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Abstract

Most existing neural network based task-
oriented dialogue systems follow encoder-
decoder paradigm, where the decoder purely
depends on the source texts to generate a
sequence of words, usually suffering from
instability and poor readability. Inspired
by the traditional template-based generation
approaches, we propose a template-guided
hybrid pointer network for the knowledge-
based task-oriented dialogue system, which
retrieves several potentially relevant answers
from a pre-constructed domain-specific con-
versational repository as guidance answers,
and incorporates the guidance answers into
both the encoding and decoding processes.
Specifically, we design a memory pointer net-
work model with a gating mechanism to fully
exploit the semantic correlation between the
retrieved answers and the ground-truth re-
sponse. We evaluate our model on four widely
used task-oriented datasets, including one sim-
ulated and three manually created datasets.
The experimental results demonstrate that the
proposed model achieves significantly better
performance than the state-of-the-art methods
over different automatic evaluation metrics 1.

1 Introduction

Task oriented dialogue systems have attracted in-
creasing attention recently due to broad applica-
tions such as reserving restaurants and booking
flights. Conventional task-oriented dialogue sys-
tems are mainly implemented by rule-based meth-
ods (Lemon et al., 2006; Wang and Lemon, 2013),
which rely heavily on the hand-crafted features,
establishing significant barriers for adapting the
dialogue systems to new domains. Motivated by
the great success of deep learning in various NLP
tasks, the neural network based methods (Bordes

1https://github.com/wdimmy/THPN

et al., 2017; Eric and Manning, 2017; Madotto
et al., 2018) have dominated the study since these
methods can be trained in an end-to-end manner
and scaled to different domains.

Despite the remarkable progress of previous
studies, the performance of task-oriented dialogue
systems is still far from satisfactory. On one hand,
due to the exposure bias problem (Ranzato et al.,
2016), the neural network based models, e.g., the
sequence to sequence models (seq2seq), tend to ac-
cumulate errors with increasing length of the gener-
ation. Concretely, the first several generated words
can be reasonable, while the quality of the gen-
erated sequence deteriorates quickly once the de-
coder produces a “bad” word. On the other hand, as
shown in previous works (Cao et al., 2018; Madotto
et al., 2018), the Seq2Seq models are likely to gen-
erate non-committal or similar responses that often
involve high-frequency words or phrases. These
responses are usually of low informativeness or
readability. This may be because that arbitrary-
length sequences can be generated, and it is not
enough for the decoder to be purely based on the
source input sentence to generate informative and
fluent responses.

We demonstrate empirically that in task-oriented
dialogue systems, the responses for the requests
with similar types often follow the same sentence
structure except that different named entities are
used according to the specific dialogue context.
Table 1 shows two conversations from real task-
oriented dialogues about navigation and weather.
From the navigation case, we can observe that
although the two requests are for different desti-
nations, the corresponding responses are similar
in sentence structure, replacing “children’s health”
with “5677 springer street”. For the weather exam-
ple, it requires the model to first detect the entity
“carson” and then query the corresponding informa-
tion from the knowledge base (KB). After obtaining

https://github.com/wdimmy/THPN
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Table 1: Two example conversations from real dialogues about navigation and weather.

Navigation Weather
User please give me directions to 5677 spring street User what is the temperature of carson on tuesday

Retrieve
q1: direct me to stanford children’s health

Retrieve
q1: the temperature of new york on wednesday

a1: no problem, I will be navigating you to stan-
ford children’s health right now

a1: the temperature in new york on wednesday
will be low of 80f and high of 90f

KB KB
carson: tuesday low of 20f
carson: tuesday high of 40f

Gold no problem, I will be navigating you to
5677 spring street right now

Gold the temperature in carson on tuesday will be
low of 20f and high of 40f

the returned KB entries, we generate the response
by replacing the corresponding entities in the re-
trieved candidate answer. Therefore, we argue that
the golden responses of the requests with similar
types can provide a reference point to guide the
response generation process and enable to generate
high-quality responses for the given requests.

