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Abstract

The key challenge of the visual dialog task is

how to fuse features from multimodal sources

and extract relevant information from dialog

history to answer the current query. In this

work, we formulate a visual dialog as an in-

formation flow in which each piece of in-

formation is encoded with the joint visual-

linguistic representation of a single dialog

round. Based on this formulation, we consider

the visual dialog task as a sequence problem

consisting of ordered visual-linguistic vectors.

For featurization, we use a Dense Symmetric

Co-Attention network (Nguyen and Okatani,

2018) as a lightweight vison-language joint

representation generator to fuse multimodal

features (i.e., image and text), yielding bet-

ter computation and data efficiencies. For in-

ference, we propose two Sequential Dialog

Networks (SeqDialN): the first uses LSTM

(Hochreiter and Schmidhuber, 1997) for in-

formation propagation (IP) and the second

uses a modified Transformer (Vaswani et al.,

2017) for multi-step reasoning (MR). Our ar-

chitecture separates the complexity of mul-

timodal feature fusion from that of infer-

ence, which allows simpler design of the in-

ference engine. On VisDial v1.0 test-std

dataset, our best single generative SeqDialN

achieves 62.54% NDCG1 and 48.63% MRR2;

our ensemble generative SeqDialN achieves

63.78% NDCG and 49.98% MRR, which set

a new state-of-the-art generative visual dia-

log model. We fine-tune discriminative Se-

qDialN with dense annotations3 and boost

the performance up to 72.41% NDCG and

55.11% MRR. In this work, we discuss the

extensive experiments we have conducted to

demonstrate the effectiveness of our model

1Normalized Discounted Cumulative Gain
2Mean Reciprocal Rank
3Relevance scores for 100 answer options corresponding

to each question on a subset of the training set, publicly avail-
able on visualdialog.org/data

components. We also provide visualization

for the reasoning process from the relevant

conversation rounds and discuss our fine-

tuning methods. The code is available at

https://github.com/xiaoxiaoheimei/SeqDialN.

1 Introduction

Visual Dialog has attracted increasing research in-

terest as an emerging field, bringing together as-

pects of computer vision, natural language pro-

cessing, and dialog systems. In this task, an AI

agent is required to hold a meaningful dialog with

humans in natural, conversational language about

visual content. Specifically, given an image, a

dialog history, and a query about the image, the

agent has to ground the query in image, infer con-

text from history, and answer the query accurately

(Das et al., 2017).

Our work is inspired by the use of visual-

linguistic joint representation to erase the modal-

ity gap, where we embed the visual signals into

the text snippets for each dialog round. In this

way, we convert a visual dialog into an ordered

vector sequence, where each vector is the joint

visual-linguistic representation of a specific dia-

log round. Rather than using ViLBERT (Lu et al.,

2019), we chose Dense Symmetric Co-Attention

(Nguyen and Okatani, 2018) as a lightweight joint

visual-linguistic representation generator. In con-

trast to VisDial-BERT (Murahari et al., 2019),

which concatenates all rounds of the dialog history

into a single textual input for ViLBERT(Lu et al.,

2019), we keep each dialog round separate. Keep-

ing this inherent sequential structure from the vi-

sual dialog allows us to reason across the dia-

log history to find the most query-relevant dialog

rounds. By viewing visual dialog task as a vector

sequence, We propose two sequential networks to

tackle the problem.

Fig. 1 illustrates a conceptual overview

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://visualdialog.org/data
https://github.com/xiaoxiaoheimei/SeqDialN
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of the proposed method. The visual fea-

tures and language embeddings are learned

from two independent domains. They are

fed into the Dense Symmetric Co-Attention

Network (Nguyen and Okatani, 2018) to pro-

duce a visual-linguistic vector sequence in

the joint visual-linguistic feature space. Our

baseline model, the Information Propaga-

tion Network (SeqIPN), which uses a LSTM

(Hochreiter and Schmidhuber, 1997) to summa-

rize the visual-linguistic sequence, outperforms

other well-known baselines (Das et al., 2017;

Lu et al., 2017), on NDCG metric by a large

margin > 0.5. Multi-step reasoning network (Se-

qMRN) is based on Transformer (Vaswani et al.,

2017). We expect the multi-head attention

mechanism of Transformer better captures the

relationship within the visual linguistic sequence.

We achieve multi-step reasoning by stacking

several Transformers to refine attentions in high

level semantic space. SeqMRN outperforms

VisDial-BERT (Murahari et al., 2019) by > 1.5%
on NDCG when trained with comparable amount

of data, while using 30% less parameters. The

pipeline in Fig.1 facilitates the combination of

different word embeddings and SeqDialN models.

