
DaSH-LA

The 2nd Workshop on Data Science with Human-in-the-loop:
Language Advances

Proceedings of the Workshop

June 11, 2021

©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-39-8

ii

Message from the Workshop Co-chairs

The 2nd Workshop on Data Science with Human-in-the-loop (DaSH) builds on the success of the
inaugural workshop that took place at KDD in 2020. The current workshop (DaSH-LA) is co-located
with NAACL-HLT 2021, and its focus is on human-in-the-loop aspects in computational linguistics and
natural language processing (NLP).

The aim of the DaSH-LA workshop is to stimulate research on human-computer interaction challenges
in data science within the broad areas related to language, including but not limited to information
extraction, text classification, machine translation, dialog systems, question answering, language
generation, information retrieval, digital humanity, and more. We expect the overall series of the
DaSH workshops to help develop and grow a strong community of researchers who are interested
in this topic and to yield future collaborations and scientific exchanges across the relevant areas of
computational linguistics, data mining, machine learning, data and knowledge management, human-
machine interaction, and user interfaces.

The participants of the DaSH-LA workshop include researchers and practitioners interested in
understanding how to optimize human-computer cooperation and how to minimize human effort along
various NLP pipelines in a wide range of tasks and real-life applications. The full-day program includes
two keynote talks (by Dan Weld and Joyce Chai), three regular sessions with 14 accepted papers, a
special session with highlights from two recent papers with human-in-the-loop focus, as well as a panel
of experts (including Danqi Chen, Joel Tetreault and the two keynote speakers).

We would like to thank all people who in one way or another helped with the workshop. We are thankful
to the members of the program committee who did an excellent job in reviewing the submitted papers
under strict time constraints, and also to the steering committee for their helpful suggestions. Last but
not least we would like to thank all authors, speakers and participants at the workshop.

Eduard Dragut, Yunyao Li, Lucian Popa, and Slobodan Vucetic
June 2021

iii

Workshop Co-chairs

Eduard Dragut, Temple University
Lucian Popa, IBM Research

Slobodan Vucetic, Temple University
Yunyao Li, IBM Research

Program Committee

Mohit Bansal, University of North Carolina (UNC) Chapel Hill
Cornelia Caragea, University of Illinois at Chicago

Marina Danilevsky, IBM Research
Aritra Dasgupta, New Jersey Institute of Technology

Nemanja Djuric, Aurora Innovation
Kenneth Forbus, Northwestern University

Anna Lisa Gentile, IBM Research
Iryna Gurevych, Technical University of Darmstadt

Lifu Huang, Virginia Tech
Dongyeop Kang, Carnegie Mellon University

Jonathan K. Kummerfeld, University of Michigan
Bing Liu, University of Illinois at Chicago

Jeff Pan, University of Edinburgh
Soujanya Poria, Singapore University of Technology and Design

Daniel Preotiuc-Pietro, Bloomberg
Kun Qian, Amazon

Xiang Ren, University of Southern California
Shashank Srivastava, University of North Carolina (UNC) Chapel Hill

Gabriel Stanovsky, Hebrew University of Jerusalem
Benjamin Van Durme, Johns Hopkins University

Dakuo Wang, IBM Research
Rui Zhang, Penn State University

Steering Committee

AnHai Doan, University of Wisconsin
ChengXiang Zhai, University of Illinois at Urbana-Champaign

Dan Weld, University of Washington
Marti A. Hearst, University of California, Berkeley

Sunita Sarawagi, IIT Bombay

v

Table of Contents

Leveraging Wikipedia Navigational Templates for Curating Domain-Specific Fuzzy Conceptual Bases
Krati Saxena, Tushita Singh, Ashwini Patil, Sagar Sunkle and Vinay Kulkarni 1

It is better to Verify: Semi-Supervised Learning with a human in the loop for large-scale NLU models
Verena Weber, Enrico Piovano and Melanie Bradford . 8

ViziTex: Interactive Visual Sense-Making of Text Corpora
Natraj Raman, Sameena Shah, Tucker Balch and Manuela Veloso . 16

A Visualization Approach for Rapid Labeling of Clinical Notes for Smoking Status Extraction
Saman Enayati, Ziyu Yang, Benjamin Lu and Slobodan Vucetic . 24

Semi-supervised Interactive Intent Labeling
Saurav Sahay, Eda Okur, Nagib Hakim and Lama Nachman . 31

Human-In-The-LoopEntity Linking for Low Resource Domains
Jan-Christoph Klie, Richard Eckart de Castilho and Iryna Gurevych . 41

Bridging Multi-disciplinary Collaboration Challenges in ML Development via Domain Knowledge Elic-
itation

Soya Park . 44

Active learning and negative evidence for language identification
Thomas Lippincott and Ben Van Durme. 47

Towards integrated, interactive, and extensible text data analytics with Leam
Peter Griggs, Cagatay Demiralp and Sajjadur Rahman . 52

Data Cleaning Tools for Token Classification Tasks
Karthik Muthuraman, Frederick Reiss, Hong Xu, Bryan Cutler and Zachary Eichenberger 59

Building Low-Resource NER Models Using Non-Speaker Annotations
Tatiana Tsygankova, Francesca Marini, Stephen Mayhew and Dan Roth . 62

