
Advancing Neural Question Generation for Formal Pragmatics:
Learning when to generate and when to copy

Haemanth Santhi Ponnusamy, Madeeswaran Kannan,
Kordula De Kuthy, and Detmar Meurers

SFB 833, Project A4
University of Tübingen

Abstract

Question generation is an interesting challenge
for current neural network architectures given
that it combines aspects of language meaning
and forms in complex ways. The systems
have to generate question phrases appropri-
ately linking to the meaning of the envisaged
answer phrases, and they have to learn to gen-
erate well-formed questions using the source.

Complementing the substantial strand of re-
search on question generation in application
contexts, some recent work also highlighted
the role that questions and question generation
can play conceptually in formal pragmatics for
linking the information structure of sentences
to the discourse structure of texts in so-called
Question-under-Discussion (QuD) approaches
(De Kuthy et al., 2020).

In this paper, we show that the sequence to
sequence architecture employed in the previ-
ous work fails to capture a key property of
the task: the required question-answer congru-
ence ensures that the lexical material needed
for the question is explicitly given by the an-
swer generated from. Extending the archi-
tecture with a pointer component helps over-
come this shortcoming. Second, we enrich the
model with part-of-speech and semantic role
information to improve question phrase gen-
eration. The resulting approach quantitatively
advances the state of the art in terms of BLEU
scores and question well-formedness, and we
qualitatively discuss key linguistic characteris-
tics of the generated question.

1 Introduction

Question generation, the task of creating natural
questions for a given sentence or paragraph, is a
challenging task with potentially many practical ap-
plications – from question answering, via dialogue
systems, to reading comprehension tasks. Follow-
ing the first, rule-based QG systems, the recent

state-of-the-art approaches are generally based on
neural networks. The task of QG is typically formu-
lated as a sequence-to-sequence (seq2seq) learning
problem in which a sentence is mapped to a corre-
sponding question (cf., e.g., Pan et al., 2019).

In formal pragmatics, questions also play an in-
creasingly prominent role in so-called Questions-
under-Discussion (QuD, Roberts, 2012; Velleman
and Beaver, 2016) approaches. Here, questions are
used to make explicit the interface between the in-
formation structure of a sentence and the particular
discourse structure that the sentence can function
in. Under this QuD perspective, for every sentence
in a text, a question needs to be formulated – and
indeed explicit guidelines have been defined to sup-
port reliable manual QuD annotation (Riester et al.,
2018). In a recent paper, De Kuthy et al. (2020)
argue that such question generation should be auto-
mated to support the analysis of large corpora, and
they propose a seq2seq neural network approach
to generate all potential questions for a given sen-
tence. Their approach learned to (often) predict the
correct question word for a given answer phrase
and generated questions that correctly reflect the
word order properties of questions in German.

While this result confirms that neural networks
can be successfully trained to generate meaningful,
well-formed questions to pursue a formal pragmatic
vision, there are clear challenges for such a seq2seq
architecture that is supposed to generate questions
for any type of large data set. One problem are
rare or unknown words that have to be predicted.
In most neural generation architectures, words are
the basic input and output tokens. Pretrained word
embeddings are used to initialize the token embed-
ding matrix and generally a fixed vocabulary is
used for both input and output sequences. With a
restricted vocabulary, given the Zipfian distribution
of words in language use, in any authentic corpus
material serving as input there are likely to be rare



Am
on

Rosenmontag
Shrove monday

haben
have

die Kinder
the kids

zu
too

viel
much

Krapfen
doughnuts

beim
at

Karnevalsumzug
carnival parade

in
in

Mainz
Mainz

gegessen
eaten

.

Wer
who

hat
has

am
on

Rosenmontag
Shrove monday

zu
too

viel
much

Krapfen
doughnuts

beim
at

Karnevalsumzug
carnival parade

in
in

Mainz
Mainz

gegessen
eaten

?