In this work, we compare two kinds of pre-trained

word representations: GloVe(Pennington et al.,

2014) and DistilBert (Sanh et al., 2019). The

ablation test shows that SeqMRN with DistilBert

embedding yields the best performance. Fur-

ther experiment reveals SeqDialN sets a new

state-of-the-art generative visual dialog model.

VLDialog and NDCGFinetune(Murahari et al.,

2019; Qi et al., 2019b) tune with dense annota-

tions3. Training on the dense annotation3 makes

these models perform very well on the NDCG met-

ric but poorly on the others because the dense

annotation3 dataset doesn’t correlate well with

the original ground-truth answer to the question

(Murahari et al., 2019). In this work, we propose

a reweighting method to mitigate the damage to

non-NDCG metrics in fine-tuning process, which

make our best model outperform (Murahari et al.,

2019; Qi et al., 2019b,a) on MRR by a large mar-

gin at the cost of a little lower NDCG than them.

The main contributions of this paper is three

fold. (1) We formulate the visual dialog task

as reasoning from a sequence in the joint visual-

linguistic representation space. (2) We propose

two sequential networks to tackle the visual dia-

log task in the joint visual-linguistic representation

space. (3) We set a new state-of-the-art generative

visual dialog model.

2 Related Work

2.1 VQA

VQA focuses on providing a natural language an-

swer given an image and a free-form, open-ended

question. Attention mechanisms have been deeply

explored in VQA related work. In deep networks,

the attention mechanism helps refine semantic

meanings at different levels. SANs (Yang et al.,

2016) create stacked attention networks, produc-

ing multiple attention maps in a sequential man-

ner to imitate multi-step reasoning. (Lu et al.,

2016) introduces co-attention between image re-

gions and words in the question. (Yu et al., 2017)

utilizes image-guided attention to extract the lan-

guage concept of an image and then combines this

with a novel multi-modal feature fusion of image

and question.

Recently, Dense Co-Attention Network (DCN)

(Nguyen and Okatani, 2018) proposes a symmet-

ric co-attention layer to address VQA tasks. DCN

is ”dense symmetric” because it makes each vi-

sual region aware of the existence of each ques-

tion word and vice versa. This fine-granularity

co-attention enables DCN to discriminate subtle

differences or similarities between vision and lan-

guage features. In this work, we use DCN as the

generator of joint visual-linguistic representation.

2.2 Visual Dialog

Previous research has tackled the visual dialog

task from various theoretical perspectives. Early

baselines include Late Fusion, Hierarchical Recur-

rent Encoder, and Memory Networks (Das et al.,

2017). (Guo et al., 2019) proposes a two-stage

method which filters out the obviously irrelevant

answers in primary stage, then re-ranks the rest

answers in synergistic stage. (Guo et al., 2019)

won the visual dialog challenge4 in 2018. Sev-

eral models try to leverage the dialog structure

to conduct explicit reasoning. GNN (Zheng et al.,

2019) abstracts visual dialog as a fully connected

graph where each node represents a single dia-

log round and each edge represents semantic de-

pendency of the two connected nodes. Recursive

Visual Attention(RvA) (Niu et al., 2019) designs

sub-networks to infer the stopping condition when

4visdial/challenge2020

https://visualdialog.org/challenge/2020
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Figure 1: Conceptual architecture of sequential visual dialog network (SeqDialN).

recursively traversing the dialog stack to resolve

visual co-reference relationships. RvA won the vi-

sual dialog challenge4 in 2019 by fine-tuning with

dense annotations3. ReDAN (Gan et al., 2019)

develops a recurrent dual attention network to

progressively update the semantic representations

of query, vision, and history, making them co-

aware through multiple steps to achieve multi-step

reasoning. ReDAN (Gan et al., 2019) achieves

64.47% NDCG on the VisDial v1.0 test-std set, is

still the highest score among all published work

trained without dense annotations3.

Based on ViLBERT (Lu et al., 2019), recent

VisDial-BERT (Murahari et al., 2019) leverages

the joint visual-linguistic representation to tackle

visual dialog task. By fine-tuning with dense an-

notations, VisDial-BERT (Murahari et al., 2019)

achieves state-of-the-art NDCG (74.47%) using a

discriminative model. However, its non-NDCG

performance is significantly lower. Futhermore,

it’s not easy to deploy a discriminative model in

real applications. Similar performance degrada-

tion occurs to P1P2 (Qi et al., 2019a), which also

trained with dense annotations3.

3 Approach

The visual dialog task (Das et al., 2017) is for-

mulated as follows: at time t, given a query

Qt grounded in image I , and dialog his-

tory (including the image caption C) Ht =
{C, (Q1, A1), · · · , (Qt−1, At−1)} as additional

context. For discriminative task, the goal is to rank

100 candidate answers At = {A1
t , A

2
t , · · · , A100

t }.

