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Abstract

We examine the effect of domain-specific ex-
ternal knowledge variations on deep large
scale language model performance. Recent
work in enhancing BERT with external knowl-
edge has been very popular, resulting in mod-
els such as ERNIE (Zhang et al., 2019a). Us-
ing the ERNIE architecture, we provide a de-
tailed analysis on the types of knowledge that
result in a performance increase on the Nat-
ural Language Inference (NLI) task, specifi-
cally on the Multi-Genre Natural Language In-
ference Corpus (MNLI). While ERNIE uses
general TransE embeddings, we instead train
domain-specific knowledge embeddings and
insert this knowledge via an information fu-
sion layer in the ERNIE architecture, allow-
ing us to directly control and analyze knowl-
edge input. Using several different knowledge
training objectives, sources of knowledge, and
knowledge ablations, we find a strong corre-
lation between knowledge and classification
labels within the same polarity, illustrating
that knowledge polarity is an important fea-
ture in predicting entailment. We also perform
classification change analysis across different
knowledge variations to illustrate the impor-
tance of selecting appropriate knowledge input
regarding content and polarity, and show repre-
sentative examples of these changes.

1 Introduction

Recently, the selection and integration of external
knowledge into large-scale language models has
shown impressive improvements in several Natu-
ral Language Understanding (NLU) tasks (Zhang
et al., 2019a). Understanding the relation between
external knowledge and model performance is fun-
damental to understanding how best to select and
integrate knowledge into NLU tasks. We focus
specifically on Natural Language Inference (NLI),
which requires understanding sentence semantics
with respect to both the content and polarity. NLI
is motivated by recognizing textual entailment, or

58

understanding whether a hypothesis entails, contra-
dicts, or is neutral with respect to a premise. For
example, given the premise: “Some boys are play-
ing soccer”, the hypothesis “Young men are playing
a sport” is an entailment whereas the hypothesis
“Old men are playing a sport” is a contradiction.
Language modeling is a very common and impor-
tant approach when considering the NLI task.

The NLI state-of-the-art utilizes different lan-
guage modeling techniques to learn the relations
between the hypothesis and the premise. Yoon
et al. (2018) used Dynamic Self-Attention (DSA)
to learn sentence embeddings, Liu et al. (2019) pro-
posed multi-task deep neural network (MT-DNN)
for learning language representations in multiple
NLU tasks, and Zhang et al. (2019b) combined se-
mantic role labeling and BERT (Devlin et al., 2019)
to explicitly absorb contextual semantics over a
BERT framework. However, these approaches
limit the source of information available for repre-
senting both the premise and hypothesis. Consider
the following premise and hypothesis:

People cut their expenses for the Golden years.
People decrease their expenses for retirement.

It is challenging to know that “Golden years”
entails “retirement” if we rely only on the context
within the two sentences. To illustrate how com-
mon this problem is, we conduct a manual analy-
sis of BERT classification errors on the NLI task
(specifically on the MNLI corpus (Williams et al.,
2018), more details in Section 6), and find that
at least 50% of misclassifications require external
knowledge, specifically requiring domain-specific
knowledge, world knowledge, jargon-based para-
phrases, or commonsense knowledge to resolve the
entailment. In the above example, a model that
learns the relation between “Golden years” and “re-
tirement” from external knowledge can be used to
enhance NLI inference.

On the basis of this idea, Chen et al. (2018) and
Zhang et al. (2019a) used external knowledge from
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WordNet and TransE (Bordes et al., 2013) and ap-
plied it to NLI models. In their work, pre-trained
representations of external knowledge from knowl-
edge bases (e.g., TransE) were directly applied;
they did not tailor knowledge content or structure
specifically to the NLI task and did not improve
NLI performance (Zhang et al., 2019a). This find-
ing motivates our investigation on how external
knowledge can be efficiently used to improve NLI
models. The intention of our work is not to propose
a new model that outperforms the state-of-the-art,
but instead to focus on building a framework for
investigating how different types and representa-
tions of external knowledge impact an NLI model’s
decisions.