Figure 1: An example showing identical words in source sentence and question (with solid blue links) and the
question word and subject-verb agreement requiring changes in the question formulation (dashed green relation)

or unknown words that are not part of the fixed
vocabulary and therefore cannot be predicted in the
output layer, the generated question. This indeed
is a major issue mentioned for the question genera-
tion approach of De Kuthy et al. (2020). To over-
come this problem, they implemented an ad-hoc
post-processing step: All generated questions are
checked for markers indicating the places where an
out-of-vocabulary token appears. A heuristic then
tries to identify that missing word in the source sen-
tence and insert it in the right place of the output.

When we conceptually consider the task of ques-
tion generation from source sentences, this is a
problem that should not arise – after all, the source
sentence is explicitly provided and the words in
the question to be generated can be selected from
that source material, to which the question words,
which can be drawn from a fixed set of language
expressions for a given language, need to be added.
So the task of generating a question based on a
given sentence conceptually consists of two sub-
tasks: (i) Identifying the material that is identical
between source sentence and question and can sim-
ply be copied over, and (ii) predicting the new ma-
terial appearing in the question, in particular the
correct question words. This is illustrated by the
sentence-question pair in Figure 1. In that exam-
ple, the specialized carnival terminology, Karneval-
sumzug and Rosenmontag, are typical rare words,
and the use of the city name Mainz illustrates the
occurrence of named entities.

A related problem has been discussed in recent
work for question generation (Zhao et al., 2018)
and for text summarization (See et al., 2017). (Zhao
et al., 2018) propose to extend a seq2seq attention
model with a pointer mechanism in order to im-
prove their task of paragraph-level QG. They show
that their model with the copy mechanism can learn
to generate some words in a question and to copy
others from the input text. But they do not pro-

vide any details about which parts of the question
are copied and which are generated and in which
way the copy mechanism improves the generated
questions. (See et al., 2017) observe that baseline
seq2seq models for summarization often replace an
uncommon (but in-vocabulary) word with a more
common alternative and fail to reproduce out-of-
vocabulary words. They show that the copy mecha-
nism of their pointer-generator model overcomes
both these problems, but again they do not provide
any details based on which information the model
chooses to copy or generate the different parts of
the sentences in the summarization.

In this paper, we adopt a pointer-based architec-
ture for the generation of questions in pursuit of
the formal pragmatic vision of generating QuDs
for every sentence in a text. Such an architecture
turns out to be more successful than the seq2seq
based model, replacing the ad-hoc heuristic post-
processing step used in previous work into a design
feature of the neural network architecture. In ar-
chitecturally separating the copying from the gen-
eration component, it also supports the integration
of further linguistic information needed to success-
fully determine which parts of the sentence can be
copied over to the question and which parts have
to generated, as for examples the question phrase.

For the mentioned example, Figure 2 identifies
the minimal case, i.e. the rare or unknown words
that should be copied using the pointer component,
whereas other words can or need to be generated to
fit the output context, such as the question word wer
(who) and the subject-verb agreement that needs to
be adjusted from plural haben (have) to singular
hat (has). We will show in a detailed analysis
of the attention scores that our model learns to
generate material in the question only in four cases:
question word, question mark, lower-cased first
word and verb form. All other material from the
source sentence are copied over to the question.



Am
on

Rosenmontag
Shrove monday

haben
have

die Kinder
the kids

zu
too

viel
much

Krapfen
doughnuts

beim
at

Karnevalsumzug
carnival parade

in
in

Mainz
Mainz

gegessen
eaten

.

Wer
who

hat
has

am
on

Rosenmontag
Shrove monday

zu
too

viel
much

Krapfen
doughnuts

beim
at

Karnevalsumzug
carnival parade

in
in

Mainz
Mainz

gegessen
eaten

?