For generative task, the goal is to generate an an-

swer in natural language. The task requires the

agent to predict the ground truth answer and rank

other feasible answers as high as possible.

As illustrated in Fig. 1, we rely on Faster-

RCNN (Ren et al., 2015) to extract features corre-

sponding to salient image regions (Anderson et al.,

2018). The vision feature of image I is repre-

sented as FI ∈ Rnv×dv , where nv = 36 being

the number of object-like region proposals in the

image and dv = 2048 being the dimension of the

feature vector. Qt and each item in H is padded

or truncated to the same length dl. Thus, each sen-

tence S is represented as FS ∈ Rdl×de , where de
being the dimension of the word embedding. To

facilitate further discussion, we denote dh as the

dimension of the hidden state throughout this sec-

tion.

3.1 Visual Dialog as Visual-Linguistic Vector

Sequence

Dense Co-Attention Network (DCN)

(Nguyen and Okatani, 2018) proposes using

contents in sub-grids of a convolutional neuron

network as visual region features. However, we

turn to use Faster R-CNN proposals (Ren et al.,

2015; Anderson et al., 2018) because people

usually talk about objects in their conversations,

so Faster R-CNN proposals better suit for the

purpose of object identification. Given an image

I with vision feature FI ∈ Rnv×dv and a sentence

S with embedding FS ∈ Rdl×de , we define

DCN(I, S) ∈ Rdh the Dense Co-attention

(Nguyen and Okatani, 2018) representation of I
and S. We define an instance of t round visual di-

alog by a tuple D = (I,Ht, Qt). Using DCN, we

convert dialog history Ht into the visual-linguistic

vector sequence Ĥt as:

Ĉ = DCN(I, C)

L̂i = DCN(I, (Qi, Ai)), i = 1, · · · , t− 1

Ĥt = {Ĉ, L̂1, · · · , L̂t−1}
(1)
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Let Q̂t = DCN(I,Qt), the original visual dialog

then turns into a new tuple D̂ = (Ĥt, Q̂t) in the

joint visual-linguistic representation space. Note

that the sequential structure of Ĥt is exactly the

same as that of Ht and image I no longer exists in

D̂ as an explicit domain.

To facilitate discussion in section 3.2, we define

the question history Qt by:

Q̂i = DCN(I,Qi), 1 ≤ i ≤ t

Qt = {Q̂1, · · · , Q̂t−1, Q̂t}
(2)

Note, Qt includes the visual-linguistic vector of

the query Qt.

3.2 SeqIPN: Information Propagation

Network

As illustrated in Fig. 2, Information Propagation

Network is a 2-layer LSTM. After converting the

visual dialog into a tuple D̂ = (Ĥt, Q̂t) in the joint

visual-linguistic representation space, we apply a

LSTM to the visual-linguistic vector sequence Ĥt

and use the hidden state at time t as the summary

of visual-linguistic history. Specifically:

RL = LSTM(Ĥt)[t], RL ∈ Rdh (3)

Figure 2: Architecture of Information Propagation Net-

work (SeqIPN)

We apply the same LSTM to question history

Qt and use Q̂t’s hidden state RQ as the context

aware query. Experiment shows introducing RQ

can slightly drop the MRR (< 1%) but increase

NDCG a lot (> 1.5%). The observation can be

explained as RQ is the query distorted by LSTM,

which fools the discriminator and results in the

MRR drop. However, the impact is controllable

because LSTM’s forget gate makes the impact of

previous questions gradually fade away along the

propagation. On the other hand, RQ collects more

semantic information to broaden the scope of can-

didate answers, which results in the NDCG in-

crease.

[RL, RQ] ∈ R2dh is linearly projected to

RQL ∈ Rdh as the final representation of D̂. RQL

is fed into the decoder to predict answer.

Figure 3: Conceptual architecture of Multistep Reason-

ing Network (SeqMRN).

3.3 SeqMRN: Multi-step Reasoning Network

Transformer (Vaswani et al., 2017) was originally

developed for sequence to sequence task using

an encoder-decoder architecture.In this work, we

modify Transformer’s encoder by replacing its

self-attention with the decoder’s masked self-

attention, while keeping other modules unchanged.

We focus on the modifications to enable multi-

step reasoning via Transformer. For simplic-

ity, we define three functions Query(),Key(),
and V alue(). Given a vector v ∈ Rdh ,

Query(v),Key(v), and V alue(v) are vectors in

Rdh and represent v’s query, key, and value de-

scribed in (Vaswani et al., 2017) respectively.