Consider our previous examples. We want to rep-
resent that the relation between “young men" and
“boys" is positive for entailment, and that the rela-
tion between “old men" and “boys" is negative for
entailment. Similarly, we want to represent that the
relation between “Golden years" and “retirement”
is positive for entailment. The interplay of exter-
nal knowledge and entailment gives insight into
the power of selecting relevant knowledge with re-
spect to both content and polarity of the knowledge.
Here, content indicates the semantic meaning of
external knowledge and polarity indicates whether
the knowledge relation is positive or negative for
entailment. The representation of external knowl-
edge is required to be correct in both aspects for
the NLI task. The models learns (1) content via our
knowledge extraction phase, by extracting concept
edges from knowledge graphs, and (2) polarity via
our knowledge training phase, by learning the po-
larity of the relationships between concepts. We
define concepts as words or phrases througout this
paper. In this work, we aim to show what type of
external knowledge is useful for certain classes of
NLI. We examine how different types of knowl-
edge impact neural language model decisions with
respect to content and polarity.

To this end, we propose ERNIE-NLI, an NLI
model that integrates external knowledge to en-
hance and probe NLI inference decisions. First, we
adapt knowledge content in various sources to our
setup: external knowledge relations are mapped to
NLI knowledge relations (Section 4.2). In this step,
we not only represent external knowledge from dif-
ferent sources in a unified way, but also convert ex-
ternal knowledge content to the NLI task. Second,
the polarity is learned (Section 4.3): NLI knowl-
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edge embeddings are learned to predict whether
they are positive or negative for entailment. In
this step, we extend BERT with a knowledge em-
bedding layer and a classification layer. Third,
the content and polarity are applied to NLI clas-
sification (Section 4.4). All three phases listed
above are depicted in Fig. 1. ERNIE-NLI is devel-
oped on the basis of ERNIE (Zhang et al., 2019a),
which did not improve performance on the NLI
task, although it was infused with TransE embed-
dings. Results show that our model ERNIE-NLI
enhanced with adapted knowledge achieves bet-
ter performance than ERNIE for specific classes
depending on knowledge input.

We perform an in-depth analysis to examine how
different types of knowledge impact NLI model’s
decisions with respect to content and polarity. We
conduct a series of experiments to investigate why
and how the adapted knowledge enhances NLI pre-
dictions. From the experiments, we find that:

* Integrating knowledge improves performance for
NLI classes that correspond to integrated knowl-
edge with regards to the polarity (e.g., positive
knowledge improves entailment classification,
etc.).

Increased amount of knowledge during training
improves performance for NLI labels that corre-
spond to increased knowledge with regards to the
polarity.

Presence of knowledge at inference improves
performance for NLI labels that correspond to
present knowledge with regards to polarity (e.g.,
a correct entailment prediction with the presence
of positive knowledge is observed to occur more
often than with the presence of negative knowl-
edge, etc.).

ERNIE-NLI performance is robust to new knowl-
edge content.

In summary, the proposed NLI model enhanced
with adapted external knowledge from various
sources achieves better performance for respective
classes, allows us to analyze the impact of knowl-
edge type, and is robust when the knowledge at
inference time has shifted. We examine this perfor-
mance with detailed analysis throughout the paper.
Overall our contributions are as follows:

* We propose a knowledge analysis framework,
ERNIE-NLLI, that allow us to directly control and
analyze adapted knowledge input, to investigate



the characteristics of knowledge that result in a
performance increase on the NLI task.

We present findings that show strong correlations
between knowledge polarity and downstream per-
formance, illustrating the knowledge features that
are important for increased performance.

We perform extensive analysis and experimenta-
tion to support our findings (e.g., classification
change analysis, adding knowledge incremen-
tally, adding unseen knowledge, etc).

2 Related Work

2.1 Natural Language Inference

Early work in Natural Language Inference, also
known as Textual Entailment (Dagan et al., 2005),
exploited different features including logical rules
(Bos and Markert, 2005), dependency parsers
(Iftene and Balahur, 2007), and semantics (Mac-
Cartney and Manning, 2009), etc. With the devel-
opment of large human annotated corpus such as
the Stanford Natural Language Inference Corpus
(Bowman et al., 2015) and the Multi-Genre NLI
Corpus (Williams et al., 2018), most recent work
has explored various neural models.

Different encoders have been studied to repre-
sent sentences, including LSTM (Bowman et al.,
2016), tree-based CNN (Mou et al., 2015), TreeL-
STM (Choi et al., 2018), etc. Previous work has
explored using dynamic self-attention (Yoon et al.,
2018), distance-based self-attention (Im and Cho,
2017) and reinforced self-attention (Shen et al.,
2018) to enhance sentence encoders. Ensemble
methods that combine multiple models have also
shown improvements (Wang et al., 2017; Peters
etal., 2018; Kim et al., 2019). Sun et al. (2019) im-
proved masked language modeling with knowledge
masking strategies, via entity-level and phrase-level
masking, which showed improvement on NLI. Sun
et al. (2020) then expanded this work to contin-
ual pre-training, which incrementally learns pre-
training tasks through constant multi-task learning.
Peters et al. (2019) investigated embedding knowl-
edge bases into large-scale models in a multitask
setup, seeing improvements on relationship extrac-
tion, entity typing, and word sense disambiguation.