Evaluating and Explaining Natural Language Generation with GenX
Kayla Duskin, Shivam Sharma, Ji Young Yun, Emily Saldanha and Dustin Arendt 70

CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation
Dustin Arendt, Zhuanyi Shaw, Prasha Shrestha, Ellyn Ayton, Maria Glenski and Svitlana Volkova

79

TopGuNN: Fast NLP Training Data Augmentation using Large Corpora
Rebecca Iglesias-Flores, Megha Mishra, Ajay Patel, Akanksha Malhotra, Reno Kriz, Martha Palmer

and Chris Callison-Burch . 86

Everyday Living Artificial Intelligence Hub
Raymond Finzel, Esha Singh, Martin Michalowski, Maria Gini and Serguei Pakhomov 102

A Computational Model for Interactive Transcription
William Lane, Mat Bettinson and Steven Bird . 105

vii

Conference Program

Keynote Talk 1: Daniel Weld

Regular Session 1: Support for Text Analytics with Human in the Loop

Leveraging Wikipedia Navigational Templates for Curating Domain-Specific Fuzzy
Conceptual Bases
Krati Saxena, Tushita Singh, Ashwini Patil, Sagar Sunkle and Vinay Kulkarni

It is better to Verify: Semi-Supervised Learning with a human in the loop for large-
scale NLU models
Verena Weber, Enrico Piovano and Melanie Bradford

ViziTex: Interactive Visual Sense-Making of Text Corpora
Natraj Raman, Sameena Shah, Tucker Balch and Manuela Veloso

A Visualization Approach for Rapid Labeling of Clinical Notes for Smoking Status
Extraction
Saman Enayati, Ziyu Yang, Benjamin Lu and Slobodan Vucetic

Semi-supervised Interactive Intent Labeling
Saurav Sahay, Eda Okur, Nagib Hakim and Lama Nachman

Highlights: Human in the Loop Papers from Recent Conferences

Human-In-The-LoopEntity Linking for Low Resource Domains
Jan-Christoph Klie, Richard Eckart de Castilho and Iryna Gurevych

Bridging Multi-disciplinary Collaboration Challenges in ML Development via Do-
main Knowledge Elicitation
Soya Park

ix

Regular Session 2: Human in the Loop for NLP Tasks

Active learning and negative evidence for language identification
Thomas Lippincott and Ben Van Durme

Towards integrated, interactive, and extensible text data analytics with Leam
Peter Griggs, Cagatay Demiralp and Sajjadur Rahman

Data Cleaning Tools for Token Classification Tasks
Karthik Muthuraman, Frederick Reiss, Hong Xu, Bryan Cutler and Zachary Eichen-
berger

Building Low-Resource NER Models Using Non-Speaker Annotations
Tatiana Tsygankova, Francesca Marini, Stephen Mayhew and Dan Roth

Evaluating and Explaining Natural Language Generation with GenX
Kayla Duskin, Shivam Sharma, Ji Young Yun, Emily Saldanha and Dustin Arendt

Keynote Talk 2: Joyce Chai

Regular Session 3: Human in the Loop Tools

CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation
Dustin Arendt, Zhuanyi Shaw, Prasha Shrestha, Ellyn Ayton, Maria Glenski and
Svitlana Volkova

TopGuNN: Fast NLP Training Data Augmentation using Large Corpora
Rebecca Iglesias-Flores, Megha Mishra, Ajay Patel, Akanksha Malhotra, Reno
Kriz, Martha Palmer and Chris Callison-Burch

Everyday Living Artificial Intelligence Hub
Raymond Finzel, Esha Singh, Martin Michalowski, Maria Gini and Serguei Pakho-
mov

A Computational Model for Interactive Transcription
William Lane, Mat Bettinson and Steven Bird

Panel

x

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 1–7
June 11, 2021. ©2021 Association for Computational Linguistics

Leveraging Wikipedia Navigational Templates for Curating
Domain-Specific Fuzzy Conceptual Bases

Krati Saxena, Tushita Singh, Ashwini Patil, Sagar Sunkle, Vinay Kulkarni
Tata Consultancy Services Research

Pune, India

Abstract
Domain-specific conceptual bases use key con-
cepts to capture domain scope and relevant in-
formation. Conceptual bases serve as a foun-
dation for various downstream tasks, including
ontology construction, information mapping,
and analysis. However, building conceptual
bases necessitates domain awareness and takes
time. Wikipedia navigational templates offer
multiple articles on the same/similar domain.
It is possible to use the templates to recognize
fundamental concepts that shape the domain.
Earlier work in this domain used Wikipedia’s
structured and unstructured data to construct
open-domain ontologies, domain terminolo-
gies, and knowledge bases. We present a
novel method for leveraging navigational tem-
plates to create domain-specific fuzzy concep-
tual bases in this work. Our system generates
knowledge graphs from the articles mentioned
in the template, which we then process us-
ing Wikidata and machine learning algorithms.
We filter important concepts using fuzzy logic
on network metrics to create a crude concep-
tual base. Finally, the expert helps by refining
the conceptual base. We demonstrate our sys-
tem using an example of RNA virus antiviral
drugs.