Fig. 3 is a conceptual architecture of the pro-

posed Multi-step Reasoning Network(SeqMRN).

{P0, · · · , Pt−1} are position features defined in

(Vaswani et al., 2017). Given dialog tuple D̂ =
(Ĥt, Q̂t), the position aware visual-linguistic se-

quence Ut is defined by:

Ut = {U0, U1, · · · , Ut−1}
U0 = Ĉ + P0

Ui = L̂i + Pi, 1 ≤ i ≤ t− 1

(4)

3.3.1 History Backward Self-Attention Layer

As illustrated in Fig. 3, this layer applies masked

self-attention within the position aware sequence

Ut. This layer allows a single dialog round to

gather relevant information from previous conver-

sations and embed the information into its own rep-

resentation.

Specifically, for Ui, 0 ≤ i ≤ t − 1, its attention

logits with respect to all the other rounds of dialog

is defined by:

τ
i : τ ij =

{
Key(Uj)

TQuery(Ui) j ≤ i

−∞ i < j
(5)

where τ
i ∈ Rt. Then, the context aware visual-
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linguistic sequence Vt is defined by:

w
i = softmax(τ i/

√
dh), w

i ∈ Rt

Vt = {V0, · · · , Vt−1} : Vi =
t−1∑

j=0

w
i[j] · Uj

(6)

3.3.2 Query Correction Layer

In this layer, the query Q̂t renews its knowledge

about the context based on Vt. The attention

weights reflect how Q̂t distributes its focus over

Vt, which enables reasoning across the dialog his-

tory.

Specifically, the query’s attention logits with re-

spect to Vt is defined by:

u : uj = Key(Vj)
TQuery(Q̂t)/

√
dh

0 ≤ j ≤ t− 1
(7)

However, we don’t want history information in

Vt to overpower the query’s own semantic mean-

ing, thus we augment Q̂t by self-attention weight

uq:

uq = Key(Q̂t)
TQuery(Q̂t)/

√
dh (8)

Then, the query’s correction △Q̂t is defined as:

w = softmax([u;uq]),w ∈ Rt+1

△Q̂t =
t−1∑

i=0

wiVi + wtQ̂t

(9)

Note that Question Correction Layer keeps Vt

unchanged. Contrary to SeqIPN, we don’t use

question history Qt in SeqMRN because attention

mechanism can make Q̂t indistinguishable from

other questions in Qt.

3.3.3 Multi-step Reasoning

History Backward Self-Attention Layer and Ques-

tion Correction Layer form the building blocks of

our proposed Multi-step Reasoning Network. As

illustrated in Fig. 3, residual connection is used.

Q̂′
t = Q̂t +△Q̂t

Ĉ ′ = V0 + U0

L̂′
i = Vi + Ui, 1 ≤ i ≤ t− 1

(10)

where the results Q̂′
t, Ĉ

′ and L̂′
t are vectors in Rdh .

We have refined the dialog tuple D̂ = (Ĥt, Q̂t)
to be a new tuple D̂′ = (Ĥ ′

t, Q̂
′
t), where Ĥ ′

t =

{Ĉ ′, L̂′
1, · · · , L̂′

t−1}. Members in D̂′ are more en-

vironment aware than their corresponding mem-

bers in D̂. We achieve multistep reasoning by

stacking several such building blocks to progres-

sively refine D̂. We consider L̂′
t−1 of the last block

as the summary of dialog history and consider Q̂′
t

of the last block as the context aware query. We

project [Q̂′
t; L̂

′
t−1] to RQL ∈ Rdh as the final rep-

resentation of D̂.

3.4 Decoder Module

3.4.1 Discriminative Decoder

For each candidate anwer Aj
t ∈ At, a LSTM is ap-

plied to Aj
t to obtain its representation Rj ∈ Rdh .

The score of Aj
t is defined by sj = RT

j RQL. Like

(Guo et al., 2019), we optimize the N-pair loss

(Sohn, 2016):

LD = log(
100∑

j=1

exp
sj − sgt

τ
) (11)

where sgt is the score of the ground truth answer,

and we set τ = 0.25.

3.4.2 Generative Decoder

Inspired by attention based NMT (Luong et al.,

2015), we develop an attention based decoder. The

decoder is a LSTM initialized by RQL. At time

t, we compute similarity weights between current

hidden state and the hidden states of previous

timestamps instead of directly using the hidden

state to generate the distribution over vocabulary.

Then, the distribution is generated based on the

weighted sum of hidden states.