Figure 2: Example illustrating minimal identification of rare words and named entities in support of QG

The paper is structured as follows: After provid-
ing some background on the different architectures
used for neural QG, in section 3 we spell out the
specifics of the question-answer data we use to
train the different QG models. In section 4, we
present our neural QG models. As a baseline, we
train a seq2seq model, similar to the one presented
in (De Kuthy et al., 2020) and compare this to two
versions of a pointer-based neural model, a baseline
model and a model extended by two word-level fea-
tures, POS tags and semantic role labels. The meth-
ods are all evaluated in quantitative terms using
BLEU scores. For a qualitative analysis, we verify
for how many of a random set of 500 sentences the
different models produce how many well-formed
questions and provide some examples illustrating
the pros and cons of the different models.

2 Related Work

Generating questions is a challenging task regard-
less of the language. Prior to the advent of deep
neural networks, question generation was largely
restricted to transformation-based methods that
leverage linguistic characteristics and syntactic
structures (Liu et al., 2010; Curto et al., 2012; Heil-
man, 2011). These methods are inherently lim-
ited in that they are designed to generate questions
based on pre-programmed rules that manipulate
parse trees and scale very poorly with linguistic
complexity. Deep neural methods, on the other
hand, learn - from large sets of data - latent rep-
resentations of syntactic and semantic language
characteristics, amongst others.

Framing question generation as a sequence
learning task enables one to exploit sequence-to-
sequence architectures (Sutskever et al., 2014) that
have seen significant success in neural machine
translation. Sequence-to-sequence (seq2seq) archi-
tectures consist of two networks: 1) an encoder
network that learns a representation of the source
sequence, and 2) a decoder network that generates

target words one at a time. This architecture was
improved upon by incorporating local and global
attention mechanisms (Bahdanau et al., 2014; Lu-
ong et al., 2015) that modulate the contribution of
each token (in the source sequence) to the tokens
in the target sequence.

A recent survey of neural question generation
research (Pan et al., 2019) shows that the above-
mentioned architectures form the basis of many
NQG models. Du et al. (2017) condition a gen-
erative model on target answers by encoding the
position of the answer in the context as an input
feature. Sun et al. (2018) split the QG task into first
determining the question type and then generating
the question using a template-based approach with
two seq2seq models. Kumar et al. (2018) lever-
age linguistic features such as POS and NER tags
and deep reinforcement learning techniques such
as policy gradient methods to add additional task-
specific rewards to the training objective. Rare
words present a challenge to generative NLP mod-
els, and NQG models are no exception. Gulcehre
et al. (2016) propose a neural model for machine
translation that uses a MLP in tandem with dual
softmax layers to determine when to predict a word
from a fixed vocabulary and when to point to one in
the source sentence. Gu et al. (2016) and See et al.
(2017) showed the efficacy of pointer-generator
networks at the task of abstractive text summariza-
tion. Zhao et al. (2018) adapt the same network by
augmenting the encoder with gated self-attention
and the decoder with a maxout pointer mechanism
to deal with larger contexts. While all these im-
plementations of pointer-based mixture models ex-
emplify their ability to solve the unknown word
problem and the advantage of copying words from
the context, it is still unclear how exactly the model
adapts to the task at hand, i.e., how the competing
generator and pointer networks contribute to the
final score and under what circumstances one is
preferred over the other.



We employ the task proposed by De Kuthy et al.
(2020), in which question generation is defined
in the context of the formal pragmatic QuD ap-
proach where a question is generated from every
sentence in a given text. We replace their sequence-
to-sequence model and post-process copy step with
a unified pointer-generator network that signifi-
cantly outperforms the former. We also provide
detailed insight into the generation and copying
characteristics of the latter.

3 Data

Since question generation has primarily been ap-
proached as a sub-task of question answering, a
large majority of the relevant corpora are gener-
ally tailored as QA datasets first and foremost.
While datasets such as SQuAD (Rajpurkar et al.,
2016), Coqa (Reddy et al., 2019), Quac (Choi et al.,
2018) can nevertheless be used to train and evalu-
ate pure question generation models, they unfortu-
nately come up short in the context of our task.