1 Introduction

Domain-specific conceptual bases are a method for
grasping the domain at a high level by capturing the
notions that generally make up a domain. While on-
tology focus on formal representations and system
of categories encompassing the domain informa-
tion and conceptual models focus on linking the
general ontological categories (Fonseca and Mar-
tin, 2007), the conceptual bases are abstract models
addressing the most crucial concepts that are in-
variably found in a domain. Aside from defining
the scope and outlining the concepts, the concep-
tual bases may be used for a variety of downstream
activities, such as developing less abstract concep-
tual constructs, such as ontology, or applications

such as entity mapping in knowledge graphs, cre-
ating instances for named entity recognition, and
summarizing or analyzing the domain.

Creating a conceptual base is a difficult task that
necessitates a thorough understanding of the do-
main and a considerable amount of time to estab-
lish the importance of concepts. Online sources
such as Wikipedia contain a vast amount of infor-
mation on many domains (Wikipedia, 2021a). In
this research, we propose a novel approach to create
domain-specific conceptual bases using Wikipedia
navigational templates (Wikipedia, 2021b). The
navigational templates make it simple to connect
similar topics invariably. Similar topics are present
as navigational boxes at the bottom of the article or
sidebars on the right side of the article.

Our system uses knowledge from the articles in
the navigational templates and identifies relevant
notions consistently present in various articles of
the same field. For this, we parse the articles’ in-
formation and create a basic knowledge graph. We
map the information to their Wikidata instances
and cluster similar concepts. We apply fuzzy rules
based on network metrics to decide the importance
of concepts. In the end, the expert cleans and re-
fines the resultant conceptual base to create the
final version.

Our specific contributions are:
• Our framework allows users to build domain-

specific conceptual bases from knowledge
graphs in various domains using Wikipedia
navigational templates.

• The novelty lies in the application of fuzzy
rules on network metrics. We also provide
modifiable fuzzy rules to expand or contract
the conceptual bases as required.

We organize the paper as follows. We discuss
the method in Section 2. We illustrate the outcomes
of the approach using an example of RNA virus
antivirals in Section 3. We also review the out-
comes and limitations in that section, followed by

1

Figure 1: Method overview

related works in Section 4. We conclude the paper
in Section 5.

2 Proposed Method

We show the overview of the method in Figure
1. Our system consists of two parts: Knowledge
Curator and Conceptual Base Curator. The Knowl-
edge Curator extracts information from articles and
Wikidata to construct a basic knowledge graph,
and the Conceptual Base Curator employs machine
learning techniques for processing and fuzzy rules
to filter the relevant concepts.

2.1 Knowledge Curator

Collecting articles Our framework uses the tem-
plate name as an input to gather information
from a particular domain. The pattern “Tem-
plate:Template name>” defines the Wikipedia tem-
plates. We use Wikipedia’s special export web-
page1 to export the template’s data into XML for
faster processing. To remove unnecessary text from
the XML, we use pattern-based cleaning and rule-
based parsing. To retrieve the article names in the
template, we use rule-based parsing. We export
the information as XML for each article and use
pattern-based cleaning to clean it.
Information extraction from articles Structured
material, such as content information and in-
foboxes, can be found in Wikipedia articles. In
the same way, they contain unstructured informa-
tion in the context of the article’s text. We extract
this information by rule-based text processing on
the cleaned article’s XMLs.
Graph representation We represent the extracted
information as a graph for further processing. For
each article, we create a separate knowledge graph

1https://en.wikipedia.org/wiki/Special:
Export

where the article node is the central node. We add
section-subsection information using the relations:
has_section and has_subsection. We add in-
fobox information by adding has_ in front of the
first column labels of the infobox and the first col-
umn label as the node. For example, Earth2 info
box contains information on mass. We add the
has_mass relation to the Earth node with mass
node. We process the text in the article by text
normalization and sentence segmentation3. We to-
kenize4 the sentences and extract noun chunks5

from the sentences and consider the noun chunks
as the nodes. We join the first noun chunk of the
sentences with the section node using the relation
has_info_about. The trailing noun chunks are
added to the previous noun chunk nodes using in-
between tokens as the relation. We also create a
list of nodes that are links to other articles.
Retrieving Wikidata instance For all the nodes
that are links to other Wikipedia articles, we parse
the instanceOf6 property using web crawling and
save them to a file.

2.2 Conceptual Base Curator

Mapping We map the nodes to their Wikidata in-
stances. If an instance is present, we replace the
node with the instance name. If there are multiple
instances, we create multiple nodes and add all the
connecting nodes to the instance nodes. For exam-
ple, a node A is connected to node B and C and A
has Wikidata instanceOf as Ai1 and Ai2. Then we

2https://en.wikipedia.org/wiki/Earth
3https://spacy.io/usage/

linguistic-features#sbd
4https://spacy.io/usage/

linguistic-features#tokenization
5https://spacy.io/usage/

linguistic-features#dependency-parse
6https://www.wikidata.org/wiki/

Property:P31

2

Figure 2: Screenshot of a small part of graph for
Ciluprevir drug: the dark green node is the article node.
Red, navy blue and light green nodes are information
from infoboxes, section and text, respectively. Light
green nodes constitutes noun chunk information con-
nected via in-between tokens or has_info_about rela-
tions.