In this paper, we propose a template-guided hy-
brid pointer network (THPN to generate the re-
sponse given a user-issued query, in which the
domain specific knowledge base (KB) and poten-
tially relevant answers are leveraged as extra in-
put to enrich the input representations of the de-
coder. Here, knowledge base refers to the database
to store the relevant and necessary information
for supporting the model in accomplishing the
given tasks. We follow previous works and use
a triple (subject, relation, object) representation.
For example, the triple (Starbucks, address, 792
Bedoin St) is an example in KB representing the
information related to the Starbucks. Specifically,
given a query, we first retrieve top-n answer candi-
dates from a pre-constructed conversational reposi-
tory with question-answer pairs using BERT (De-
vlin et al., 2018). Then, we extend memory net-
works (Sukhbaatar et al., 2015) to incorporate the
commonsense knowledge from KB to learn the
knowledge-enhanced representations of the dia-
logue history. Finally, we introduce a gating mech-
anism to effectively utilize candidate answers and
improve the decoding process. The main contribu-
tions of this paper can be summarized as follows:

• We propose a hybrid pointer network consist-
ing of entity pointer network (EPN) and pat-
tern pointer network (PPN) to generate infor-
mative and relevant responses. EPN copies
entity words from dialogue history, and PPN
extracts pattern words from retrieved answers.

• We introduce a gating mechanism to learn

the semantic correlations between the user-
issued query and the retrieved candidate an-
swers, which reduces the “noise” brought by
the retrieved answers.

• We evaluate the effectiveness of our model
on four benchmark task-oriented dialogue
datasets from different domains. Experimen-
tal results demonstrate the superiority of our
proposed model.

2 Related Work

Task-oriented dialogue systems are mainly stud-
ied via two different approaches: pipeline based
and end-to-end. Pipeline based models (Williams
and Young, 2007; Young et al., 2013) achieve
good stability but need domain-specific knowl-
edge and handcrafted labels. End-to-end methods
have shown promising results recently and attracted
more attention since they are easily adapted to a
new domain.

Neural network based dialogue systems can
avoid the laborious feature engineering since the
neural networks have great ability to learn the la-
tent representations of the input text. However, as
revealed by previous studies (Koehn and Knowles,
2017; Cao et al., 2018; He et al., 2019), the per-
formance of the sequence to sequence model de-
teriorates quickly with the increase of the length
of generation. Therefore, how to improve the sta-
bility and readability of the neural network mod-
els has attracted increasing attention. Eric et al.
(2017) proposed a copy augmented Seq2Seq model
by copying relevant information directly from the
KB information. Madotto et al. (2018) proposed
a generative model by employing the multi-hop
attention over memories with the idea of pointer
network. Wu et al. (2019) proposes a global-to-
locally pointer mechanism to effectively utilize the
knowledge base information, which improves the
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quality of the generated response.
Previous proposed neural approaches have

shown the importance of external knowledge in
the sequence generation (Chen et al., 2017; Zhu
et al., 2018; Yang et al., 2019; Zhang et al., 2019;
Ding et al., 2019), especially in the task-oriented di-
alogue systems where an appropriate response usu-
ally requires correctly extracting knowledge from
the domain-specific or commonsense knowledge
base (Madotto et al., 2018; Zhu et al., 2018; Qin
et al., 2019). However, it is still under great ex-
ploration with regard with the inclusion of exter-
nal knowledge into the model. Yan et al. (2016);
Song et al. (2018) argue that retrieval and gener-
ative methods have their own demerits and mer-
its, and they have achieved good performance in
the chit-chat response generation by incorporating
the retrieved results in the Seq2Seq based models.
Zhu et al. (2018) proposed an adversarial training
approach, which is enhanced by retrieving some
related candidate answers in the neural response
generation, and Ghazvininejad et al. (2018) also
applies a similar method in the neural conversation
model. In addition, in task-oriented dialogue tasks,
the copy mechanism (Gulcehre et al., 2016) has
also been widely utilized (Eric and Manning, 2017;
Madotto et al., 2018), which shows the superiority
of generation based methods with copy strategy.

3 Methodology

We build our model based on a seq2seq dialogue
generation mode, and the overall architecture is ex-
hibited in Figure 1. Each module will be elaborated
in the following subsections.

3.1 Encoder Module

By checking if a word is in the given KB, we di-
vide words into two types: entity words (EW) and
non-entity words (NEW). Taking “what is the tem-
perature of carson on tuesday” as an example, all
words are NEW except for “carson” and “tuesday”.