3.5 Reweighting Method in Fine-tuning with

Dense Annotations

VisDial v1.0 training dataset provides a subset

named dense annotations3 which contains 2K di-

alog instances. For each instance in dense annota-

tions, two human annotators assign each of its can-

didate answer with a relevance score based on the

ground-truth answer. (Qi et al., 2019b) finetunes

with dense annotations using a generalized cross

entropy loss:

LG = −
100∑

j=1

yjlog(softmax(s)[j]) (12)

where s is the score vector of candidate answers,

yj is the relevance score label of the jth candi-

date answer. However, blindly optimizing this ob-

jective will significantly hurt non-NDGC metrics.
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To mitigate this issue, we propose a reweighting

method to make the fine-tuning process aware of

the importance of the ground truth answer. Specif-

ically, we update the relevance label y by:

y′i =

{
yi+2

3
, i = indexgt

yi
3
, otherwise

(13)

where indexgt is the index of the ground truth an-

swer.

4 Experiments

Using the VisDial v1.0 dataset, we experiment

with 4 types of SeqDiaN: SeqIPN with GloVe Em-

bedding (Pennington et al., 2014) (SeqIPN-GE),

SeqIPN with DistilBert Embedding (Sanh et al.,

2019) (SeqIPN-DE), SeqMRN with GloVe Em-

bedding (SeqMRN-GE) and SeqMRN with Dis-

tilBert Embedding (SeqMRN-DE). For each type,

we consider both discriminative and generative

models. We trained Dense Symmetric Co-

Attention Network (Nguyen and Okatani, 2018)

from scratch. We use NDCG1, MRR2, recall

(R@1, 5, 10), and mean rank to evaluate the mod-

els’ performance.

In discriminative task, the model ranks the 100

candidate answers based on discriminative score,

which is defined as the dot product similarity be-

tween the representation of dialogue and that of

candidate answer.

In training and evaluation phases, to simplify

the framework, the generative task is to rank the

100 candidate answers too. Given a candidate an-

swer A, its generative score is defined as lldA√
|A|

,

where lldA is the answer’s log-likelihood and |A|
is the answer’s length. Based on generative score,

the rank of 100 candidate answers is well defined,

as well as the sparse metric MRR and Recall.

However, in inference phase, we obtain the answer

via distribution over vocabulary and beam search

at every step as usual.

4.1 Quantitative Results

4.1.1 Model Comparison

We compare the performance between Se-

qDialN models of different configurations.

We use Memory Network (MN) (Das et al.,

2017), History-Conditioned Image Attentive

Encoder (HCIAE)(Lu et al., 2017), Sequential

Co-Attention Model (CoAtt)(Wu et al., 2018) and

ReDAN (Gan et al., 2019) as baselines in this

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
MN-D(Das et al., 2017) 55.13 60.42 46.09 78.14 88.05 4.63

HCIAE-D(Lu et al., 2017) 57.65 62.96 48.94 80.50 89.66 4.24

CoAtt-D(Wu et al., 2018) 57.72 62.91 48.86 80.41 89.83 4.21

ReDAN-D(T=1)(Gan et al., 2019) 58.49 63.35 49.47 80.72 90.05 4.19

ReDAN-D(T=2)(Gan et al., 2019) 59.26 63.46 49.61 80.75 89.96 4.15

ReDAN-D(T=3)(Gan et al., 2019) 59.32 64.21 50.60 81.39 90.26 4.05

SeqIPN-GE-D 58.44 58.74 44.87 75.49 85.30 5.56

SeqIPN-DE-D 58.18 59.49 45.58 76.08 86.40 5.15

SeqMRN-GE-D 59.73 61.32 47.59 78.03 87.04 5.08

SeqMRN-DE-D 60.17 57.98 44.46 74.16 84.50 5.86

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
MN-G(Das et al., 2017) 56.99 47.83 38.01 57.49 64.08 18.76

HCIAE-G(Lu et al., 2017) 59.70 49.07 39.72 58.23 64.73 18.43

CoAtt-G(Wu et al., 2018) 59.24 49.64 40.09 59.37 65.92 17.86

ReDAN-G(T=1)(Gan et al., 2019) 59.41 49.60 39.95 59.32 65.97 17.79

ReDAN-G(T=2)(Gan et al., 2019) 60.11 49.96 40.36 59.72 66.57 17.53

ReDAN-G(T=3)(Gan et al., 2019) 60.47 50.02 40.27 59.93 66.78 17.40

SeqIPN-GE-G 63.30 48.77 38.36 59.29 68.24 13.36

SeqIPN-DE-G 60.72 47.86 38.16 57.08 64.89 15.27

SeqMRN-GE-G 63.01 49.22 38.75 59.62 68.47 13.00

SeqMRN-DE-G 64.15 49.72 39.33 60.17 69.73 12.37

Table 1: Performance of SeqDialN models on VisDial

v1.0 validation set. Left: discriminative SeqDialN.