The most obvious downside to datasets such as
the above is that nearly all of them are exclusively
available in English. The few that are multilingual
such as XQUAD (Artetxe et al., 2019) and MLQA
(Lewis et al., 2019) are too limited in size to be
used for training neural models since they are orig-
inally intended to be used as evaluation datasets
for question generation/question answering mod-
els. This limitation, however, is not insurmount-
able; one could leverage machine translation1 to
automatically translate one of the above corpora to
the target language to create a potentially usable
dataset. An alternative, more active approach could
involve developing a neural model that is able to
jointly translate, align and generate questions (Car-
rino et al., 2019). Unfortunately, both approaches
have a significant disadvantage in that their outputs
can be expected to be of significantly lower qual-
ity then human-generated output. This can in turn
increase the potential of affecting the model’s per-
formance in the actual downstream task of question
generation due to the increased error propagation
at the translation stage.

The second downside to using corpora such
as SQUAD is that they are designed to provide
paragraph-level contexts for questions. Each ques-
tion can potentially have multiple ground-truth an-
swers that can be spans of any sentence in the con-
text. This fundamentally changes, i.e., decreases

1https://cloud.google.com/translate

the Q-A-Congruence of the question-answer pair,
making them unsuitable for the generation of
assertion-level questions, as is our goal here, fol-
lowing the approach proposed in (De Kuthy et al.,
2020) for the generation of sentence-level QUDs.

Given the above-mentioned limitations of us-
ing pre-existing QA corpora, we obtained the Ger-
man QA answer corpus descrined in (De Kuthy
et al., 2020). This corpus of 5.24 million sentence-
question-answer triples is based on sentences from
the German newspaper Die Tageszeitung (taz) 2

and questions were generated using the only avail-
able comprehensive transformation-based question
generation system (Kolditz, 2015) for German.

Due to inherent limitations of transformation-
based approaches to question generation, such sys-
tems are not always capable of producing a ques-
tion for a given sentence. Furthermore, the system
in question only contains a limited domain of trans-
formation rules that mainly selects NPs and PPs as
answer phrases and transforms sentences into wh-
questions asking about subject and object NPs and
several types of PP adjuncts and adverbial phrases.
The example in (1) illustrates some types of ques-
tions and answer phrases that are produced by the
transformation rules and that are part of the QA
corpus created by (De Kuthy et al., 2020).

(1) a. Die Kinder essen am Sonntag Kuchen im Garten.
The children eat cake in the garden on Sunday.

b. Wer isst am Sonntag Kuchen im Garten. - Die Kinder
Who eats cake in the garden on Sunday - the children

c. Was essen die Kinder am Sonntag im Garten? -
Kuchen
What do the children eat in the garden on Sunday? -
cake

d. Wann essen die Kinder Kuchen im Garten? - am
Sonntag
When do the children eat cake in the garden? - on
Sunday

e. Wo essen die Kinder am Sonntag Kuchen? - im
Garten
Where do the children eat cake on Sunday? - in the
garden

4 Neural Question Generation
Architectures

The task of question generation is formulated as a
sequence learning problem where given a source
sentence or context as the input sequence x1, ..., xn
and a target answer phrase a, the model learns the
conditional probability p(y|x, a) of generating the

2https://taz.de/

https://cloud.google.com/translate
https://taz.de/


target question y1, ..., ym:

log p(y |x, a) =
m∑
j=1

log p(yj | y<j , x, a)

spaCy’s de core news sm model was used
for parsing and tagging the input sentences for both
models. Answer phrase spans were encoded in
IOB format. fastText embeddings (Bojanowski
et al., 2017) were used as pre-trained token em-
beddings. Input and target vocabulary sizes were
fixed to 100K most frequent words in the corpus.

4.1 Sequence-to-sequence Model
The baseline seq2seq model is identical to the one
used by De Kuthy et al. (2020). The input se-
quences to the model are the source sentence’s
word tokens, their part-of-speech tags, and the an-
swer phrase span. Since this architecture does not
implement an explicit mechanism to handle out-of-
vocabulary words, an ad-hoc post-processing pass
is performed on the model’s predictions to auto-
matically resolve OOV tokens by locally aligning
the parses of the source sentence and the predicted
question.