We represent a multi-turn dialogue as D =
{(ui, si)}Ti=1, where T is the number of turns
in the dialogue, and ui and si denote the ut-
terances of the user and the system at the ith

turn, respectively. KB information is represented
as KB = {k1, k2, · · · , kl}, where ki is a tu-
ple and l is the size of KB. Following Madotto
et al. (2018), we concatenate the previous dia-
logue and KB as input. At first turn, input to
the decoder is [u1;KB], the concatenation of first

user request and KB. For i > 1, previous his-
tory dialog information is included, namely, in-
put is supposed to be [u1, s1, · · · , ui;KB]. We
define words in the concatenated input as a se-
quence of tokens W = {w1, w2, · · · , wn}, where
wj ∈ {u1, s1, · · · , ui,KB} , n is the number of
tokens.

In this paper, we use the memory net-
work (MemNN) proposed in Sukhbaatar et al.
(2015) as the encoder module. The memories
of MemNN are represented by a set of trainable
embedding matrices M = {M1,M2, · · · ,MK},
where K represents the number of hops and each
Mk maps the input into vectors. Different from
Sukhbaatar et al. (2015); Madotto et al. (2018),
we initialize each Mk with the pre-trained em-
beddings2, whose weights are set to be trainable.
At hop k, W is mapped to a set of memory vec-
tors, {mk

1,m
k
2, · · · ,mk

n}, where the memory vec-
tors mk

i of dimension d from Mk is computed by
embedding each word in a continuous space, in the
simplest case, using an embedding matrix A. A
query vector q is used as a reading head, which
will loop over K hops and compute the attention
weights at hop k for each memory by taking the
inner product followed by a softmax function,

pki = softmax

((
qk
)T

mk
i

)
(1)

where pki is a soft memory selector that decides
the memory relevance with respect to the query
vector q. The model then gets the memory ck by
the weighted sum over mk+1,

ck =
∑
i

pkim
k+1
i (2)

In addition, the query vector is updated for the next
hop by qk+1 = qk + ck. In total, we can achieve K
hidden states encoded from MemNN, represented
as C = {c1, c2, · · · , cK}.

Masking NEW in the history dialogue We ob-
serve that the ratio of non-entity words in both
the history dialogue and the expected response is
extremely low. Therefore, to prevent the model
from copying non-entity words from the history di-
alogue, we introduce an array Rh3 whose elements
are zeros and ones, where 0 denotes NEW and 1 for
EW. When wi is pointed to, and if i is the sentinel
location or Rh[i] = 0, then wi will not be copied.

2https://s3-us-west-1.amazonaws.com/
fasttext-vectors/wiki.en.vec.

3The length of Rh equals to that of W .

https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.en.vec
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Figure 1: The overall structure of our model. During test time, given a user query q, we retrieve at most 3 similar
questions to q using BERT from QA Paris repository, and the corresponding answers are used as our answer
templates. The retrieved answers as well as the dialogue history and KB information are then utilized for the
response generation. Especially, we utilize the gating mechanism to filter out noise from unrelated retrieval results.
Finally, words are generated either from the vocabulary or directly copying from the multi-source information
using a hybrid pointer network.

3.2 Retrieval Module

For each dataset, we use the corresponding train-
ing data to pre-construct a question-answer reposi-
tory. In particular, we treat each post-response (ui
and si) in a dialogue as a pair of question-answer.
To effectively retrieve potentially relevant answers,
we adopt a sentence matching based approach, in
which each sentence is represented as a dense vec-
tor, and the cosine similarity serves as the selection
metrics. We have explored several unsupervised
text matching methods, such as BM25 (Robertson
et al., 2009), Word2Vec (Mikolov et al., 2013b),
and BERT (Devlin et al., 2018), and revealed that
BERT could achieve the best performance. In ad-
dition, based on our preliminary experiments, we
observed that the number of retrieved answer candi-
dates have an impact on the model performance, so
we define a threshold θ for controlling the number
of retrieval answer candidates.

Specifically, for each question in the pre-
constructed database, we pre-compute the corre-
sponding sentence embedding using BERT. Then,
for each new user-issued query uq, we embed uq
into ueq, and search in the pre-constructed database
for the most similar requests based on cosine simi-
larity. The corresponding answers are selected and
serve as our answer candidates.