Using external knowledge to enhance NLI mod-
els specifically, Chen et al. (2018) obtained the
semantic relations between words from WordNet
and calculated the relation embeddings using pre-
trained TransE embeddings. Additionally, previ-
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ous work has explored injecting lexical knowledge
into pre-trained models for MNLI (Williams et al.,
2018), among other tasks (Lauscher et al., 2020;
Levine et al., 2020). Zhang et al. (2019a) adopted
a knowledgeable encoder to inject the knowledge
information into language representation. However,
in contrast to our work, their external knowledge
was not trained specifically for the NLI task.

2.2 Knowledge Embeddings

Using knowledge embeddings that represent the
relations between entities has been useful in vari-
ous downstream NLP tasks. Bordes et al. (2013)
proposed TransE, a method which modeled rela-
tionships by interpreting them as translations op-
erating on the low-dimensional embeddings of the
entities. To address the issue of complex relation
embeddings, Lin et al. (2015b) proposed CTransR
in which the entity pairs are clustered into dif-
ferent groups and where the pairs in the same
group share the same relation vector. Xiao et al.
(2016) developed TransG, a generative Bayesian
non-parametric infinite mixture embedding model,
to handle multiple relation semantics of an entity
pair. Further, Wang et al. (2019) integrated logic
rules into a translation based knowledge graph em-
bedding model. Their method automatically mined
logic rules from triples in a knowledge graph.

Previous work has also introduced external
knowledge to learn better knowledge embeddings.
Lin et al. (2015a) and Luo et al. (2015) utilized
relation paths and Guo et al. (2015) integrated ad-
ditional semantic information and enforced the em-
bedding space to be semantically smooth so that
entities in the same semantic category were close
to each other in the embedding space. Wang et al.
(2014) used entity names and Wikipedia anchors
to align the embeddings of entities and words in
the same space. In our work, we focus on convert-
ing knowledge relations from different knowledge
sources to relations that are tailored to the NLI task.
We then use this knowledge to illustrate the impact
that both knowledge content and representation
have on model performance.

2.3 Language Model Challenges

Pre-trained language models face several chal-
lenges and previous work has analyzed and il-
lustrated their strenghts and weaknesses. Et-
tinger (2020) constructed a series of tests for lan-
guage models and applied these to BERT to study
strengths and weakness. Kassner and Schiitze
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Figure 1: Components of the setup: (1) Knowledge Extraction Phase: Extracts knowledge content from external
knowledge sources; (2) Knowledge Training Phase: Learns knowledge embeddings adapted to the NLI task; and
(3) ERNIE-NLI: Trains NLI model with the integration of our learned knowledge embeddings.

(2020) added a component that focused on negation
to the LAMA (LAnguage Model Analysis) eval-
uation framework (Petroni et al., 2019), showing
that BERT failed on most negated statements. Tal-
mor et al. (2019) designed eight reasoning tasks
and illustrated that reasoning abilities are strongly
context-dependent. Specific to NLI, Richardson
et al. (2019) constructed challenging NLI datasets
with new semantic fragments and showed that lan-
guage models, though trained on NLI benchmark
datasets, did not perform well on the new fragments.
This previous work has shown that when applying
pre-trained language models to a new task, a new
domain, or new data variations, these models do
not always perform well and additional knowledge
may be needed to guide them. We examine how dif-
ferent types of knowledge impact language model
decisions with respect to both content and polarity.

3 NLI corpus and External Knowledge

In this section, we introduce the particular NLI cor-
pus and external knowledge sources used through-
out this work.

3.1 NLI Corpus

MNLI, the Multi-Genre Natural Language Infer-
ence Corpus (Williams et al., 2018), consists of
433k sentence pairs annotated with entailment, con-
tradiction, and neutral labels. The corpus covers
various genres of both spoken and written text, and
offers a wide range of style, various degrees of for-
mality, and a diverse variety of topics and domains.
This dataset is evaluated using standard accuracy.
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3.2 External Knowledge Sources

We use several external knowledge sources to learn
the relationships between concepts in our task.
ConceptNet (Speer et al., 2017) is a large semantic
graph consisting of general knowledge. Concepts
are related through predicates such as IsA(jazz,
genre of music) and AtLocation(jazz, new orleans).
PPDB, Paraphrase Database (Ganitkevitch et al.,
2013), contains over 220 million paraphrase pairs
extracted from bilingual parallel corpora. Each
paraphrase pair consists of two concepts that have
a similar meaning.

