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Abstract

Sentiment analysis tools and models have been
developed extensively throughout the years,
for European languages. In contrast, similar
tools for Indian Languages are scarce. This is
because, state-of-the-art pre-processing tools
like POS tagger, shallow parsers, etc., are not
readily available for Indian languages. Al-
though, such working tools for Indian lan-
guages, like Hindi and Bengali, that are spo-
ken by the majority of the population, are avail-
able, finding the same for less spoken lan-
guages like, Tamil, Telugu, and Malayalam,
is difficult. Moreover, due to the advent of
social media, the multi-lingual population of
India, who are comfortable with both English
ad their regional language, prefer to communi-
cate by mixing both languages. This gives rise
to massive code-mixed content and automat-
ically annotating them with their respective
sentiment labels becomes a challenging task.
In this work, we take up a similar challenge
of developing a sentiment analysis model that
can work with English-Tamil code-mixed data.
The proposed work tries to solve this by using
bi-directional LSTMs along with language tag-
ging. Other traditional methods, based on clas-
sical machine learning algorithms have also
been discussed in the literature, and they also
act as the baseline systems to which we will
compare our Neural Network based model.
The performance of the developed algorithm,
based on Neural Network architecture, gar-
nered precision, recall, and F1 scores of 0.59,
0.66, and 0.58 respectively.

1 Introduction

Sentiment analysis is the interpretation and classi-
fication of emotions (positive, negative, and neu-
tral) within text data using text analysis techniques.
It is one of the most important research areas in
the domain of Natural Language Processing (NLP)
and has garnered much attention in the recent past.
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Throughout the years, multiple state-of-the-Art sen-
timent analysis models have been developed for the
well known European languages, using classical
Machine Learning (ML) algorithms as well as the
recently developed Neural Network (NN) models.
In contrast, very few such models have been de-
veloped for Indian languages, due to their lower
digital footprint, which results in the lack of anno-
tated data. Also, various pre-processing tools like
Parts-of-Speech (POS) taggers, tokenizers, parsers,
etc., for Indian languages, are not readily available
or are not of competitive quality. Although, recent
advances have been made for the Indian languages
that are spoken by the majority of the population,
like Hindi and Bengali, the same cannot be said for
under-resourced languages such as, Tamil, Telugu,
and Malayalam. For over 2600 years, recorded
Tamil literature has been documented. Sangam lit-
erature, the earliest period of Tamil literature, is
dated from around 600 BC- 300 AD. Among the
Dravidian languages, Tamil has the oldest existing
literature. Tamil is the oldest living language in
India.

Moreover, with the advent of social media, sen-
timent analysis research has become even more
wide-spread (Mahata et al., 2020; Garain et al.,
2020) as it takes into account conversations of cus-
tomers around the social space and puts them into
context. But, in the context of the Indian subconti-
nent, social media texts are not in one language and
are largely code-mixed in nature. This is because
India, has had much foreign acquaintance histori-
cally, and this has led the diaspora to adopt English
as one of their official languages. Due to this, much
of the Indian population are familiar with English
as well as one or more regional languages (Mahata
et al., 2019). This leads to communication in sen-
tences, which contain more than one language in
the same phrase (Soumil Mandal and Das, 2018).

Furthermore, in a code-mixed communication,
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words of different languages are generally written
in Roman script, which leads to the formation of
complex syntactical structures that are difficult to
parse with traditional NLP tools. While traditional
sentiment analysis models can model themselves
on social media texts in one language, the same
cannot be said for texts that are code-mixed in na-
ture and also comprised of Indian low-resourced
languages.

The proposed approach aims to mitigate this re-
search problem for English-Tamil code-mixed texts
and uses Bi-Directional Long-Short-term-Memory
(LSTM)s (Hochreiter and Schmidhuber, 1997) to
tag the texts with their respective sentiment. Lan-
guage tagging of individual words was used as
additional features while training the classification
model. Moreover, the training corpus was passed
through FastText (Bojanowski et al., 2016) embed-
ding, to map the semantically similar words in a
common 3D space. This mapping was also used
to build the classification system. The designed
model, when evaluated on test data, garnered an F1
score of 0.58.