4.2 Pointer Model
Our pointer model is an extension of the work done
by Zhao et al. (2018), who implement a Maxout
pointer mechanism with gated self-attention.3. We
experimented with two variants of input sequences.
In the first variant, the input sequences were re-
stricted to surface form tokens of the source sen-
tence and the span of the answer phrase. Then we
added the parts of speech (POS) and semantic role
labels (SRL) in the next variant. Canonical repre-
sentations of the encoder variants are shown below:

ut = RNN(ut−1, [et, at]) (1)

ut = RNN(ut−1, [et, at, pt, st]) (2)

et is the embedded word tokens of the source
sentence, at answer tagging embedding, pt rep-
resents the POS embedding and st indicates the
embedded semantic role labels. Now the encoder
hidden state ut is computed through the function of
previous encoder hidden state ut−1 and the concate-
nated feature embeddings [et,mt] or [et, at, pt, st].
Further, the hidden states {ût}Mt=1 are refined using

3Unofficial implementation: https://github.com/
seanie12/neural-question-generation

the self-attention. The raw attention scores (Luong
et al., 2015) computed between the encoder hidden
state U and the decoder hidden state dt−1 are used
to compute the copy scores. The general approach
of the copy mechanisms is to treat each word in
the source sentence to be a unique target to point
to and to compute the scores separately. In the end,
the scores of the words that occur repeatedly in the
source sentence are added to get a final copy score.
This leads to an overshoot of the copy scores for
the words that are repeated in the source, resulting
in repeated predictions of the same in the target
sequence. To overcome this issue, only the maxi-
mum copy score of each word is used (Goodfellow
et al., 2013; Zhao et al., 2018). An expression of
the scoring mechanism is shown below:

sccopy(yt) =

{
maxk rt,k, yt ∈ χ;xk = yt

−inf, otherwise

xk is the kth word in the source sequence and yt
is the tth word in the output sequence. χ is the
vocabulary of all words in the input sequence, and
rt,k is the raw attention score between xk and rt.

The scores from the copy mechanism and the de-
coder are softmaxed and combined to get the final
probability distribution over the extended vocab-
ulary containing the OOV tokens. Since the raw
copy and generation scores are added together as a
single vector, the copy module and the generation
module essentially compete with each other for the
final prediction at each timestep.

Hyperparameter Value

Batch size 64
Epochs 10
Encoder RNN Unit Bi-LSTM
Decoder RNN Unit LSTM
Encoder/Decoder Hidden Size 300
Encoder/Decoder Dropout 0.3
Word Embedding Dim 300
Answer Span Embedding Dim 3
POS Embedding Dim 25
SRL Embedding Dim 25
Min Decode Step 8
Max Decode Step 100

Table 1: Pointer Model Hyperparameters

5 Evaluation

The seq2seq model and the pointer network were
trained on the same 400K training samples. Valida-
tion and test sets were set to 15K samples each. For
quantitative evaluation, questions predicted by the

https://github.com/seanie12/neural-question-generation
https://github.com/seanie12/neural-question-generation


models were compared to the ground-truth ques-
tions from our QA corpus and their corresponding
BLEU (Papineni et al., 2002) scores were calcu-
lated (Table 2).

Even though the seq2seq models lack a copy
mechanism in their architecture, they adequately
learn to mimic the behaviour by positively bias-
ing the generative probabilities of (in-vocabulary)
words that appear in the source sequence. The post-
processing copy operation, though error-prone, ex-
tends this to out-of-vocabulary words, improv-
ing performance even further. In contrast, the
pointer models unequivocally show that implement-
ing copying directly in the neural architecture im-
proves performance even in the absence of addi-
tional linguistic features such as part-of-speech tags
and semantic role labels.