Right: generative SeqDialN. ↑ indicates higher is bet-

ter. ↓ indicates lower is better.

study because published work (Gan et al., 2019)

reports the performance of these models with both

discriminative and generative decoders.

In Table 1, ”-D” stands for discriminative model

and ”-G” for generative model. SeqMRN-DE-D

and SeqMRN-DE-G outperform all baselines and

other SeqDialN models on NDCG1 for both dis-

criminative and generative cases. Especially for

the generative case, SeqMRN-DE-G outperforms

the second place ReDAN-G(T=3) by > 3.6%
NDCG. Meanwhile, the MRR difference between

ReDAN-G(T=3) and SeqMRN-DE-G is merely

0.3, SeqMRN-DE-G still outperforms ReDAN-

G(T=3) on average performance. We arrive at the

conclusion that SeqMRN-DE-G is a new state-of-

the-art generative visual dialog model.

SeqIPN with GloVe Embedding is the simplest

SeqDialN. However, SeqIPN-GE-D achieves bet-

ter NDCG than well-known discriminative base-

lines such as MN-D, HCIAE-D and CoAtt-D. In

addition, SeqIPN-GE-G even outperforms all gen-

erative baselines on NDCG. The model simplicity

and performance gain together validate the merit

of considering visual dialog as a visual-linguistic

vector sequence.

4.1.2 Ensemble SeqDialN Analysis

In this section, we add VisDial-

BERT(Murahari et al., 2019) as a baseline. At

this stage, the comparison is conducted between

models trained without dense annotation3.

As discriminative SeqDialN and generative Seq-

DialN rank the 100 candidate answers via discrim-

inative score and generative score respectively, the

uniform task definition facilitates the ensemble

process. Given a set of SeqDialN models, we sim-



14

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
ReDAN: 4 Dis. + 4 Gen.(Gan et al., 2019) 65.13 54.19 42.92 66.25 74.88 8.74

ReDAN+ (Diverse Ens.)(Gan et al., 2019) 67.12 56.77 44.65 69.47 79.90 5.96

VisDial-BERT: w/L-only(Murahari et al., 2019) 62.64 67.86 54.54 84.34 92.36 3.44

VisDial-BERT: w/CC+VQA(Murahari et al., 2019) 64.94 69.10 55.88 85.50 93.29 3.25

SeqDialN: 4 Dis. 64.66 64.67 51.74 80.49 89.10 4.34

SeqDialN: 4 Gen. 65.55 50.69 40.61 60.50 69.35 12.94

SeqMRN-DE-D + SeqIPN-GE-G 67.26 56.41 44.44 69.67 79.51 7.44

SeqDialN: 4 Dis + 4 Gen 68.61 58.11 45.94 71.66 81.22 6.73

Table 2: Comparison of SeqDialN to state-of-the-art

visual dialog models on VisDial v1.0 validation set.

ply average scores of all models to obtain the new

score to rank the 100 candidate answers and eval-

uate the metrics based on the new rank.

In Table 2, ”SeqDialN: 4 Dis.” is an ensemble

of the 4 types of discriminative SeqDialN models

while ”SeqDialN: 4 Gen.” an ensemble of the 4

types of generative SeqDialN models. Our best

model outperforms ReDAN and ReDAN+ by sig-

nificant margin on both NDCG (> 1.5%) and

MRR (> 1%). Our model also outperforms

VisDial-BERT(Murahari et al., 2019) by > 3.5%
NDCG despite the latter being pretrained on sev-

eral large-scale datasets.

VisDial-BERT(Murahari et al., 2019) has

roughly 250M parameters, the configuration

”w/L-only” is trained only on VisDial v1.0-train

set, which is more suitable to compare with

SeqDialN. SeqIPN-GE-G has less than 69M

parameters but it can outperform ”w/L-only” on

NDCG (> 0.5%). The ensemble configuration

(SeqMRN-DE-D + SeqIPN-GE-G) has roughly

the same parameters as ”w/L-only” and it fur-

ther outperforms ”w/L-only” by > 4% NDCG.

Actually, it even outperforms ”w/CC+VQA” by

> 2% NDCG. The advantage of VisDial-BERT

(Murahari et al., 2019) is the high MRR score it

achieves.

We also evaluate SeqDialN on VisDial v1.0 test-

std set. Table 3 shows the comparison between

our model and state-of-the-art visual dialog mod-

els trained without dense annotations3. SeqDialN

achieves state-of-the-art performance on NDCG,

even a single generative SeqDialN can outperform

most previous work on that metric. At present,

SeqDialN doesn’t perform well on MRR, which

is partly because it is hard for generative models

to produce exactly the same answer as the ground

truth, even when conditioned on the same seman-

tic scenarios.