Masking EW in the retrieved answers In real
dialogue scenes, the reply’s sentence structure

might be similar but the involved entities are usu-
ally different. To prevent the model from copy-
ing these entities, we introduce another array Rr
similar to Rh mentioned before. Finally, the re-
trieved candidate answers are encoded into low-
dimension distributed representations, denoted as
AN = {a1, a2, · · · , am}, where m is the total
number of the words. Moreover, by an interac-
tion between cK and AN = {a1, a2, · · · , am}, we
obtain a dense vector ha as the representation of
the retrieved answers,

ha =W2tanh

(
m∑
i=1

(
W1

[
cK ; ai

]))
(3)

3.3 Decoder Module
We first apply Gated Recurrent Unit (GRU) (Chung
et al., 2014) to obtain the hidden state ht,

ht = GRU
(
φemb(yt−1), h

∗
t−1

)
(4)

where φemb(·) is an embedding function that maps
each token to a fixed-dimensional vector. At the
first time step, we use the special symbol “SOS”
as y0 and the initial hidden state h∗0 = ha. h∗t−1

consists of three parts, namely, the last hidden state
ht−1, the attention over C = {c1, c2, · · · , cK}
from the encoder module, denoted as Hc, and Hg,
which is calculated by linearly transforming last
state ht−1 and ha with a multi-layer perceptron
network. We formulate Hc and Hg as follows:
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Attention over C = {c1, c2, · · · , cK} Since
MemNN consists of multiple hops, we believe that
different hops are relatively independent and have
their own semantic meanings over the history dia-
log. At different time steps, we need to use different
semantic information to generate different tokens,
so our aim is to get a context-aware representation.
We can achieve it by applying attention mechanism
to the hidden states achieved at different hops,

Hc =

K∑
i=1

αi,tc
i, αi,t =

eη(ht−1,ci)∑K
i=1 e

η(ht−1,ci)
(5)

where η is the function that represents the corre-
spondence for attention, usually approximated by
a multi-layer neural network.

Template-guided gating mechanism As re-
ported in Song et al. (2018), the top-ranked re-
trieved reply is not always the one that best match
the query, and multiple retrieved replies may pro-
vide different reference information to guide the
response generation. However, using multiple re-
trieved replies may increase the probability of in-
troducing “noisy” information, which adversely
reduces the quality of the response generation. To
tackle this issue, we add a gating mechanism to
the hidden state of candidate answers, aiming at
extracting valuable “information” at different time
steps. Mathematically,

Hg = sigmoid(ha � ht−1)� ha (6)

We use element-wise multiplication to model the
interaction between candidate answers (ha) and
last hidden state of GRU. h∗t−1 is obtained by con-
catenating ht−1, Hc, and Hg.

Hybrid pointer networks We use another
MemNN with three hops for the response gener-
ation, where ht of GRU serves as the initial read-
ing head, as shown in Figure 1. The output of
MemNN is denoted as O = {o1, o2, o3} and atten-
tion weights are Po = {p1o, p2o, p3o}.

Other than a candidate softmax Pv used for gen-
erating a word from the vocabulary, we adopt the
idea of Pointer Softmax in Gulcehre et al. (2016),
and introduce an Entity Pointer Networks (EPN)
and a Pattern Pointer Networks (PPN), where EPN
is trained to learn to copy entity words from dia-
logue history (or KB), and PPN is responsible for
extracting pattern words from retrieved answers.
For EPN, we use a location softmax Ph, which

is a pointer network where each of the output di-
mension corresponds to the location of a word in
the context sequence. Likewise, we introduce a
location softmax Pr for PPN. Pv is generated by
concatenating the first hop attention read out and
the current query vector,

Pv = softmax(Wv[o
1;ht]) (7)

For Pr and Ph, we take the attention weights at
the second MemNN hop and the third hop of the
decoder, respectively: Pr = p2o and Ph = p3o. The
output dimensions of Ph and Pv vary according to
the length of the corresponding target sequence.

With the three distributions, the key issue is how
to decide which distribution should be chosen to
generate a word wi for the current time step. Intu-
itively, entity words are relatively important, so we
set the selection priority order as Pr > Ph > Pv.
Instead of using a gate function for selection (Gul-
cehre et al., 2016), we adopt the sentinel mech-
anism proposed in Madotto et al. (2018). If the
expected word is not appearing in the memories,
then Ph and Pr are trained to produce a sentinel
token4. When both Ph and Pr choose the sentinel
token or the masked position, our model will gen-
erate the token from Pv. Otherwise, it takes the
memory content using Pv or Pr.