replace A-B and A-C with Ai1-B, Ai1-C, Ai2-B,
Ai2-C in the graph.
Clustering nodes There are several similar nodes
in the graphs of all the articles. We calculate the
Levenshtein distance (Levenshtein, 1966) based
feature matrix for all the nodes. We perform affin-
ity propagation clustering (Frey and Dueck, 2007)
which outputs cluster and cluster exemplars. We re-
place the nodes in the clusters with their exemplars
for further use.
Node filtering and knowledge graphs collation
The uncertainty factor of the concepts is the impe-
tus for using fuzzy logic to construct a conceptual
base. If we fill the conceptual base with all possible
notions, the structure assumes that all concepts and
relations are equally representative of the domain.
However, this is not the case. Some notions are
more applicable than others. Consider the follow-
ing three medications: Remdesivir7, Ledipasvir8

and Dasabuvir9. Medical uses, side effects, and
trade names are all common concepts. As a result,
these can be said to be true in the drug domain with
some certainty. The Remdesivir article contains in-
formation about medical usage controversy, which
is absent in other drugs. As a consequence, this
concept can be categorized as less significant.

We use fuzzy logic to find relevant concepts in a
particular domain. For this, we filter out the nodes

7https://en.wikipedia.org/wiki/
Remdesivir

8https://en.wikipedia.org/wiki/
Ledipasvir/sofosbuvir

9https://en.wikipedia.org/wiki/
Dasabuvir

whose relation does not contain a word with VERB
pos-tag. We collate the graphs for all the articles
and remove “a, an, the” from the nodes.
Fuzzy logic on network metrics We calculate two
network metrics: degree centrality and between-
ness centrality (Freeman, 1977). The centrality
metric identifies the network’s most influential
nodes. The number of connections a node has de-
termines its degree centrality. The degree centrality
of a vertex v, for a given graph G := (V,E) with
|V | vertices and |E| edges, is defined as:

CDeg(v) = deg(v) (1)

Where, deg(v) is the degree of vertex v. The num-
ber of times a node appears in the shortest path of
other nodes is known as betweenness centrality. It
is a metric that reflects a node’s power over other
network nodes. It is defined by the equation:

CBtw(v) =
∑

i 6=v 6=j

σij(v)

σij
(2)

where σij is the total number of shortest paths from
node i to node j and σij(v) is the number of those
paths that pass through v.

The fuzzy logic uses the above-defined network
metrics to decide the relevancy of the concepts.
The fuzzy logic consists of four main components:
fuzzifier, rule base, inference engine, and defuzzi-
fier. Fuzzifier converts inputs to fuzzy sets charac-
terized by membership functions (MF). Rule base
consists of IF-THEN rules used to drive the infer-
ence engine. The inference engine makes fuzzy
inference on the fuzzy input based on the defined
rules. Defuzzifier converts fuzzy set to the required
output.

In our system, the input is degree centrality and
betweenness centrality measures for all the nodes.
We have experimented with the Gaussian member-
ship function. The Gaussian MF is defined as:

GaussMF (x;µ, σ) = e−
1
2
(x−µ
σ

)2 (3)

where, x is the input, µ is the mean and σ is the
standard deviation of x. We generate gaussian MF
for both the centrality measures.

We use categorical inference on the concept rel-
evance (HIGH, MEDIUM, LOW) and Mamdani
Implication for getting the output. Assuming a
rule Ri = (Di OR Bi) → Ni, is defined by
µRi = µDiORBi→Nj (d, b;n), where µ is member-
ship function, Di and Bi are fuzzy sets for de-
gree and betweenness centrality and Njwherej ∈

3

Figure 3: (a) Left: automatically generated crude conceptual base, (b) Right: refined conceptual base, consisting
of concepts from section and text. (a) Left: red crosses depict nodes removed, yellow crosses depict the modified
nodes, and blue crosses depict the node merged to another node. (b) Right: refined nodes and edges are shown
in bold. Yellow ticked nodes are modified, and blue ticked are merged. For clarity, we show the five most central
nodes and nodes connecting to them with different colors.

[1, 2, 3] ≡ [HIGH,MEDIUM,LOW] denotes
relevance set for nodes. Then, the Mamdani Impli-
cation uses minimum operator (∧) for fuzzy impli-
cation.

µNj (n) = αi ∧ µNj (n)
where, αi = (µDi ∧ µBi)

(4)

We define three rules for inference:
• IF µdn∧µbn <= 0.6 THEN µNj (n) = HIGH
• IF 0.6 < µdn ∧ µbn <= 0.8 THEN µNj (n) =
MEDIUM

• IF µdn ∧ µbn > 0.8 THEN µNj (n) = LOW

The values in the rules are modifiable to increase
or decrease the span of concepts covered in various
relevance levels.

We filter out node-edge-node pairs using nodes
of varying significance. We consider a node-edge-
node pair highly relevant if any node in the pair is
highly relevant and the node-edge-node pair has
appeared in more than two articles. Similarly, we
translate the medium and low importance at node
level to node-edge-node pair level. We only use
highly relevant node-edge-node pairs in this pa-
per, but medium and low relevance pairs may be
added to extend the conceptual base if required. We
measure the resultant network’s largest connected
component and present it to the domain expert for
further refinement.
Refining the concept base The domain expert re-
fines the crude conceptual base. Removal or mod-

ification of semantically related concepts and re-
moval or modification of notions that reflect the
same object are both parts of the refinement pro-
cess. The expert makes node connections to the
modified nodes by naming “has_<node>” to new
relations. There is no modification of the relations
where the node is not modified.