WordNet (Miller, 1995) groups nouns, verbs, ad-
jectives and adverbs into sets of cognitive syn-
onyms (synsets), each expressing a distinct concept.
Synsets are linked by different relations including
synonym, antonymy, hypernymy, hyponymy, etc.

4 Methods

We introduce our terminology in Section 4.1.
Then, we introduce the three steps of ERNIE-
NLI: (1) knowledge extraction phase (content): ex-
tracting knowledge content from external knowl-
edge sources (Section 4.2), (2) knowledge training
phase (polarity): learning knowledge embeddings
adapted to the NLI task (Section 4.3), and (3) NLI
training phase: training our NLI model with the
integration of learned knowledge embeddings (Sec-
tion 4.4). The three phases are shown in Fig. 1.

4.1 Terminology

We use the following terms throughout the paper.
For clarity, we will demonstrate each term given



Label: neutral

(A) Premise: 1 had an additional reason for that belief in the fact that all the cups found contained
sugar, which Mademoiselle Cynthia never took in her coffee.
Hypothesis: Mademoiselle Cynthia often took milk or cream in her coffee.

External Knowledge Pair: RelatedTo(sugar, cream), AtLocation(sugar, coffee)
NLI Knowledge Fair: pos(sugar, cream), pos(sugar, coffee)

(B)

Label: entailment

Premise: Lalley also is enthused about other bar efforts on behalf of the poor, most notably the
Legal Assistance Center will operate out of the new courthouse.
Hypothesis: Lalley is enthusiastic about the bar’s initiative to help the poor.

External Knowledge Pair: ReverseEntailment(efforts, initiative)
NLI Knowledge Pair: pos(efforts, initiative)

Table 1: NLI & Knowledge Pair Example.

the example in Table 1, Example (A).

External knowledge pair refers to a pair of two
concepts from external knowledge sources, con-
nected by an external knowledge relation, for ex-
ample RelatedTo(sugar, cream). Each concept may
be either a single word or a phrase.

External knowledge relation is the relation of the
external knowledge pair. Each external knowledge
source has a unique set of external knowledge rela-
tions. RelatedTo is an example of such a relation.
NLI knowledge pair refers to a pair of two con-
cepts from NLI corpus, connected by an NLI
knowledge relation, e.g., pos(sugar, cream).

NLI knowledge relation is the relation of the NLI
knowledge pair. We define two NLI knowledge
relations in Section 4.2: pos() and neg().

NLI pair refers to a pair of sentences, in which
one sentence is the premise and the other is the
hypothesis, as depicted in Table 1.

NLI label is entailment/neutral/contradiction.

4.2 NLI Knowledge Extraction

To represent external knowledge relations from dif-
ferent sources in a unified way, we define two NLI
knowledge relations: pos() and neg(). A rule-
based heuristic is developed to map the external
knowledge relations to NLI knowledge relations.
For example, in Table 1, we see that RelatedTo is
mapped to pos(). Additionally, an external knowl-
edge relation such as Antonym would be mapped
to neg(). Each external knowledge relation is
mapped to one NLI knowledge relation, where dif-
ferent external knowledge relations may be mapped
to the same NLI knowledge relation. The specific
mappings are listed in the appendix.

NLI knowledge pairs are extracted from each
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NLI pair. For the i-th NLI pair, with premise P
and hypothesis H, we first identify all the con-
cepts (single word or key phrase) in P and H us-
ing Python Keyphrase Extraction (PKE) (Boudin,
2016). We then extract each NLI knowledge pair
y(ct, c?) where ¢} C P (a concept in the premise),
¢? C H (a concept in the hypothesis) and where
there exists an NLI knowledge relation y between
c} and ¢2. Considering Example (A) in Table 1,
we see that cZ1 ‘sugar’, c? = ‘cream’, and y =
pos().

There may be multiple NLI knowledge pairs in
the ¢-th NLI pair of premise and hypothesis.