4 Experimental Settings

4.1 Datasets
We use four public multi-turn task-oriented dialog
datasets to evaluate our model, including bAbI (We-
ston et al., 2015), In-Car Assistant (Eric and Man-
ning, 2017) , DSTC2 (Henderson et al., 2014) and
CamRest (Wen et al., 2016). bAbI is automatically
generated and the other three datasets are collected
from real human dialogs.

bAbI We use tasks 1-5 from bAbI dialog corpus
for restaurant reservation to verify the effectiveness
of our model. For each task, there are 1000 dialogs
for training, 1000 for development, and 1000 for
testing. Tasks 1-2 verify dialog management to
check if the model can track the dialog state im-
plicitly. Tasks 3-4 verify if the model can leverage
the KB tuples for the task-oriented dialog system.
Tasks 5 combines Tasks 1-4 to produce full dialogs.

4We add a special symbol to the end of each sentence.
For example, “good morning” is converted to “good morning
$$$”. Therefore, if the model predicts the location of “$$$”, it
means that the expected word is not appearing in the context
sequence.
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In-Car Assistant This dataset consists of 3,031
multi-turn dialogs in three distinct domains: calen-
dar sheduling, weather information retrieval, and
point-of-interest navigation. This dataset has an av-
erage of 2.6 conversation turns and the KB informa-
tion is complicated. Following the data processing
in Madotto et al. (2018), we obtain 2,425/302/304
dialogs for training/validation/testing respectively.

DSTC2 The dialogs were extracted from the Di-
alogue State Tracking Challenge 2 for restaurant
reservation. Following Bordes et al. (2017), we use
merely the raw text of the dialogs and ignore the
dialog state labels. In total, there are 1618 dialogs
for training, 500 dialogs for validation, and 1117
dialogs for testing. Each dialog is composed of
user and system utterances, and API calls to the
domain-specific KB for the user’s queries.

CamRest This dataset consists of 676 human-to-
human dialogs in the restaurant reservation domain.
This dataset has much more conversation turns with
5.1 turns on average. Following the data processing
in Wen et al. (2017), we divide the dataset into
training/validation/testing sets with 406/135/135
dialogs respectively.

4.2 Implementation Detail

We use the 300-dimensional word2vec vectors to
initialize the word embeddings. The size of the
GRU hidden units is set to 256. The recurrent
weight parameters are initialized as orthogonal ma-
trices. We initialize the other weight parameters
with the normal distribution N(0, 0.01) and set
the bias terms as zero. We train our model with
Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of 1e− 4. By tuning the hyper-
parameters with the grid search over the validation
sets, we find the other best settings in our model
as follows. The number of hops for the memory
network is set to 3, and gradients are clipped with
a threshold of 10 to avoid explosion. In addition,
we apply the dropout (Hinton et al., 2012) as a reg-
ularizer to the input and output of GRU, where the
dropout rate is set to be 0.4.

4.3 Baseline Models

We compare our model with several existing end-
to-end task-oriented dialogue systems5:

5Part of experimental results of baseline models are di-
rectly extracted from corresponding published papers.

• Retrieval method: This approach directly
uses the retrieved result as the answer of the
given utterance. Specifically, we use BERT-
Base as a feature extractor for the sentences,
and we use the cosine distance of the features
as our retrieve scores, and then select the one
with the highest score.

• Attn: Vanilla sequence-to-sequence model
with attention (Luong et al., 2015).

• MemNN: An extended Seq2Seq model where
the recurrence read from a external memory
multiple times before outputting the target
word (Sukhbaatar et al., 2015).

• PtrUnk: An augmented sequence-to-
sequence model with attention based copy
mechanism to copy unknown words during
generation (Gulcehre et al., 2016).

• CASeq2Seq: This is a copy-augmented
Seq2Seq model that learns attention weights
to dialogue history with copy mechanism
(Eric and Manning, 2017).

• Mem2Seq: A memory network based ap-
proach with multi-hop attention for attending
over dialogue history and KB tuples (Madotto
et al., 2018).