5.1 Model Comparison

The high BLEU scores for all of our models indi-
cate that the models are all capable to learn the task
of generating questions. To investigate where the
differences and particular strengths of the different
models are, we provide a more in-depth qualita-
tive analysis of the three models. We performed
a manual evaluation of a random set of questions
produced by all our models for the same set of
sentence - answer phrase pairs. The sample set
was obtained by randomly sampling 500 sentences
from the original TAZ corpus. For the compari-
son of our three question generation models, the
500 sentences plus the answer phrases from the
rule-based output described in section 3 were used.
Based on this set of 500 sentences plus answer
phrases, the three neural QG models generated 500
questions each, i.e., one question per sentence -
answer phrase pair. Next, the quality of the gen-
erated questions was manually evaluated by two
human annotators with good annotation agreement
(κ = 0.74), i.e., whether a question is well-formed
and whether there is question-answer congruence
between the question and the source sentence.

For the 500 questions generated by each model,
the baseline seq2seq model shows the worst perfor-
mance with only 31% well-formed questions out of
500. Adding the post-processing step of replacing
OOV words by a word from the source sentence
increased the number of well-formed questions
to 52%. The two pointer architectures produced
well-formed question with improved accuracy: The
baseline pointer model produced 55% well-formed

questions, while the pointer model with POS and
SRL features produced 61% well-formed questions,
the best performance for this sample set. The table
in 3 sums up the results of this evaluation.

Table 4 shows a systematic analysis of the most
frequent errors in the 500 sample questions made
by the three models. One can, for example see,
that while the questions from seq2seq model still
contained unknown words in 47 cases (even after
the post-processing), the questions of both pointer
models did not have this problem anymore.

5.2 Copying vs Generation

The pointer model with attention and a copy mech-
anism successfully learned to point to the OOV to-
kens from the input string and copy them over to the
predicted question. The generated questions thus
do not contain any OOV tokens anymore. What is
not obvious right away is whether the pointer ar-
chitecture also learned to point and copy over other
parts of the sentence and to generate only where
really necessary in order to produce a new form.
An investigation of the raw attention scores used
to compute the copy scores that determine whether
a token can be copied over between input and out-
put or needs to be generated showed that indeed
the model learned to simply copy over many parts
of the source sentence into the question. Figure
3 shows a typical sentence-question pair from our
500 sample, containing 4 instances of generated
tokens: Wer question word, hält Infinite verb to
match the subject, deshalb lower case transforma-
tion to the first word and ? question mark.

Figure 4 shows the softmaxed scores of the at-
tention between the previous decoder hidden state
at every timestep to all the encoder hidden states.
Each column here shows the distribution of weights
corresponding to hidden representations of each
word in the input sequence towards the computa-
tion of the context vector. The output token at that
time step is produced as the result of the function
of this context vector and the previous decoder hid-
den state. The tokens with the highest attention
scores in each column indicate the primary focus
of the model before generating the respective out-
put. Since the words Wer, hält, deshalb and ? are
generated in the output and not copied, we can infer
that the hidden states corresponding to the highest
scores in each column have a direct influence in
generating these words. The higher attention on
the word Professor in the input sequence to gener-



Model Training Size Features BLEU-1/2/3/4 Cumulative

seq2seq 500k Word, Ans, POS 84.9/75.0/67.1/60.3 71.25
seq2seq + Copy 500k Word, Ans, POS 93.8/86.5/81.0/76.5 84.24
Pointer 500k Word, Ans 97.0/91.0/86.7/83.4 89.40
Pointer 500k Word, Ans, POS, SRL 98.0/92.9/89.1/86.3 91.45

Table 2: Evaluation results

Deshalb
Therefore

halte
considers

auch
also

Professor Schneider
Professor Schneider

die
the

sofortige
immediate

Stillegung
shut-down

jetzt
now

fuer
as

erforderlich
necessary .

Wer
Who

haelt
considers

auch
also

die
the

sofortige
immediate

Stillegung
shut-down

jetzt
now

deshalb
therefore

fuer
as

erforderlich
necessary ?