4.3 NLI Knowledge Learning

To learn the NLI knowledge embeddings, we add
two additional components to BERT (Devlin et al.,
2019). Thus, we learn the embedding of y{c}, c?

in the following way. First, the sequence of knowl-
edge tokens {[CLS] ¢} [SEP] ¢? [SEP]} is passed
as input to BERT. Then, we take the subsequent
contextual representations from BERT and pass
them through a knowledge embedding layer (a lin-
ear layer) which casts our BERT representations

into a knowledge embedding.

o = BERT(c}, ¢?)

7771

(1)
ki = Wi (o) + by

2)

where o is the contextual representation from
BERT, Wj and by are weights and bias of the
knowledge embedding layer, and k; is the knowl-
edge embedding. Next, the knowledge embedding
k; is fed into the NLI knowledge relation classifi-
cation layer for knowledge fine-tuning:

lc - Wc(kz) + bc
y = softmax(l,)

3)
“)



where W, and b. are weights and bias of the
classification layer, and y is the NLI knowledge re-
lation prediction. We use cross-entropy loss during
training. In this way, we get the knowledge embed-
ding associated with the NLI knowledge relation.

We learn the embeddings for all the NLI knowl-
edge pairs in the ¢-th NLI pair in the training
set such that we have a set of knowledge K; =
{k}, ..., k™} where m is the length of the knowl-
edge sequence for the ¢-th NLI pair. We use these
embeddings to enhance NLI training described in
the next section. The knowledge embeddings are
fixed during NLI training. Note that at inference
time, we calculate the knowledge embedding of the
relation between any two concepts in the premise
and hypothesis via Equations 1 and 2, even if the
two concepts are not included in the training set.
This enables the model to handle unseen concepts
and NLI knowledge relations in the inference data.

4.4 NLI Knowledge Enhanced NLI

We propose ERNIE-NLI, built on the ERNIE ar-
chitecture (Zhang et al., 2019a), to integrate the
knowledge embeddings learned in Section 4.3 into
the NLI model.

44.1 ERNIE

ERNIE (Zhang et al., 2019a) was developed mainly
for integrating knowledge graph information into
the entity typing and relation extraction tasks. It
has two stacked modules: (a) a textual encoder to
capture token embeddings and (b) a knowledge en-
coder to inject the token-oriented knowledge into
the textual encoder output. The textual encoder is a
multi-layer bidirectional Transformer encoder, sim-
ilar to BERT. The knowledge encoder concatenates
the token embeddings (output from the textual en-
coder) and entity embeddings (pre-trained TransE
embedding).

ERNIE defines two inputs to the model, a token
sequence 7' = {wy, ..., wy} where n is the length
of the token sequence, and a entity sequence that
aligns to the given tokens as £ = {e1,...,en}
where m is the length of the entity sequence.
ERNIE is then defined as:

u = ERNIE(T, E) (5)

For example, consider the following sentence:

Bob Dylan wrote Blowin’ in the Wind.
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To recognize the relation between Bob Dylan and
Blowin’ in the Wind, ERNIE concatenates the en-
tity embeddings of Bob Dylan and Blowin’ in the
Wind with the corresponding token embeddings.
For more details, please refer to the original paper
(Zhang et al., 2019a).

4.4.2 ERNIE-NLI

Though ERNIE is mainly designed for the entity
typing and relation extraction tasks, it also reports
performance on the MNLI dataset. ERNIE does
not show an improvement over BERT, even though
it uses the information from the knowledge graph.
We speculate that this is because the knowledge
type (named entities) is neither the type of knowl-
edge required for the NLI task nor domain-specific
to the NLI task. In contrast to ERNIE, which
directly uses TransE embeddings (which are not
adapted to the NLI task), we propose ERNIE-NLI
which uses knowledge embeddings trained on the
NLI dataset and tailored for the NLI task.

Similar to ERNIE, two inputs are fed into
ERNIE-NLI: a token sequence 7' = {w1, ..., w,}
and a knowledge sequence, aligned to the given to-
kens, as K = {ki,..., k;,} where m is the length
of the knowledge sequence. In contrast to ERNIE,
knowledge relations are tailored to the NLI task
and knowledge embeddings are trained on the NLI
training data. Thus, our model definition becomes:

u = ERNIE(T,, K) (6)

where our knowledge embeddings for K are fixed
during NLI training, similar to the original setup.
However, unlike the original setup, our knowledge
embeddings are now adapted to the NLI task.