4.1.3 Fine-tuning with Dense Annotations

We fine-tune discriminative SeqDialN with dense

annotations3. Table 4 shows the proposed

reweighting method greatly mitigates performance

drop in our fine-tuning experiment. We list the

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
GNN(Zheng et al., 2019) 52.82 61.37 47.33 77.98 87.83 4.57

CorefNMN(Kottur et al., 2018) 54.70 61.50 47.55 78.10 88.80 4.40

RvA(Niu et al., 2019) 55.59 63.03 49.03 80.40 89.83 4.18

DualVD(Jiang et al., 2020) 56.32 63.23 49.25 80.23 89.70 4.11

HACAN(Yang et al., 2019) 57.17 64.22 50.88 80.63 89.45 4.20

SN(Guo et al., 2019) 57.32 62.20 47.90 80.43 89.95 4.17

SN†(Guo et al., 2019) 57.88 63.42 49.30 80.77 90.68 3.97

NMN(Kottur et al., 2018) 58.10 58.80 44.15 76.88 86.88 4.81

DAN(Kang et al., 2019) 57.59 63.20 49.63 79.75 89.35 4.30

DAN†(Kang et al., 2019) 59.36 64.92 51.28 81.60 90.88 3.92

ReDAN†(Gan et al., 2019) 61.86 53.13 41.38 66.07 74.50 8.91

VisDial-BERT: w/CC+VQA(Murahari et al., 2019) 63.87 67.50 53.85 84.68 93.25 3.32

ReDAN+ †(Gan et al., 2019) 64.47 53.74 42.45 64.68 75.68 6.64

SeqMRN-DE-G (single) 62.54 48.63 37.90 59.95 69.03 12.47

SeqDialN: 4 Gen. 63.78 49.98 39.50 60.48 69.27 12.97

SeqMRN-DE-D + SeqIPN-GE-G 65.56 55.66 43.23 69.15 79.93 7.44

SeqDialN: 4 Dis. + 4 Gen. 66.91 56.84 44.30 70.85 80.93 6.87

Table 3: Comparison of SeqDialN to state-of-the-art

visual dialog models on VisDial v1.0 test-std set. ↑ in-

dicates higher is better. ↓ indicates lower is better. †
denotes ensembles. All models have been trained with-

out dense annotations3
.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
SeqMRN-DE-D 70.23 38.33 23.04 55.17 71.51 9.29

SeqMRN-DE-D* 70.72 53.59 42.35 65.05 77.73 7.27

SeqIPN-DE-D 69.12 37.93 23.10 53.83 69.84 9.70

SeqIPN-DE-D* 69.68 52.2 41.13 62.94 75.54 7.78

Table 4: Using reweighting method to lessen perfor-

mance drop on VisDial v1.0 validate set. * denotes

fine-tuning with reweighting method.

fine-tuning statistics for one SeqIPN and one Se-

qMRN as representatives.

Table 5 compares SeqDialN with state-of-the-

art models trained with dense annotations. On Vis-

Dial v1.0 test-std set, our model achieves compara-

ble NDCG as others while outperforming them on

MRR. It is interesting to note that VisDial-BERT

(Murahari et al., 2019) outperforms our model on

MMR by > 5% before fine-tuning. After fine-

tuning however, our model outperforms it on MRR

by nearly 5%. This observation validates the ef-

fectiveness of the reweighting method in preserv-

ing a model’s overall performance when trained

with dense annotations3. In addition, we find fine-

tuning generative models don’t improve NDCG as

much as discriminative case.

4.2 Ablation Study

We note SeqMRN yeilds the best performance in

the single model comparison, we conduct further

experiments to analyze contribution of its com-

ponents. For simplicity, We train discriminative

SeqMRN in different configurations to 13 epochs

without fine-tuning.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
MReal-BDAI†(Qi et al., 2019b) 74.02 52.62 40.03 68.85 79.15 6.76

P1P2†(Qi et al., 2019a) 74.91 49.13 36.68 62.96 78.55 7.03

VisDial-BERT: w/CC+VQA(Murahari et al., 2019) 74.47 50.74 37.95 64.13 80.00 6.28

SeqDialN: 4 Dis. 72.41 55.11 43.23 67.65 79.77 6.55

Table 5: Comparison of SeqDialN to state-of-the-art

visual dialog models on VisDial v1.0 test-std set. All

models have been trained with dense annotations3
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Figure 4: SeqMRN: learn to reason in attention stacks. Color strength indicates attention weight, the darker

highlighting the higher attention paid.