Figure 3: A question generation example, highlighting copy and generate decisions

Model Well-formed Questions

Baseline seq2seq 31%
seq2seq + Copy 52%
Baseline Pointer 55%
Pointer + Ling. Features 61%

Table 3: Results for random sample of 500 sentences

Error Type Seq2Seq Ptr1 Ptr2

Question word 88 105 88
Unknown Word 47 0 0
Word Order 40 29 24
Different Word 18 31 15
Missing Word 6 7 6
Verb Form 6 7 5

Table 4: Distribution of error types in the 500 samples

ate the appropriate question word Wer shows that
the model has learned the relationship between the
nature of answer phrase Professor Scheider and the
type of the question phrase.

To illustrate how the model uses information
from the attention scores in the decoding step and
also to compute copy scores, Figure 5 shows the
raw attention scores between the previous decoding
hidden state at every timestep to each of the encod-
ing hidden states corresponding to the input tokens.
The maximum scores in each column directly cor-
respond to the score used by the copy module to
compete with the generated scores. The streaks of
high scores as diagonals shows that a chunk of the
source sentence is copied with high support from
the attention. This behaviour of replicating most of
the information from the source sentence instead
of generating new tokens shows that the model has

Figure 4: Softmaxed attention weight used for comput-
ing the context vector as input to each decoding step

adapted to the nature of the task including the right
decision between copying or generating based on
linguistic features.

We can now also precisely determine how often
the pointer model is generating and copying and
what type of tokens are being generated. As shown
above, the decision for predicting each word in the
output sequence is influenced by their intermedi-
ate scores. We can thus categorize the decisions
into four categories: Copy - Only the copy module
has suggested the final prediction with high confi-
dence, Generate - Only the generate module has



Figure 5: Raw decoder attention scores used directly as
the copy scores

suggested the final prediction with high confidence,
Both - Both the modules has suggested with high
confidence and Neither - Neither of the modules
suggested the final prediction with high confidence
but jointly achieved the final prediction.

Category Avg. % of a question

Copy 79.32%
Generate 17.57%
Neither 2.12%
Both 0.48%

Table 5: Direct influence of the modules on the final
prediction of each question

Table 5 shows that around 79% parts of the ques-
tions are being copied and only around 17− 18%
being generated. 2% parts of the question are be-
ing jointly predicted by both the generation and the
copy modules and just less than 1% are mutually
agreed by both the modules. We also determined
that the model only generates tokens in four cases:
Question word, question mark, lower-cased first
word and verb form.

5.3 Greedy vs Beam search
We here briefly discuss the effect of different se-
quence search strategies like beam search vs the
greedy approach to achieve a balance between the
quality of the generated output and the computa-
tional cost. It has been observed that the beam
search strategy might not be advantageous in all

the cases of sequence generation. (Cohen and Beck,
2019) highlighted the effect of degrading perfor-
mance of the sequence generation models with the
increase in beam width. In our model, we face a
similar scenario, where the increase in beam width
during the decoding stage harms the model’s per-
formance both quantitatively and qualitatively.

Beam width BLEU (1/2/3/4) (Cummulative)

1 (Greedy) 98.0/92.9/89.1/86.3 91.45
3 96.7/91.2/87.4/84.5 89.83
5 96.0/90.4/86.4/83.5 88.94
7 95.7/90.0/85.9/83.1 88.54
15 95.3/89.5/85.4/82.5 88.05

Table 6: Degrading effect of beam width on the pointer
model’s performance

In Table 6, the model version with the greedy
search (beam width=1) approach performs much
better than the other versions with the increased
beam width. This behaviour is due to the nature of
our task, which requires predominantly the exact
words to be copied from the source sentence into
the output sequence. As we have shown above,
the model prefers to copy around 79% of the ques-
tion with very high confidence. So choosing an
alternative for the exact words that are supposed
to be copied and choosing words that maximize
the overall probability in subsequent steps lead to a
mispredicted sequence. This error mainly happens
when the copy module suggests the words with
relatively lesser confidence.