Other baseline sentiment analysis models were
also developed using classical ML algorithms and
were used to compare the quality of the proposed
algorithm developed by using NNs.

The rest of the paper is organized as follows.
Section 2 describes some of the previous research
work conducted on the domain of language identifi-
cation and sentiment analysis of code-mixed texts.
Section 3 describes the training and the test data
used to develop and analyze our model. Section
4 introduces the model developed for identifying
languages of individual words in a code-mixed sen-
tence. Also, it describes our developed model and
all the baseline models that were developed using
traditional ML algorithms.Finally, section 5 and
6 deals with the evaluation of our model and the
concluding remarks.

2 Related Work

Social media has become the voice of many people
over the decades and it has special relations with
real-time events. With its rise, a lot of data is be-
ing generated every day and information extraction
from such data has become an important research
area. Also, the multi-lingual speaker, who prefers
to communicate in more than one language, when
expressing their opinions, generates a new kind of
language, known as code-mixed language. Since,
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these kinds of data are more or less always writ-
ten in the Roman script, analyzing these kinds of
data, with help of NLP tools, becomes even more
difficult.

Over the years, many experiments have been
performed on code-mixed data. These include lan-
guage identification, sentiment analysis, etc., to
name a few. Language identification tasks have
been earlier performed on various language pairs,
such as Spanish-English (Negrén Goldbarg, 2009),
French-English (Voss et al., 2014), Hindi-English
(Vyas et al., 2014; Das and Gambéck, 2014) and
Bengali-English (Das and Gambéck, 2014). While
these experiments were conducted with the help
of dictionary word matching and ML-based algo-
rithms such as Support Vector Machines (SVM),
word-based logistic regression classifiers, and La-
tent Direchlet Allocation (LDA) (Blei et al., 2003),
we use more state-of-the-art deep learning ap-
proaches to achieve the same.

Also, sentiment analysis or opinion mining from
code-mixed data is a trivial task because

* Generally, code-mixed data is noisy in nature
and requires cleaning and normalization.

* It needs several steps such as language identi-
fication and POS tagging.

* There is no sentiment annotated code-mixed
lexicon available for any language pairs.

* The available code-mixed datasets are small
in size to perform any unsupervised classifica-
tion.

Sentiment analysis of Hindi-English code-mixed
was performed by Joshi et al. (2016) which used
sub-word level representations in LSTM archi-
tecture to perform it. Shalini et. al. (Shalini
et al., 2018), attempted a case-study on sen-
timent analysis of English-Kannada, English-
Hindi, and English-Bengali texts using various ma-
chine and deep learning methods settings, like i.
Doc2Vec+SVM, ii. FastText+Softmax, iii. Bi-
LSTM+SoftMax and iv. CNN+SoftMax. Their
reported results showed better accuracy when using
deep learning methods as compared to traditional
machine learning methods.

Our work, on the other hand, is an amalgamation
of all the methods pointed out earlier and incorpo-
rates language identification modules, the usage
of FastText embeddings, and Bi-LSTM cells to
develop the deep learning model.



3 Data

The data for building the sentiment analysis model
for English-Tamil code-mixed data was collected
from the “Dravidian-CodeMix - FIRE 2020”!
shared task. The organizers of the task provided us
with Tamil-English and Malayalam-English code-
mixed text data, derived from YouTube video com-
ments. The dataset contained all the three types
of code-mixed sentences — Inter-Sentential switch,
Intra-Sentential switch, and Tag switching and had
five output labels; Positive, Negative, Mixed Feel-
ings, Not Tamil, and Unknown State. Most com-
ments were written in Roman script with either
Tamil / Malayalam grammar with English lexi-
con or English grammar with Tamil / Malayalam
lexicon. Some comments were written in Tamil /
Malayalam script with English expressions in be-
tween. Further, the English-Tamil dataset was di-
vided into training, validation, and test data which
had 11,335, 1,260, and 3,149 code-mixed sentence
instances respectively.