S Experiment Setup

As introduced in Section 3, we examine various ex-
ternal knowledge sources. We describe the setups
used in this work, all of which are combinations
of these sources. The performance of each setup is
reported in Section 6.

PC is the basic setup and includes Paraphrase
Database (PPDB) and ConceptNet. In this setup,
we find that the number of positive NLI knowledge
relations is greater than the number of negative NLI
knowledge relations. Thus, we design additional
setups to balance the ratio of positive and negative
relations.

PC&Bal balances the positive and negative NLI
knowledge relations to 50%-50% by downsam-
pling positive relations.



PCW adds negative NLI knowledge relations from
WordNet to PC.

PCW &Bal balances the positive and negative NLI
knowledge relations to 50%-50% on PCW by
downsampling positive relations.

6 Results and Analysis
6.1 BERT Error Analysis

Before designing our experiments, we manually
analyzed BERT misclassifiations on MNLI, which
inspired the decisions regarding content and po-
larity of knowledge required for improved reason-
ing and performance. We achieved 83.90% on the
MNLI dev set with BERT. We analyzed 40 mis-
classifications per MNLI domain, and found that
across all domains, at least 50% of misclassifica-
tions required external knowledge to be resolved.
We also found that the combination of ConceptNet
and PPDB covered at least 70% of the required
concepts for these misclassifications across all do-
mains. Thus, we decided to investigate the impact
of external knowledge on NLI models.

6.2 ERNIE-NLI Performance

We run both ERNIE and ERNIE-NLI on the MNLI
corpus using our experimental setups. With respect
to ERNIE as the baseline, the accuracy changes of
ERNIE-NLI are shown in Table 2. As introduced in
Section 5, PC&Bal has less positive relations than
PC. We can see that in Table 2, PC has better per-
formance on the entailment class than PC&Bal, but
has worse performance on neutral and contradic-
tion. Similarly, PCW achieves better performance
on entailment than PCW&Bal and worse perfor-
mance on neutral and contradiction.

PCW has more negative NLI knowledge rela-
tions than PC since PCW has additional negative
relations from WordNet. As shown in Table 2, PC
achieves better performance on the entailment class
than PCW and worse performance on the neutral
class. Similarly, PC&Bal has better performance
on the entailment class than PCW&Bal and worse
performance on neutral and contradiction classes.

These results demonstrate a correlation between
knowledge polarity and NLI performance, specifi-
cally that adding positive knowledge can train an
NLI model that is better at making entailment pre-
dictions, and that adding negative knowledge can
train an NLI model that is better at making neutral
and contradiction predictions. As shown in Table 2,
the best setup for the entailment class is PC and the
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Setup ‘ Contra Neutral Entail
PC -0.62 0.13 2.59
PC&Bal 0.22 0.96 -1.06
PCW -1.00 0.66 1.41
PCW&Bal | 0.59 1.47 -0.84

Table 2: ERNIE-NLI improvement over ERNIE in %
Accuracy per Contradiction/Neutral/Entailment label.

Model | Contr. Neut. Ent. Total
ERNIE 85.91 83.74 80.84 83.42
ERNIE-NLI E 85.29 83.87 8343 84.18
ERNIE-NLI C&N 86.50 85.21 80.00 83.74

Table 3: % Accuracy per label for ERNIE and ERNIE-
NLI using best setup for each label.

best setup for the contradiction and neutral classes
is PCW&Bal. The accuracy of the two setups per
label and on all labels are included in Table 3 be-
low. Note that in both setups, ERNIE-NLI not only
achieves better performance on the particular NLI
class, but also achieves better total performance.
While ERNIE-NLI achieves better performance in
this knowledge-integration setup, for comparison
we would like to point out that the state-of-the-art
is achieved by T5-11B (Raffel et al., 2020), which
achieves 92.2% on the MNLI test set.

6.3 Classification Change Analysis

We further analyze the new errors per label made by
ERNIE-NLI compared to ERNIE. Table 4 shows
the number of error changes grouped by NLI la-
bels, and demonstrates that all the increased er-
ror changes from ERNIE to ERNIE-NLI enhanced
with PC (i.e., positive numbers in the row of PC)
are false entailment classifications. This obser-
vation is consistent with the findings in Table 2:
with the introduction of more positive than neg-
ative knowledge, our model becomes biased to-
wards entailment. Similarly, all of the increased
errors changes from ERNIE to ERNIE-NLI en-
hanced with PCW&Bal (i.e., positive numbers in
the row of PCW&Bal) are false neutral predictions.
More interestingly, in this PCW&Bal setup where
the positive and negative knowledge is balanced,
the new errors only occur when the gold label is
entailment and all other errors decrease. These
results indicate that the model is able to utilize
knowledge in a way that reflects an understanding
of the NLI label. When the knowledge is balanced,



