil dataset, our model
performed competitively when compared to the
pre-trained multilingual BERT model and better
than all the other baselines. When compared
to the BERT introduced in the original paper
(Chakravarthi et al., 2020b), our GCN with multi-
headed attention achieved better results. We have
seen improvement in results in our pre-trained mul-
tilingual BERT because we used back transliter-
ation while pre-processing. The back translitera-
tion helped the BERT pre-trained model captured
the native word script, thus obtaining better pre-
trained sub-word level embeddings. Our model
performed better than the Text-GCN because of
multi-headed attention. CNN also didn’t perform

https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://pytorch-geometric.readthedocs.io/en/latest/index.html

70

well on both the datasets when compared to the
baselines. It might be because there are long-range
and implicit dependencies between the text, but
CNN only works on exploring the short-range de-
pendencies. LSTM-based models are good at es-
tablishing long-range dependencies in the datasets.
This helped the LSTM model to perform better
when compared to CNN models.

The pre-trained multilingual BERT model has
shown a decrease in performance on ”positive” po-
larity of the Tamil-English CM dataset because the
model tried to fine-tune the data on other polarities.
The original paper reported that there were anno-
tating issues for mixed and unknown sentences as
their polarity was similar to the ”positive” sentence.
Fine-tuning the classifier towards other polarities
resulted in a decrease in the classification metrics
of the ”positive” polarity sentences.

In all the baseline models, We have seen an in-
crease in accuracy compared to the baseline pa-
pers on the above datasets (Chakravarthi et al.,
2020a,b). It is due to the back-transliteration mod-
ule used while pre-processing. The back translit-
eration helped the words retain their native script
and helped the words obtain better-pre-trained em-
beddings from the fastText classification models,
and decreased the classifier’s training complexity.
Especially the accuracy is improved for the ”Pos-
itive” and ”not-tamil/not-malayalam” class. The
”not-tamil”/”not-malayalam” class has shown an
improved accuracy because we have formulated
rules not to transliterate these words into the native
script. It helped the classifier to understand them
as out-of-context words while training the classi-
fier. Similar to the baseline models, the negative,
mixed feelings, and unknown state have shown
low performance because of their low distribution
of data compared to the positive class.

Our graph convolution network with attention
mechanism showed good results because

• The weighted label information of document
nodes is passed to their neighboring word
nodes, then transferred to other word nodes
and document nodes that are neighbor to the
first step neighboring word nodes. This knowl-
edge transfer helped the graph gather compre-
hensive word-document information, which
helped in learning a better classifier for the
given data.

• Using back transliteration with pre-trained
fastText word embeddings preserved syntac-

tic and semantic relations among words and
provided additional information in classifying
the data.

After data analysis, we observed that the neg-
ative polarity comments have sarcasm included.
The words used in the sarcasm are similar to those
of positive comments. It made the classifier iden-
tify them as positive words and made sentiment
analysis a difficult task. Mixed feelings had both
positive and negative sentences. As the classifier
was trained on a lot of positive instances, the mixed
feelings were tuned to the ”positive” class. And
the classifier mislabeled them as a ”positive” class.
It affected the performance of the classifier. More
training data or additional labeling of the classifier
could help resolve such issues.

5 Conclusion

This paper describes the graph convolution net-
works with multi-headed attention for code mixed
sentiment analysis on Dravidian languages. Ini-
tially, we transliterate the data and build a word
document graph for the whole corpus. This ap-
proach considers global dependencies between
words and documents in the corpus. A simple three-
layer GCN with Multi-headed Attention on CMSA
demonstrates encouraging results by outperforming
numerous state-of-the-art methods. Our approach
obtained the best results on the Malayalam-English
CM dataset with a weighted-F1 score and an accu-
racy of 0.75 and 0.73. We will explore our model’s
performance on various graph networks with dif-
ferent filtering and smoothing techniques for future
work.

References
Kalika Bali, Jatin Sharma, Monojit Choudhury, and

Yogarshi Vyas. 2014. “I am borrowing ya mix-
ing?” An Analysis of English-Hindi Code Mixing
in Facebook. In Proceedings of the First Workshop
on Computational Approaches to Code Switching,
pages 116–126.