4 Framework

After we collected the English-Tamil code-mixed
labeled dataset, the initial pre-processing steps in-
cluded the removal of extra characters to clean
the data. The extra characters that were re-
moved/cleaned included

* Removing mentions

Removing punctuation
Removing URLs

Contracting extra white space

Extracting words from hashtags

After the pre-processing step, we proceeded with
tokenizing the cleaned sentences using the NLTK?
library. Subsequently, we used this data to train
FastText embedding. This was done, to map the
words with similar meaning and context, close to
each other in a 3D space. The skip-gram model
was used instead of the continuous-bag-of-words
(CBOW) model as skip-gram works best for low
data sizes. The model took into account character
n-grams from 3 to 6 characters. Using the trained
model, we were able to extract word vectors of size
'https://dravidian-codemix.github.io/

2020/
“https://www.nltk.org/

30

100. These word vectors were preserved to be used
as input for our sentiment analysis model.

4.1 Language Identification

Apart from providing our model, with the sequen-
tial word vectors of sentences, we also decided on
providing an extra input in the form of language
tags of every word of the sentences. For this, we de-
veloped a language identification system, that was
trained to classify individual words, written in Ro-
man script, as either English or Tamil. To achieve
this, we used the character-level LSTM architec-
ture put forward by Mandal et al. (2018). This is a
model having stacked LSTM of sizes 193-128-128-
1, in order where 193 is the input dimension while
1 is the output dimension.

The training data was acquired by concatenat-
ing different datasets for both English and Tamil.
For the English data, we used the words from the
NLTK corpus, that contained 2,34,377 unique En-
glish words. For the Tamil data, we used the data
from Google Dakshina Dataset’. This dataset con-
tained 48,998 Tamil words, transliterated in Ro-
man script. After adding up both the datasets,
we were able to gather 2,83,332 words. Of this,
3,35,792 words were used for the training data and
the rest 5,000 words were used as the test data.
Also, since the data labels were imbalanced, we
used the class_weight feature of sklearn* package
to assign class weights.

The schematic of the developed language identi-
fication model is shown in Figure 1. After testing
the model with 5,000 words, the model returned
an accuracy of 96.89%. The other metrics for the
model are shown in Table 1.

Maetrics Value
Accuracy 96.89%
Precision 0.94

Recall 0.96

F1-Score 0.95

Table 1: Accuracy metrics of the Language Identifica-
tion model.

‘https://github.com/
google-research-datasets/dakshina

*nttps://scikit-learn.org/stable/
modules/generated/sklearn.utils.\class_
weight.compute_class_weight.html
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Figure 1: Classification model for language identifica-
tion.

4.2 Sentiment Classification

Using the language identification model, we were
able to classify the words of the validation and the
training data into either English or Tamil. Now, the
next step was to develop the sentiment classifica-
tion model which was to be designed for taking two
inputs; i. the individual words of the code-mixed
tweets and ii. the language tags of the individual
words in the code-mixed tweets. The vectors of the
individual words of the training data, as discussed
earlier, were extracted from the already trained
FastText embedding file. Thereafter, vectors of sen-
tences of the train and validation dataset were ex-
tracted from the trained embedding. The language
tags and the word vectors were merged using a
Concatenation layer and were given as input to a
Bi-Directional LSTM cell. The context vector was
then mapped to the output labels with the help of a
Dense layer.

The schematic of the model is shown in Figure 2.
Other parameters of the model are as follows.

* batch size: 32

* epochs: 50

* optimizer: adam

* loss: sparse categorical cross-entropy
* validation split: 0.1

On validating the developed model using a val-
idation split of 0.1 (1,260 sentences), it garnered
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Figure 2: Code-Mixed Sentiment Analysis model.

accuracy and F1-Score of 70.42% and 0.63 respec-
tively. We also trained three other models, where
the basic architecture was the same, the difference
being the usage of LSTM/Bi-Directional LSTM
and language tag features. The models were

* Bidirectional LSTM without the language tag
feature.

* LSTM with the language tag feature.
* LSTM without the language tag feature.

The accuracy and F1-Score of every model are
shown in Table 2.