3 Results and Discussion

3.1 Case Study on RNA Virus Antiviral
Drugs

We present the results of our approach using an
example of RNA virus antiviral drugs10. The sys-
tem is implemented in Python. All the steps auto-
matically retrieve or process the data until stated
otherwise.

The system first curates the knowledge graph
from all the articles using the section, infobox, and
text information. We show a screenshot of a small
part of the knowledge graph for the Ciluprevir drug
in Figure 2. The system also retrieves and maps the
Wikidata instanceOf property to all the link-based
nodes.

Next, we apply affinity propagation to cluster
similar information together. We experimented by
clustering section, infoboxes and text together and
independently. Infoboxes present a structured sum-
mary of the article’s information. We note that the

10https://en.wikipedia.org/wiki/
Template:RNA_antivirals

4

Figure 4: (a) Left: Crude and (b) Right: refined conceptual base from infoboxes. Same color nodes represent
instances of the same concept.

clustering of infoboxes tends to lose information
because different information identifiers may come
under a single cluster, although they represent in-
dependent information. As a result, the final con-
ceptual base contains minimal information from
infoboxes. In our experiment, the automatically
created conceptual base that uses clusters of all in-
formation together contains 49.4%, 4%, and 46.6%
concepts coming from section, infoboxes, and text,
respectively. Hence, we cluster only section and
text information (independently) and use infoboxes
information as it is.

After this, the application of fuzzy logic results
in a crude conceptual base. Due to space restric-
tions, we show snippets of the model with only
a few mentions of the edge names: consisting of
section and text information in Figure 3(a) and in-
fobox information in Figure 4(a). The respective
refined models are shown in Figure 3(b) and 4(b).
Edges or relations mostly consists of names such as
has_info_about, has_section, has_subsection,
has_type and verbs such as is, approved_by,
is_not_recommended_during, etc. We call our
output conceptual base and not conceptual model
because the relations such as has_info_about,
has_section, has_subsection does not provide
any meaningful link between the concepts. Mean-
ingful modification of such relations can be consid-
ered as a downstream task.

The templates contain few articles of different
domains as well. For instance, RNA antiviral tem-
plate contains disease and virus names as well. But,
the proposed approach ensures that we consider
only statistically significant concepts for the con-
ceptual base. We manually validate that the crude
conceptual base contains 14%, 16%, and 70% of
concepts from section, text, and infoboxes, respec-

tively.

3.2 Discussion

Our observations suggest that the crude conceptual
base can capture most of the relevant information
from both the section and text information and
infobox information. There are few ambiguous
names in the nodes like pore, south, rate (marked
using crosses) in Figure 3(a) and legal_us, legal_uk,
etc. (colored nodes) in Figure 4(a), which the do-
main expert removes or corrects. The expert also
modifies edges, where nodes are modified.

The crude base contains two types of nodes: 1)
nodes representing the same object in the current
context but can have different meanings, and 2)
nodes that are instances of another concept. For
example, in Figure 3(a), the nodes medication, an-
tiviral drug and antiviral medication represents
antiviral drugs in the current context. These nodes
appear because an article node is the most central in
their knowledge graph, and they can have multiple
Wikipedia instanceOf properties. Similarly, there
are many instances of legal status and pregnancy
category in Figure 4(a). Instances appear in the
infobox conceptual base because we do not cluster
those nodes. As a result, original data is retained
for calculation of relevance.

Since the refinement process is manual, the ex-
pert can decide how to modify the crude conceptual
base as per the need. In Figure 3(b) and 4(b), we
have shown basic refinement. In Figure 3(a), we
show red crosses on the nodes that are removed
because of ambiguity or no meaningful informa-
tion, yellow crosses on the nodes that are modi-
fied because of inappropriate names but are mean-
ingful, and blue cross on the node that is merged
with another similar node. Here, antiviral drug is

5

merged to antiviral medication. The refined ver-
sion in Figure 3(b) depicts bold boundary nodes
and edges that the expert modifies. In Figure 4(a),
same-colored nodes represent instances of same
concepts, which the expert merge into one in Fig-
ure 4(b).

In the presented case study, the expert modifies
about 30% of the total nodes (section+ text+ in-
foboxes). However, this is subject to the structure
of Wikipedia articles in the navigational template.
For example, most of the articles in the Distilla-
tion11 template do not contain infoboxes, which
reduces the percentage of nodes that needs to be
modified.

Following are the limitations of our approach:
• Parsing information from web pages is a time-

consuming task, so we use XML and text pro-
cessing for information gathering. Sometimes,
rule-based text processing incorrectly extracts
the information, and seldom, the XML does
not contain full information. We manually
check the infobox content after cleaning the
XMLs. We find that approximately 47.5% of
infobox entries are incorrect or empty in our
case study. In the future, we plan to check the
performance and scalability of other tools.

• Sections constitute a small part of the arti-
cle’s information, but we lose a considerable
amount of textual information because of the
filtering process. We are currently explor-
ing techniques to create enhanced knowledge
graphs using language models where filtration
of nodes results in minimum or no informa-
tion loss.