6 Conclusion and Outlook

Given the task of question generation in a formal
pragmatics context, we successfully trained and
tested two different neural network architectures
on a dataset of natural question-answer pairs from
a German newspaper corpus. We showed that a
pointer-based architecture is advantageous for this
task since it can employ task specifics to overcome
problems with unknown or rare words, learning to
copy those words from the input. We extended the
approach by integrating information designed to
improve those aspects that need to be generated,
especially the appropriate question words. The
quantitative evaluation using BLEU scores and an
in-depth qualitative evaluation showed that indeed
the pointer-based model with additional linguistic
features is the best performing system for this task.



References
Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.

2019. On the cross-lingual transferability of mono-
lingual representations. CoRR, abs/1910.11856.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Casimiro Pio Carrino, Marta R Costa-jussà, and
José AR Fonollosa. 2019. Automatic spanish trans-
lation of the squad dataset for multilingual question
answering. arXiv preprint arXiv:1912.05200.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. Quac: Question answering in context.
arXiv preprint arXiv:1808.07036.

Eldan Cohen and Christopher Beck. 2019. Empirical
analysis of beam search performance degradation in
neural sequence models. In International Confer-
ence on Machine Learning, pages 1290–1299.

Sérgio Curto, Ana Cristina Mendes, and Luı́sa Coheur.
2012. Question generation based on lexico-syntactic
patterns learned from the web. Dialogue & Dis-
course, 3(2):147–175.

Kordula De Kuthy, Madeeswaran Kannan, Hae-
manth Santhi Ponnusamy, and Detmar Meurers.
2020. Towards automatically generating questions
under discussion to link information and discourse
structure. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
Barcelona, Spain.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. arXiv preprint arXiv:1705.00106.

Ian Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Maxout
networks. In International conference on machine
learning, pages 1319–1327. PMLR.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148.

Michael Heilman. 2011. Automatic factual question
generation from text. Ph.D. thesis, Carnegie Mellon
University.

Tobias Kolditz. 2015. Generating questions for Ger-
man text. Master thesis in computational linguistics,
Department of Linguistics, University of Tübingen.

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2018. A framework for automatic question
generation from text using deep reinforcement learn-
ing. arXiv preprint arXiv:1808.04961.

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2019. Mlqa: Eval-
uating cross-lingual extractive question answering.
arXiv preprint arXiv:1910.07475.

Ming Liu, Rafael A Calvo, and Vasile Rus. 2010. Auto-
matic question generation for literature review writ-
ing support. In International Conference on Intelli-
gent Tutoring Systems, pages 45–54. Springer.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Liangming Pan, Wenqiang Lei, Tat-Seng Chua,
and Min-Yen Kan. 2019. Recent advances
in neural question generation. arXiv preprint
arXiv:1905.08949.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Arndt Riester, Lisa Brunetti, and Kordula De Kuthy.
2018. Annotation guidelines for questions under
discussion and information structure. In Evangelia
Adamou, Katharina Haude, and Martine Vanhove,
editors, Information structure in lesser-described
languages: Studies in prosody and syntax, Studies
in Language Companion Series. John Benjamins.

Craige Roberts. 2012. Information structure in dis-
course: Towards an integrated formal theory of prag-
matics. Semantics and Pragmatics, 5(6):1–69.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun
Ma, and Shi Wang. 2018. Answer-focused and

http://arxiv.org/abs/1910.11856
http://arxiv.org/abs/1910.11856
https://doi.org/10.5087/dad.2012.207
https://doi.org/10.5087/dad.2012.207
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6


position-aware neural question generation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3930–
3939.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Leah Velleman and David Beaver. 2016. Question-
based models of information structure. In Caroline
Féry and Shinichiro Ishihara, editors, The Oxford
Handbook of Information Structure, pages 86–107.
Oxford University Press.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question genera-
tion with maxout pointer and gated self-attention net-
works. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3901–3910.