4.3 Baseline Models

For developing the baseline models, we decided on
using traditional ML algorithms. The algorithms
chosen were,

* Naive Bayes algorithm

» Logistic Regression algorithm

* Support Vector Machine algorithm
* Random Forest algorithm

Four types of models with different features were
selected to develop the models. Count Vectorizer,
which converts a collection of text documents to a



Model  Bi-LSTM+In tag Bi-LSTM LSTM+Intag LSTM
Accuracy 70.42% 70.82% 70.62% 70.22%
F1-Score 0.63 0.61 0.62 0.62
Precision 0.62 0.59 0.63 0.62

Recall 0.70 0.71 0.71 0.70

Table 2: Comparison of accuracy scores of the developed models built using NN architecture.

Model Algorithm Features Accuracy Precision Recall F1-Score
cv Word 65.23% 0.52 0.65 0.58
NB Word+Ln Tag  69.20% 0.55 0.69 0.61
TF-IDF Word 64.96% 0.51 0.65 0.57
Word+Ln Tag  69.68% 0.56 0.70 0.62
cv Word 65.22% 0.51 0.65 0.57
LR Word+Ln Tag  68.65% 0.53 0.69 0.60
TF-IDF Word 66.54% 0.53 0.67 0.59
Word+Ln Tag  70.23% 0.56 0.70 0.62
cv Word 65.34% 0.52 0.65 0.58
SVM Word+Ln Tag  68.88% 0.53 0.69 0.60
TF- Word 65.89% 0.52 0.66 0.58
IDF Word+Ln Tag  69.44% 0.53 0.69 0.60
cv Word 65.12% 0.49 0.65 0.56
RF Word+Ln Tag  69.76% 0.54 0.70 0.61
TF-IDF Word 64.27% 0.51 0.64 0.57
Word+Ln Tag  69.60% 0.53 0.70 0.60

Table 3: Comparison of accuracy scores of the developed models built using ML algorithms.

matrix of token counts was used as a feature. This
implementation produces a sparse representation
of the counts. Since we did not provide an a-priori
dictionary and did not use an analyzer that does
some kind of feature selection, the number of fea-
tures was equal to the vocabulary size found by
analyzing the data.

For the second model, we used the TF-IDF Vec-
torizer, with maximum features of 5000, where it
converts a collection of raw documents to a ma-
trix of TF-IDF features. We used the 2-gram and
3-gram range for this.

Also, for the third and the fourth model, the
same features, Count Vectorizer and TF-IDF Vec-
torizer were used but in this case, we went for data
augmentation, where the input was changed from
words only to the form of Word_LanguageT ag.

On validation, the accuracy metrics garnered by
the developed models, are shown in Table 3.

5 Evaluation

From Tables 2 and 3, we can see that though the
ML and DL models perform neck-in-neck, but still,
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we preferred the DL model, developed using Bidi-
rectional LSTM’s and language tag feature as it
garnered the highest F1-Score. This model was
then tested using 3,149 test data, provided by the
shared task organizers. The results of the testing
phase of the selected model are quantified in Table
4.

Model Precision Recall F1-Score
BIRLSTM+ ) 59 0.66 0.58
In tag

Table 4: Final evaluation of the model, developed using
Bidirectional LSTMs and Language Tag features.

6 Conclusion

In the current work, we attempted to solve the prob-
lem of Sentiment Analysis of code-mixed English-
Tamil sentences. Our system was based on using
Bi-Directional LSTM along with Language Tag
features. Also, FastText embedding was used to
generate word vectors to train the model. For pre-
dicting the language tags, another deep learning



system, based on character embedding was also
developed. Other models, based on traditional ML
algorithms were also developed that was used to
compare our developed model. Our system, when
evaluated on the test data, garnered an F1 score of
0.58. As future work, we would like to increase
this data, as deep learning algorithms tend to work
well with higher amount of data and use state-of-
the-art Neural Network architectures, like BERT,
RoBERTj, etc., on this data, taking into advantage
the concept of matrix and embedded language, Sen-
tiWordNet, and other NLP features.
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