• Currently, we do not provide any aid for re-
fining the conceptual base. We plan to cre-
ate a GUI for this purpose that will include
controllers for fuzzy logic and an interface
for effortless refinement, further reducing the
time and effort needed to create the conceptual
base.

4 Related Works

Many researchers have worked on fuzzy ontology
creation and their downstream applications, such as
generating taxonomies, ontologies, and conceptual
models from various data sources.

The use of fuzzy logic for creating concept lat-
tices and ontologies has been studied previously
by various researchers. There have been studies

11https://en.wikipedia.org/wiki/Template:Distillation

regarding fuzzy ontology creation (De Maio et al.,
2009), (Tho et al., 2006), using fuzzy ontology
and concept models in various domain-specific
tasks and dataset (Parry, 2006), (Abulaish, 2009),
(Quach and Hoang, 2018). As opposed to the pre-
vious work, we employ fuzzy logic using network
metrics attributes.

There are a few significant open-domain,
community-driven projects for structured knowl-
edge creation. DBpedia (Lehmann et al., 2015)
extracts structured information in multiple lan-
guages from Wikipedia infoboxes. Yago (Suchanek
et al., 2007) has released various versions, and this
also uses Wikipedia infoboxes. It also employs
Wikipedia categories to determine the type of in-
formation, which is then mapped to WordNet tax-
onomy. Wikidata (Vrandečić and Krötzsch, 2014)
a collaborative database, also links Wikipedia data
with unique identifiers. Apart from the community-
driven projects, researchers also used Wikipedia in
other open-domain tasks such as document topic
classification (Hassan et al., 2012), collaborative
ontology creation (Hepp et al., 2006), semantic
conceptual modeling and semantic relatedness in-
terpretation (Saif et al., 2018), explaining facts in
AI (Sarker et al., 2020), learning named entities
(Nothman et al., 2013), large-scale taxonomy gen-
eration (Ponzetto and Strube, 2007). Researchers
also used Wikipedia in domain-specific tasks like
exploiting Wikipedia knowledge for classification
tasks (Warren, 2012) and extracting domain-terms
and terminologies from Wikipedia (Vivaldi and
Rodríguez, 2010), (Vivaldi and Rodríguez, 2011),
(Vivaldi et al., 2012). In this research, we provide
domain-specific conceptual base construction from
a small set of articles extracted on-the-fly from
Wikipedia navigational templates instead of full
Wiki dumps or other domain-specific corpora/texts.
We also exploit unstructured text in addition to the
structured information like Wikipedia info-boxes
and article content structure.

5 Conclusion

We use Wikipedia navigational templates to build
domain-specific conceptual bases in this study. To
compute the relevance of the concepts, our system
generates a graph representation of the article’s
knowledge and uses fuzzy logic on top of its net-
work metrics. With a bit of human intervention, the
system outputs a refined conceptual base that can
be used further for various downstream purposes.

6

References
Muhammad Abulaish. 2009. An ontology enhance-

ment framework to accommodate imprecise con-
cepts and relations. Journal of Emerging technolo-
gies in web intelligence, 1(1).

Carmen De Maio, Giuseppe Fenza, Vincenzo Loia,
and Sabrina Senatore. 2009. Towards an automatic
fuzzy ontology generation. In 2009 IEEE Interna-
tional Conference on Fuzzy Systems, pages 1044–
1049. IEEE.

Frederico Fonseca and James Martin. 2007. Learning
the differences between ontologies and conceptual
schemas through ontology-driven information sys-
tems. Journal of the Association for Information
Systems, 8(2):4.

Linton C Freeman. 1977. A set of measures of central-
ity based on betweenness. Sociometry, pages 35–41.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. science,
315(5814):972–976.

Mostafa M Hassan, Fakhri Karray, and Mohamed S
Kamel. 2012. Automatic document topic identifi-
cation using wikipedia hierarchical ontology. In
2012 11th International Conference on Information
Science, Signal Processing and their Applications
(ISSPA), pages 237–242. IEEE.

Martin Hepp, Daniel Bachlechner, and Katharina
Siorpaes. 2006. Harvesting wiki consensus-using
wikipedia entries as ontology elements. In SemWiki.
Citeseer.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.
Soviet Union.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R Curran. 2013. Learning mul-
tilingual named entity recognition from wikipedia.
Artificial Intelligence, 194:151–175.

David Parry. 2006. Fuzzy ontologies for information
retrieval on the www. In Capturing Intelligence, vol-
ume 1, pages 21–48. Elsevier.

Simone Paolo Ponzetto and Michael Strube. 2007. De-
riving a large scale taxonomy from wikipedia. In
AAAI, volume 7, pages 1440–1445.

Xuan Hung Quach and Thi Lan Giao Hoang. 2018.
Fuzzy ontology modeling by utilizing fuzzy set and
fuzzy description logic. In Modern Approaches
for Intelligent Information and Database Systems,
pages 15–26. Springer.