• BossNet: A bag-of-sequences memory archi-
tecture is proposed for disentangling language
model from KB incorporation in task-oriented
dialogues (Raghu et al., 2019).

• WMM2Seq: This method adopts a working
memory to interact with two separated mem-
ory networks for dialogue history and KB en-
tities (Chen et al., 2019).

• GLMP: This is an augmented memory based
model with a global memory pointer and a lo-
cal memory pointer to strengthen the model’s
copy ability (Wu et al., 2019).

4.4 Automatic Evaluation Metrics
In bAbI dataset, we adopt a common metric per-
response accuracy (Bordes et al., 2017) to eval-
uate the model performance. Following previous
works (Madotto et al., 2018), for three real human
dialog datasets, we employ bilingual evaluation un-
derstudy (BLEU) (Papineni et al., 2002) and Entity
F1 scores to evaluate the model’s ability to gener-
ate relevant entities from knowledge base and to
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capture the semantics of the user-initiated dialogue
flow (Eric and Manning, 2017).

BLEU We use BLEU to measure the n-gram (i.e.,
4-gram) matching between the generated responses
and the reference responses. The higher BLEU
score indicates a better performance of the conver-
sation system. Formally, we compute the 4-gram
precision for the generated response Y as:

P (Y, Ŷ ) =

∑
Ỹ min(η(Ỹ , Y ), η(Ỹ , Ŷ ))∑

Ỹ η(Ỹ , Y )
(8)

where Ỹ traverses all candidate 4-grams, Y and
Ŷ are the ground-truth and predicted responses,
η(Ỹ , Y ) indicates the number of 4-grams in Y .
After achieving the precision, the BLEU score is
then calculated as:

BLEU = ν(Y, Ŷ ) exp(
4∑

n=1

βn logP (Y, Ŷ ))

(9)
where βn = 1/4 is a weight score. ν(Y, Ŷ ) is a
brevity penalty that penalizes short sentences. The
higher BLEU score indicates better performance of
the conversation system.

Per-response Accuracy We adopt the per-
response accuracy metric to evaluate the dialog
system’s capability of generating an exact, correct
responses. A generated response is considered right
only if each word of the system output matches the
corresponding word in the gold response. The final
per-response accuracy score is calculated as the
percentage of responses that are exactly the same
as the corresponding gold dialogues. Per-response
accuracy is a strict evaluation measure, which may
only be suitable for the simulated dialog datasets.

Entity F1 Entity F1 metric is used measure the
system’s capability of generating relevant entities
from the provided task-oriented knowledge base.
Each utterance in the test set has a set of gold enti-
ties. An entity F1 is computed by micro-averaging
over all the generated responses.

5 Experimental Results

5.1 Automatic Evaluation on Four Datasets
bAbI The dataset is automatically generated
based on some rules, thus many requests and their
corresponding replies are quite similar in terms of
the syntactic structure and the wording usage. Ac-
cording to the results shown in Table 5, we can

Method BLEU Ent.F1 Sch.F1 Wea.F1 Nav.F1
R+

h & R+
r 12.8 37.8 50.0 37.9 27.5

R+
h & R−

r 12.5 36.1 49 34.6 26.7
R−

h & R+
r 12.3 36.8 49.8 36.6 26.1

R−
h & R−

r 11.6 34.8 48.3 31.8 26.5

Table 2: Masking comparison experiment on In-Car As-
sistant. + means with masking and − denotes without.
R+

h & R+
r means that we simultaneously mask NEW

and EW in the history dialogue and retrieved answers.

θ # of RA BLEU
0.3 2.48 56.1
0.4 2.16 56.2
0.5 1.90 59.8
0.6 1.75 56.6
1.0 1.00 56.5

Table 3: Experimental results in terms of BLEU on
DSTC2 by using different θ. # of RA denotes the aver-
age number of retrieved answers.

see that our model achieves the best per-response
scores in all the five tasks. It is also believed that
the retrieved results can contribute to guiding the
response generation in this case, which can be in-
ferred from the high threshold value (θ = 0.8).

In-Car Assistant Dataset As shown in Table 6,
our model achieves all best metrics (BLEU, Ent.F1,
Sch.F1, Wea.F1 and Nav.F1) over other reported
models. The possible reason is that the retrieved
answers with high relevance to the gold answers
provide valid sentence pattern information. By us-
ing this sentence pattern information, our model
can better control the generation of responses. Ad-
ditionally, our model improves the success rate of
generation correct entities which appeared in the
dialogue history.