Bharathi Raja Chakravarthi. 2020a. HopeEDI: A mul-
tilingual hope speech detection dataset for equality,
diversity, and inclusion. In Proceedings of the Third
Workshop on Computational Modeling of People’s
Opinions, Personality, and Emotion’s in Social Me-
dia, pages 41–53, Barcelona, Spain (Online). Asso-
ciation for Computational Linguistics.

Bharathi Raja Chakravarthi. 2020b. Leveraging ortho-
graphic information to improve machine translation

https://www.aclweb.org/anthology/2020.peoples-1.5
https://www.aclweb.org/anthology/2020.peoples-1.5
https://www.aclweb.org/anthology/2020.peoples-1.5

71

of under-resourced languages. Ph.D. thesis, NUI
Galway.

Bharathi Raja Chakravarthi, Navya Jose, Shardul
Suryawanshi, Elizabeth Sherly, and John Philip Mc-
Crae. 2020a. A sentiment analysis dataset for code-
mixed Malayalam-English. In Proceedings of the
1st Joint Workshop on Spoken Language Technolo-
gies for Under-resourced languages (SLTU) and
Collaboration and Computing for Under-Resourced
Languages (CCURL), pages 177–184, Marseille,
France. European Language Resources association.

Bharathi Raja Chakravarthi, Vigneshwaran Murali-
daran, Ruba Priyadharshini, and John Philip Mc-
Crae. 2020b. Corpus creation for sentiment anal-
ysis in code-mixed Tamil-English text. In Pro-
ceedings of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), pages
202–210, Marseille, France. European Language Re-
sources association.

Bharathi Raja Chakravarthi, Ruba Priyadharshini,
Vigneshwaran Muralidaran, Shardul Suryawanshi,
Navya Jose, Elizabeth Sherly, and John P. McCrae.
2020c. Overview of the Track on Sentiment Analy-
sis for Dravidian Languages in Code-Mixed Text. In
Forum for Information Retrieval Evaluation, FIRE
2020, page 21–24, New York, NY, USA. Associa-
tion for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing word vectors for 157 languages. arXiv preprint
arXiv:1802.06893.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Navya Jose, Bharathi Raja Chakravarthi, Shardul
Suryawanshi, Elizabeth Sherly, and John P. McCrae.
2020. A Survey of Current Datasets for Code-
Switching Research. In 2020 6th International Con-
ference on Advanced Computing and Communica-
tion Systems (ICACCS), pages 136–141.

Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
vasan, Sunayana Sitaram, and Monojit Choud-
hury. 2020. GLUECoS: An Evaluation Bench-
mark for Code-Switched NLP. arXiv preprint
arXiv:2004.12376.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Ayush Kumar, Harsh Agarwal, Keshav Bansal, and
Ashutosh Modi. 2020. BAKSA at SemEval-2020
Task 9: Bolstering cnn with self-attention for sen-
timent analysis of code mixed text. arXiv preprint
arXiv:2007.10819.

BalaSundaraRaman Lakshmanan and Sanjeeth Ku-
mar Ravindranath. 2020. Theedhum Nandrum@
Dravidian-CodeMix-FIRE2020: ASentiment Polar-
ity Classifier for YouTube Commentswith Code-
switching between Tamil, Malayalam and English.
arXiv preprint arXiv:2010.03189.

Sainik Kumar Mahata, Dipankar Das, and Sivaji
Bandyopadhyay. 2020. JUNLP@ Dravidian-
CodeMix-FIRE2020: Sentiment Classification of
Code-Mixed Tweets using Bi-Directional RNN and
Language Tags. arXiv preprint arXiv:2010.10111.

Thomas Mandl, Sandip Modha, Anand Kumar M, and
Bharathi Raja Chakravarthi. 2020. Overview of the
HASOC Track at FIRE 2020: Hate Speech and
Offensive Language Identification in Tamil, Malay-
alam, Hindi, English and German. In Forum for
Information Retrieval Evaluation, FIRE 2020, page
29–32, New York, NY, USA. Association for Com-
puting Machinery.