Abdulgabbar Saif, Nazlia Omar, Mohd Juzaiddin
Ab Aziz, Ummi Zakiah Zainodin, and Naomie
Salim. 2018. Semantic concept model using
wikipedia semantic features. Journal of Information
Science, 44(4):526–551.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hit-
zler, Lu Zhou, Srikanth Nadella, Brandon Minnery,
Ion Juvina, Michael L Raymer, and William R Aue.
2020. Wikipedia knowledge graph for explainable
ai. In Iberoamerican Knowledge Graphs and Se-
mantic Web Conference, pages 72–87. Springer.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Quan Thanh Tho, Siu Cheung Hui, Alvis Cheuk M
Fong, and Tru Hoang Cao. 2006. Automatic
fuzzy ontology generation for semantic web. IEEE
transactions on knowledge and data engineering,
18(6):842–856.

Jorge Vivaldi, Luis Adrián Cabrera-Diego, Gerardo
Sierra, and María Pozzi. 2012. Using wikipedia to
validate the terminology found in a corpus of basic
textbooks. In LREC, pages 3820–3827.

Jorge Vivaldi and Horacio Rodríguez. 2010. Finding
domain terms using wikipedia. In LREC.

Jorge Vivaldi and Horacio Rodríguez. 2011. Extract-
ing terminology from wikipedia. Procesamiento del
lenguaje natural, 47:65–73.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Robert Warren. 2012. Creating specialized ontolo-
gies using wikipedia: The muninn experience.
Berlin, DE: Proceedings of Wikipedia Academy:
Research and Free Knowledge (WPAC2012). URL:
http://hangingtogether. org.

Wikipedia. 2021a. Wikipedia category contents.
https://en.wikipedia.org/wiki/
Wikipedia:Contents/Categories.

Wikipedia. 2021b. Wikipedia navigation tem-
plate. https://en.wikipedia.org/wiki/
Wikipedia:Navigation_template.

7

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 8–15
June 11, 2021. ©2021 Association for Computational Linguistics

It is better to Verify: Semi-Supervised Learning with a
human in the loop for large-scale NLU models

Verena Weber, Enrico Piovano and Melanie Bradford
Amazon Alexa AI, Berlin, Germany

{wverena,piovano,neunerm}@amazon.com

Abstract

When a NLU model is updated, new utter-
ances must be annotated to be included for
training. However, manual annotation is very
costly. We evaluate a semi-supervised learning
workflow with a human in the loop in a produc-
tion environment. The previous NLU model
predicts the annotation of the new utterances,
a human then reviews the predicted annotation.
Only when the NLU prediction is assessed as
incorrect the utterance is sent for human anno-
tation. Experimental results show that the pro-
posed workflow boosts the performance of the
NLU model while significantly reducing the
annotation volume. Specifically, in our setup,
we see improvements of up to 14.16% for a
recall-based metric and up to 9.57% for a F1-
score based metric, while reducing the annota-
tion volume by 97% and overall cost by 60%
for each iteration.

1 Introduction

Natural Language Understanding (NLU) models
are a key component of task-oriented dialog sys-
tems such as as Amazon Alexa or Google Assistant
which have gained more popularity in recent years.
To improve their performance and extend their func-
tionalities, new versions of the NLU model are
released to customers on a regular basis. In the
classical supervised learning approach, new train-
ing data between model updates is acquired by
sampling utterances from live traffic and have them
annotated by humans. The main drawback is the
high cost of manual annotation. We refer to this
conventional workflow as human annotation work-
flow. In this paper, we propose a new workflow
with the aim to reduce the annotation cost while
still maintaining high quality NLU models. We
refer to it as the human verification workflow. The
proposed workflow uses the previous (current) ver-
sion of the NLU model to annotate the new training
data before each model update. The predicted an-
notation produced by the NLU model, which we
refer to as NLU hypothesis or interpretation, is then

reviewed by humans. If the NLU hypothesis is as-
sessed as correct, the NLU hypothesis is used as
the ground-truth annotation of the utterance dur-
ing training. If the NLU hypothesis is assessed as
incorrect, the utterance is sent for human annota-
tion before being ingested for training. With the
proposed workflow, only utterances for which the
hypothesis of the NLU model was assessed as in-
correct are annotated by humans, thereby reducing
the annotation volume drastically. Since verifying
is faster and cheaper than annotating, a cost reduc-
tion is achieved. We investigate the adoption of
this workflow once the system has reached a cer-
tain maturity, not from the start. While these two
workflows would provide the same annotation for
any utterance in an ideal world, the results may
differ in the real world depending on the presence
of annotation or verification errors. In this paper,
we would like to answer the following fundamen-
tal question: in terms of human annotation errors,
human verification errors and model performance,
is it better to manually verify or annotate in order
to iteratively update NLU systems?

To answer this question, we investigate the im-
pact of human annotation vs. verification in a large
scale NLU system. To this end, we consider two
model architectures utilized for NLU models in the
current production systems, a Conditional Random
Field (CRF) (Lafferty et al., 2001; Okazaki, 2007)
for slot filling and a Maximum Entropy (MaxEnt)
classifier (Berger et al., 1996) for intent classifi-
cation as well as a transformer based BERT ar-
chitecture (Devlin et al., 2018). We evaluate the
proposed workflow both explicitly by measuring
annotation quality as well as implicitly by compar-
ing the resulting model performance. Our exper-
imental results show that the human verification
workflow boosts the model performance while re-
ducing human annotation volumes. In addition, we
show that human annotation resources are better
spent on utterances selected through Active Learn-
ing (Cohn et al., 1996; Settles, 2009; Konyushkova
et al., 2017).