Dataset BM25 word2vec BERT
Task1 68.7 63.1 74.8
Task2 80.6 83.2 93.7
Task3 83.4 77.3 80.3
Task4 87.5 87.5 87.5
Task5 82.9 66.6 83.8

DSTC2 45.3 37.3 47.1
CAMREST 27.7 29.0 30.9

KVR 33.5 33.7 35.3

Table 4: Comparison of different matching methods.
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Task Retrieval Attn MemNN PtrUnk Mem2Seq BossNet GLMP WMM2Seq THPN
Task1 74.8 100 99.9 100 100 100 100 100 100
Task2 93.7 100 100 100 100 100 100 100 100
Task3 80.3 74.8 74.9 85.1 94.5 95.2 96.3 94.9 95.8
Task4 87.5 57.2 59.5 100 100 100 100 100 100
Task5 83.8 98.4 96.1 99.4 98.2 97.3 99.2 97.9 99.6

Table 5: Per-response scores on the five tasks of the bAbI dataset with θ = 0.8.

Method BLEU Ent.F1 Sch.F1 Wea.F1 Nav.F1
Retrieval 15.3 20.1 24.9 26.3 9.4

Attn 9.3 19.9 23.4 25.6 10.8
CASeq2Seq 8.7 13.3 13.4 15.6 11.0

MemNN 8.3 22.7 26.9 26.7 14.9
PtrUnk 8.3 22.7 26.9 26.7 14.9

Mem2Seq 12.6 33.4 49.3 32.8 20.0
BossNet 8.3 35.9 50.2 34.5 21.6
THPN 12.8 37.8 50.0 37.9 27.5

Table 6: Evaluation results on the In-Car Assistant
dataset with θ = 0.3.

DSTC2 and CamRest Datasets We also present
the evaluation on DSTC2 and CamRest datasets in
Table 8 and Table 9, respectively. By comparing the
results, we can notice that our model performs bet-
ter than the compared methods. On the DSTC2, our
model achieves the state-of-the-art performance in
terms of both Entity F1 score and BLEU metrics,
and has a comparable per-response accuracy with
compared methods. On the CamRest, our model
obtains the best Entity F1 score but has a drop in
BLEU in comparison to Mem2Seq model.

5.2 Ablation Study

An ablation study typically refers to removing some
components or parts of the model, and seeing how
that affects performance. To measure the influence
of the individual components, we evaluate the pro-
posed THPN model with each of them removed
separately, and then measure the degradation of the
overall performance. Table 7 reports ablation study
results of THPN on bAbI and DSTC2 datasets by
removing retrieved answers (w/o IR), removing
EPN and PPN in decoding (w/o Ptr), removing
answer-guided gating mechanism (w/o Gate), re-
spectively. For example, “w/o Gate” means we do
not use the answer-guided gating mechanism while
keeping other components intact.

If the retrieved answer is not used, the perfor-
mance reduces dramatically, which can be inter-
preted that without the guiding information from

the retrieved answer, the decoder may deteriorate
quickly once it produce a “bad” word since it solely
relies on the input query.

If no copy mechanism is used, we can see that
Entity F1 score is the lowest, which indicates that
many entities are not generated since these en-
tity words may not be included in the vocabulary.
Therefore, the best way to generate some unseen
words is to directly copy from the input query,
which is consistent with the findings of previous
work (Eric et al., 2017; Madotto et al., 2018).

If the gate is excluded, we can see around 2%
drop for DSTC2. A possible reason is that some
useless retrieved answers introduce “noise” to the
system, which deteriorates the response generation.

5.3 Effect of Masking Operation

To validate the effectiveness of the masking oper-
ation, we carry out a comparison experiment on
In-Car Assistant, and present the results in Table 2.
From Table 2, we can see that R+

h & R+
r achieves

the best performance while R−
h & R−

r has the low-
est scores. By diving into the experimental results,
we find that if we do not mask EW in the retrieved
answers, the model copies many incorrect entities
from the retrieved answers, which reduces the En-
tity F1 scores. If we do not mask NEW in the
history dialogue, the percentage of NEW copied
from the history dialogue is high, most of which are
unrelated to the gold answer, thus bringing down
the BLEU score.