Gold ‘ Contra ‘ Neutral ‘ Entail
Prediction | N E | C E |C N
PC 2 022|126 24 |-9 -81
PCW&Bal | 0 -16 | -20 -20| -5 117

Table 4: ERNIE-NLI error changes with respect to
ERNIE. A positive value indicates that ERNIE-NLI
makes more errors than ERNIE on that label and vice
versa.

| Contra Neutral Entail Total
0% 86.35 83.93 80.12 83.37
25% 86.25 83.80 80.52 83.44
50% 86.50 85.21 80.00 83.74
T8% 84.91 84.40 82.25 83.80
100% | 85.29 83.87 83.43 84.18

Table 5: ERNIE-NLI performance with respect to the
portion of positive knowledge used during knowledge
training.

the model better understands the boundary between
entailment and contradiction.

To better understand knowledge effect on
ERNIE-NLI, we conduct a series of experiments to
answer the following questions:

* Is more knowledge better?

* How does knowledge polarity affect NLI classifi-
cation?

* How is performance affected if there is new
knowledge at inference time?

6.4 Knowledge Portion during Training

To investigate performance gains with respect to
the addition of NLI knowledge, we report the NLI
performance depending on the portion of positive
knowledge used during NLI knowledge learning
under the PC setup in Table 5, which shows how the
incremental addition of positive knowledge during
knowledge embedding training increases the NLI
performance for the entailment label. Note that
the total accuracy is increased as more positive
knowledge is added.

6.5 Knowledge Type during Inference

An NLI contradiction pair may extract positive NLI
knowledge relations and an entailment pair may
extract negative NLI knowledge relations. We ana-
lyze the correlation between the presence of NLI
knowledge relations and the prediction results on
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Label ‘ Pos Rels  Neg Rels None Rels
C/N—E \ 160 (101) 22 (11) 138 (88)
C/E—N | 156 (96) 24 (16) 140 (57)
N/E —C ‘ 129 (60) 22 (9) 82 (35)

Table 6: ERNIE-NLI classification changes with re-
spect to ERNIE depending on presence of knowledge
at inference time. Numbers without parenthesis are the
total changes and numbers in the parenthesis are the
correct changes.

the dev set. Specifically, we compare the predic-
tion changes from ERNIE to ERNIE-NLI using the
PC setup. Table 6 shows these prediction changes.
X — Y represents the NLI pairs where baseline
ERNIE predicts X while ERNIE-NLI predicts Y.
We also include the number of correct prediction
changes (i.e., where Y is gold).

Since we show results on the PC setup, we fo-
cus on the first row and first column in the table.
The results in the first row indicate that a correct
entailment classification with the presence of pos-
itive knowledge is observed to occur more often
than with the presence of negative knowledge. The
results in the first column indicate that a correct en-
tailment classification with the presence of positive
knowledge is observed to occur more often than a
correct neutral or contradiction classification with
positive knowledge. Thus, we see a strong correla-
tion between the presence of positive knowledge
and a correct entailment classification. This is a
result of using the PC setup in this analysis, which
is tailored for positive relations. Thus, while the
correct entailment classification has the strongest
correlation, we also see the strong effect of positive
relations across all categories.

We would like to note that these findings are not
discovered solely by looking at the label accuracies,
as other classification shifts in this setting occur.
We believe carrying out careful analyses, such as
these, enable us to gain a deeper understanding of
how knowledge affects the neural model, as we see
clear trends in the effect of knowledge presence by
polarity via this analysis.

6.6 Unseen Knowledge during Inference

To investigate our model’s robustness in a common
scenario where there are unseen knowledge rela-
tions in the evaluation data, we experiment with us-
ing only four external knowledge relations as NLI



Mapping ‘ Contra Neutral Entail
Constrained 0.09 0.48 -0.17
Unconstrained -0.31 0.57 0.63

Table 7: ERNIE-NLI % Accuracy changes for handling
unseen relations with respect to ERNIE.

knowledge relations during training. The four rela-
tions are: RelatedTo, IsA, Independent, Antonym.
During inference, we design two scenarios.

First, we design a constrained scenario in which
new relations during inference time are dropped.
For example, if an “Entails" relation exists between
two concepts according to the knowledge sources,
the knowledge is discarded, since it is not included
in one of the four relations.