Diego Marcheggiani, Joost Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. arXiv
preprint arXiv:1804.08313.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. Semeval-2020 task 9: Overview of senti-
ment analysis of code-mixed tweets. arXiv preprint
arXiv:2008.04277.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Ruba Priyadharshini, Bharathi Raja Chakravarthi,
Mani Vegupatti, and John P. McCrae. 2020. Named
Entity Recognition for Code-Mixed Indian Corpus
using Meta Embedding. In 2020 6th International

https://www.aclweb.org/anthology/2020.sltu-1.25
https://www.aclweb.org/anthology/2020.sltu-1.25
https://www.aclweb.org/anthology/2020.sltu-1.28
https://www.aclweb.org/anthology/2020.sltu-1.28
https://doi.org/10.1145/3441501.3441515
https://doi.org/10.1145/3441501.3441515
https://doi.org/10.1109/ICACCS48705.2020.9074205
https://doi.org/10.1109/ICACCS48705.2020.9074205
https://doi.org/10.1145/3441501.3441517
https://doi.org/10.1145/3441501.3441517
https://doi.org/10.1145/3441501.3441517
https://doi.org/10.1145/3441501.3441517
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.1109/ICACCS48705.2020.9074379
https://doi.org/10.1109/ICACCS48705.2020.9074379
https://doi.org/10.1109/ICACCS48705.2020.9074379

72

Conference on Advanced Computing and Communi-
cation Systems (ICACCS), pages 68–72.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and Sophia Ananiadou. 2019. Inter-
sentence relation extraction with document-level
graph convolutional neural network. arXiv preprint
arXiv:1906.04684.

Thamar Solorio, Monojit Choudhury, Kalika Bali,
Sunayana Sitaram, Amitava Das, and Mona Diab,
editors. 2020. Proceedings of the The 4th Workshop
on Computational Approaches to Code Switching.
European Language Resources Association, Mar-
seille, France.

Sajeetha Thavareesan and Sinnathamby Mahesan.
2019. Sentiment Analysis in Tamil Texts: A Study
on Machine Learning Techniques and Feature Rep-
resentation. In 2019 14th Conference on Industrial
and Information Systems (ICIIS), pages 320–325.

Sajeetha Thavareesan and Sinnathamby Mahesan.
2020a. Sentiment Lexicon Expansion using
Word2vec and fastText for Sentiment Prediction in
Tamil texts. In 2020 Moratuwa Engineering Re-
search Conference (MERCon), pages 272–276.

Sajeetha Thavareesan and Sinnathamby Mahesan.
2020b. Word embedding-based Part of Speech tag-
ging in Tamil texts. In 2020 IEEE 15th International
Conference on Industrial and Information Systems
(ICIIS), pages 478–482.

Vladimir Vapnik. 2013. The nature of statistical learn-
ing theory. Springer science & business media.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin
Knight, Heng Ji, Mohit Bansal, and Yi Luan. 2019.
Paperrobot: Incremental draft generation of scien-
tific ideas. arXiv preprint arXiv:1905.07870.

Ronald Wardhaugh. 2011. An introduction to sociolin-
guistics, volume 28. John Wiley & Sons.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2019. Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

Linhao Zhang, Dehong Ma, Xiaodong Zhang, Xiao-
hui Yan, and Houfeng Wang. 2020. Graph LSTM
with Context-Gated Mechanism for Spoken Lan-
guage Understanding. In AAAI, pages 9539–9546.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. 2018. Graph neural networks: A re-
view of methods and applications. arXiv preprint
arXiv:1812.08434.

https://www.aclweb.org/anthology/2020.calcs-1.0
https://www.aclweb.org/anthology/2020.calcs-1.0
https://doi.org/10.1109/ICIIS47346.2019.9063341
https://doi.org/10.1109/ICIIS47346.2019.9063341
https://doi.org/10.1109/ICIIS47346.2019.9063341
https://doi.org/10.1109/MERCon50084.2020.9185369
https://doi.org/10.1109/MERCon50084.2020.9185369
https://doi.org/10.1109/MERCon50084.2020.9185369
https://doi.org/10.1109/ICIIS51140.2020.9342640
https://doi.org/10.1109/ICIIS51140.2020.9342640