4.2.1 Effectiveness of visual-linguistic joint

representation

We close the modules in DCN

(Nguyen and Okatani, 2018) which apply cross

modality attention between vision and language

features. Thus the two modalities are fused in a

simple summation way in DCN.

In this configuration, the two modalities won’t

be aware of the existence of each other un-

til the masked self-attention step in Transformer.

Item named SeqMRN-DE-D-LateFusion in Table

6 shows its performance, which drops on all met-

rics. Especially on NDCG, it drops 3.14%.

This experiment demonstrates the positive im-

pact of our early fusion, as we say, the visual-

linguistic joint representation. Further analysis re-

veals early fusion helps enhance the model’s ca-

pability to filter out irrelevant answers. We find

that each image in dense annotation3 of VisDial

v1.0 has on average 12.68 answers with non-zero

relevant-score. On average, We find SeqMRN-DE-

D-LateFusion ranks 5.58 (44.00%) zero relevant-

score answers into the top 12.68 predictions, while

this number of SeqMRN-DE-D is 5.36 (42.27%).

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
SeqMRN-DE-D 59.49 61.53 47.68 78.67 87.88 4.79

SeqMRN-DE-D-NoQC 59.08 61.25 47.34 78.58 87.72 4.86

SeqMRN-DE-D-LateFusion 56.35 61.14 47.11 78.29 87.48 4.83

Table 6: Ablation Study on VisDial v1.0 validation set.

4.2.2 Effectiveness of Query Correction

Layer

In Table 6, the item SeqMRN-DE-D-NoQC shows

the performance of the configuration by closing

the Query Correction Layer illustrated in section

3.3.2. We see that performance drops on all met-

rics as well.

We find Query Correction Layer enhances the

model’s capability to integrate history informa-

tion based on the given query, thus it helps an-

swer the query which requires dialog history.

(Agarwal et al., 2020) points out that not all ques-

tions in VisDial v1.0 dataset need dialogue history

to answer. They have proposed a dataset named

VisDialConv(Agarwal et al., 2020), which is actu-

ally a subset of VisDial v1.0 validation dataset in-

cluding 97 instances which answer needs the ref-

erence to dialog history.

We run both SeqMRN-DE-D and SeqMRN-

DE-D-NoQC on VisDialConv dataset. SeqMRN-

DE-D gets 51.11% NDCG and SeqMRN-DE-D-

NoQC gets 50.22%, the former has 1.77% rel-

ative improvement. As illustrated in Figure 5,

the score distribution of the two models are simi-

lar, which concentrates in range [0.2, 0.9]. How-

ever, SeqMRN-DE-D scores significantly more

instances in range [0.6, 0.7] than the other.

SeqMRN-DE-D also scores less instances in the

low range [0.0, 0.2] but scores more instances in

the high range [0.8, 1]. These observations sup-

port the conclusion that Query Correction Layer

helps answer history related questions.

Figure 5: NDCG Distribution Comparison on VisDial-

Conv

4.3 Qualitative Analysis

We use the 3 examples in Fig. 4 to illustrate Se-

qMRN’s reasoning capability. On the left, the

question asks: ”Is the pickle a spear or sliced?”.

In SeqMRN’s first reasoning block (layer0), the

question focus on preserving its own information

(its self attention weight being 0.671). However, in

the second reasoning block (layer1), the question

pays more attention to the first round which has

”pickle” related information. This example demon-

strates the attention gets the right ”correction” in

Query Correction Layer.

In the middle, the question asks: ”Does he wear

a hat?” Due to the word ”he”, in SeqMRN’s first
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reasoning block (layer0), the attention is on the

caption (0.69), which has words ”man” and ”his”.

However, in the second reasoning block (layer1),

the attention turns to the round ”does he wear sun-

glasses? yes”. Note the semantic similarity be-

tween ”wear sunglasses” and ”wear hat” (they

are both wearables on the head). This example

shows the attention making decisions based upon

refined knowledge about the context in a deeper

stack.

On the right, the question asks: ”Is the picture

in color?” In SeqMRN’s first reasoning block, the

attention focuses on itself. However, in the sec-

ond reasoning block, the attention switches to the

caption. Most likely in deeper stack, it make the

inference like: only a color image makes a banana

look ”yellow”.

5 Conclusion

We presented Sequential Visual Dialog Network

(SeqDialN) based on a novel idea that treats dialog

rounds as a visual-linguistic vector sequence. We

explore both discriminative and generative models

and set up a new state-of-the-art generative visual

dialog model. Even though our model is trained

only on VisDial v1.0 dataset, it achieves competi-

tive performance against other models trained on

much larger vision-language datasets, which facil-

itates its deployment in industrial environment.
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