Second, we design an unconstrained scenario
that computes the knowledge embedding at in-
ference time. The sequence of the two concepts
linked by the “Entails" relation, {[CLS] ¢} [SEP]
c? [SEP]}, are fed into the BERT layer in Equation
(1) and knowledge embedding layer in Equation
(2) to get the knowledge embedding.

We compare the performance of the two sce-
narios in Table 7. The unconstrained scenario
performs better than the constrained scenario, es-
pecially on the entailment label, given that there
is more positive knowledge. The result shows
ERNIE-NLI’s capability of utilizing unseen knowl-
edge relations to improve NLI, indicating the ro-
bustness of ERNIE-NLI in providing good predic-
tions even if the inference data has shifted.

7 Examples

In this section, we discuss the two examples de-
picted in Table 1, to show how external knowledge
can assist models on the NLI task.

7.1 Introducing World Knowledge

Integrating external knowledge can equip the
model with world knowledge it did not have access
to before. In Table 1, Example (A), the baseline
model without external knowledge predicts contra-
diction, which is incorrect. Our ERNIE-NLI model
with external knowledge predicts neutral, which
is correct. The external knowledge used in this
example is RelatedTo(sugar, cream) and AtLoca-
tion(sugar, coffee). The baseline model seems to
predict this as contradiction mainly because the
premise states never ... in her coffee while the
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hypothesis states in her coffee. The external knowl-
edge helps correctly align the components: sugar
and cream. Note that although the external knowl-
edge indicates that sugar is related to cream, it does
not necessarily yield an entailment prediction as
the context is still being taking into consideration
by the model, which understands that sugar is the
main condition for entailment and that cream and
sugar are not synonymous in this context.

7.2 Emphasizing Phrase Similarity

The model looks for similar words or phrases
when it judges whether the hypothesis can be en-
tailed from the premise. In the baseline model,
the contextual embeddings alone are not strong
enough to drive the prediction. In Table 1, Example
(B), the baseline prediction is contradiction, which
is wrong. Our ERNIE-NLI model with external
knowledge predicts entailment, which is correct.
The key knowledge required for this example is
Paraphrase(efforts, initiative). By adding this para-
phrase knowledge, the enhanced model recognizes
the entailment relation of the pair.

8 Conclusion

We propose ERNIE-NLI, an NLI model that inte-
grates external knowledge to enhance NLI perfor-
mance. Our external knowledge representations
are tailored to the NLI task and trained to adapt to
NLI data requirements. We show that our model
enhanced with external knowledge achieves better
performance than the previous ERNIE model with
non-adapted knowledge depending on the knowl-
edge utilized. We examine these results with sev-
eral analysis experiments to enable strong conclu-
sions about the correlation between knowledge and
NLI classification. Results also demonstrate that
the model is able to handle unseen knowledge when
the inference data shifts from training data.
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A Appendix
A.1 Knowledge Mapping

Table 8 shows the external knowledge relations that
are mapped to positive and negative NLI knowl-
edge relations.

A.2 Hyperparameter Settings

For our experiments, we did not tune hyperparame-
ters but rather selected our settings to be consistent
with Zhang et al. (2019a). We used batch size 12,
learning rate 2e-5, and random seed 42. We did
1 epoch of relation training and 4 epochs of NLI
training. We hold these settings constant across all
experiments. We built on the framework released by
Zhang et al. (2019a), which included a pytorch im-
plementation of ERNIE, and used all versions and
infrastructures included in their implementation.



Course Grained | Fine-Grained

Negative Antonym
DistinctFrom
Exclusion
Unrelated
Positive IsA
Synonym
RelatedTo
HasFirstSubevent
MannerOf
NotCapableOf
CausesDesire
MotivatedByGoal
HasProperty
Entails
ForwardEntailment
CreatedBy
Equivalence
DerivedFrom
dbpedia
OtherRelated
Unrelated
MadeOf
Desires
ReceivesAction
SimilarTo
EtymologicallyRelatedTo
HasLastSubevent
NotHasProperty
HasSubevent
DefinedAs
CausesDesire
AtLocation
HasA
Independent
ReverseEntailment
FormOf
HasContext
InstanceOf
PartOf
NotDesires
HasPrerequisite
UsedFor
CapableOf

Table 8: Fine-grained to course-grained mapping for
External Knowledge Relations to NLI Knowledge Re-
lations.