5.4 Analysis on Retrieved Results

Comparison of Different Retrieval Methods
According to our preliminary experimental results,
we observed that better retrieved candidate answers
could further improve the overall model perfor-
mance in response generation. Therefore, we also
conduct experiments to evaluate the effectiveness
of three popular text matching methods, including
BM25 (Robertson et al., 2009), word2vec (Mikolov
et al., 2013a) and BERT (Devlin et al., 2018).
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Task
Task1 Task2 Task3 Task4 Task5 DSTC2 DSTC2 DSTC2

(BLEU) (BLEU) (BLEU) (BLEU) (BLEU) (BLEU) (F1) (Per-Res)
THPN 100 100 98.9 100 99.9 59.8 76.8 47.7

W/O IR 100 100 96.5 100 99.2 57.8 73.2 45.9
W/O Ptr 100 100 97.7 89.9 98.5 58.1 72.6 46.1

W/O Gate 100 100 95.9 94.4 99.2 57.7 74.1 45.8

Table 7: Ablation test results of our THPN model on bAbI and DSTC2 datasets.

Method Ent.F1 BLEU
Retrieval 21.1 47.1

Attn 67.1 56.6
KV Net 71.6 55.4

Mem2Seq 75.3 55.3
GLMP 67.4 58.1
THPN 76.8 59.8

Table 8: Evaluation on DSTC2(θ = 0.5).

Method Ent.F1 BLEU
Retrieval 7.9 21.2

Attn 21.4 5.9
PtrUnk 16.4 2.1
KV Net 9.1 4.3

Mem2Seq 27.7 12.6
THPN 30.9 12.9

Table 9: Evaluation on CamRest(θ = 0.4).

Here, BLEU is utilized as our evaluation criterion.
From the experimental results shown in Table 4,
we can see that using BERT (Devlin et al., 2018),
a transformer-based pre-trained language model,
achieves the highest BLEU scores. A possible rea-
son is that the size of each training dataset is lim-
ited, the word co-occurrence based algorithms (e.g.,
BM25) may not capture the semantic information,
thus result in poor retrieving performance.

One vs. Multiple Retrieved Answers Cosine
similarity is not an absolute criterion and there is no
guarantee that a candidate with higher cosine value
will always provide more reference information to
the response generation. Therefore, we conduct an
experiment to investigate the effect of the number
of retrieved answers. By setting different cosine
threshold values θ, we retrieve different numbers
of answer candidates. In particular, if no answer
candidate satisfies the given threshold, we choose
one with the highest cosine value. To limit the
number of retrieved answers, we only select the
top-3 results if there are more than three answer

candidates that have higher consine values than the
given threshold θ.

Table 3 gives the experimental results of DSTC2
dataset under different threshold θ values. When
θ is set to be 1.0, it is considered as a special case
where only one answer is retrieved. We can ob-
serve that using multiple answer candidates obtains
higher performance than only using one result. It
is intuitive that the model will be misguided if the
retrieved single answer has no relation to the given
request, and using multiple candidate answers can
ameliorate this issue.

Setting of θ Although using more retrieved an-
swers might improve the chance of including the
relevant information, it may also bring more “noise”
and adversely affect the quality of retrieved an-
swers. From Table 3, we can see that with the
reduced value of θ, the average number of retrieved
candidate answers increase, but the model perfor-
mance does not improve accordingly. Experimental
results on the other datasets demonstrate that the θ
is not fixed and needs to be adjusted according to
the experimental data.

6 Conclusion

In task-oriented dialog systems, the words and sen-
tence structures are relatively limited and fixed,
thus it is intuitive that the retrieved results can pro-
vide valuable information in guiding the response
generation. In this paper, we retrieve several po-
tentially relevant answers from a pre-constructed
domain-specific conversation repository as guid-
ance answers, and incorporate the guidance an-
swers into both the encoding and decoding pro-
cesses. We copy the words from the previous con-
text and the retrieved answers directly, and gen-
erate words from the vocabulary. Experimental
results over four datasets have demonstrated the ef-
fectiveness of our model in generating informative
responses. In the future, we plan to leverage the
dialogue context information to retrieve candidate
answers turn by turn in multi-turn scenarios.
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