8

2 Related Work

Using a model to label data instead of humans
is an approach that has been studied extensively
since human labelling is costly while unlabelled
data can be acquired easily. Under the term Semi-
supervised learning (SSL) (Zhou and Belkin, 2014;
Zhu, 2005) many different approaches to leverage
unlabelled data emerged in the literature. SSL aims
at exploiting unlabelled data based on a small set
of labelled data. One approach is self-training, also
referred to as self-teaching or bootstrapping (Zhu,
2005; Triguero et al., 2015). In self-training la-
bels are generated by feeding the unlabelled data
in a model trained on the the available labelled
data. Typically, the predicted labels for instances
with high confidence are then used to retrain the
model and the procedure is repeated. For neural
networks, Lee (2013) suggested pseudo-labelling
which optimizes a combination of supervised and
unsupervised loss instead of retraining the model
on pseudo-labels. Self-training has been applied to
several natural language processing tasks. To name
only a few examples, Yarowsky (1995) uses self-
training for word sense disambiguation, Riloff et al.
(2003) to identify subjective nouns. In McClosky
et al. (2006) self learning is used for parsing.
The two main drawbacks of self-training are that
instances with low confidence scores cannot be
labelled and that prediction errors with high con-
fidence can reinforce itself. To mitigate the latter
issue strategies to identify mis-labeled instances
have been discussed. An exhaustive review is be-
yond the scope of this paper, we just name a few
examples. Li and Zhou (2005) use local informa-
tion in a neighborhood graph to identify unreliable
labels, Shi et al. (2018) add a distance based un-
certainty weight for each sample and propose Min-
Max features for better between-class separability
and within-class compactness.
In this paper we suggest to use human verification
to ensure the ingested predicted labels are reliable.
In addition, we rely on human annotation for those
utterances that the model cannot interpret correctly.
The goal is to mitigate the two afore-mentioned
problems of self-training.

A so called human-in-the-loop approach has
been investigated for different applications. Zhang
et al. (2020) investigate a human-in-the-loop ap-
proach for image segmentation and annotation.
Schulz et al. (2019) examine the use of sugges-
tion models to support human experts with seg-

mentation and classification of epistemic activities
in diagnostic reasoning texts. Zhang and Chaud-
huri (2015) suggest active learning from weak and
strong labelers where these labelers can be humans
with different levels of expertise in the labelling
task. Shivaswamy and Joachims (2015) show that
a human expert is not always needed but that user
behavior is valuable feedback that can be collected
more easily.

The contribution of this paper is two-fold: First,
we propose a SSL approach with a human in
the loop for large-scale NLU models. Second,
we show this workflow boosts the performance
in a production system while reducing human
annotation significantly.

Active Learning (AL) (Cohn et al., 1996; Set-
tles, 2009; Konyushkova et al., 2017) proposes to
label those instances that promise the highest learn-
ing effect for the model instead of blindly labelling
data. Since the proposed workflow reduces the hu-
man annotation volume, we spend some of these
freed up resources on annotation of AL data.

3 Setup and Approach

In this section, we briefly discuss the NLU model,
the used metrics, the concept of iterative model
updates and evaluation.

3.1 NLU task

A common approach to NLU is dividing the recog-
nition task into two subtasks. Predicting the in-
tent and the slots of a user’s utterance constitutes
a way to map the utterance on a semantic space.
Accordingly, our NLU model consists of two mod-
els, each performing one of these subtasks. Intent
classification (IC) predicts the user’s specific in-
tent, e.g. play music or turn on a light. Slot fill-
ing (SF), finally extracts the semantic constituents
from the utterance. Taking the example “Where
is MCO?” from the ATIS data (Tur et al., 2010)
(Do and Gaspers, 2019), should be labelled as
where−[O] is−[O] MCO−[B−airport_code]
by slot filling. The intent should be recognized as
city. When an utterance is humanly annotated for
training, the annotator performs the same operation
of the NLU model by mapping the utterance to a
specific intent and slots in order to be ingested for
training.

9

3.2 Metrics
We report results considering two metrics utilized
to evaluate the performance of NLU models in
production systems, Semantic Error Rate (SemER)
and Intent Classification Error rate (ICER). SemER
takes into consideration both intent and slot classi-
fication errors, while ICER only takes intent errors
into consideration. SemER is computed as follows:

SemER =
#(slot + intent errors)

#(slots + intents in reference)
(1)

ICER simply is the percentage of utterances with
mis-classified intent, only intent classification
counts while slot errors are ignored.

ICER =
#(intent errors)

#(total utterances)
(2)

Note that both SemER and ICER are error met-
rics, i.e. a metric reduction reflects an improve-
ment. Both are one-sided metrics that do not take
precision into account. Therefore, we also report
F-metrics for SemER and ICER, which are referred
to as F-SemER and F-ICER, respectively. They are
defined as the harmonic mean of the recall-based
metric and the precision. We report macro-averages
over intents for all metrics.

3.3 Iterative Model Updates
NLU models need to be regularly updated to im-
prove their capability to understand new customer
requests and extend the functionalities of the virtual
assistant. Therefore new models trained on recent
customer data are released on a regular basis. New
data is sampled from live traffic between two NLU
model releases and annotated. A part of the legacy
training data is then discarded and replaced by the
new annotated data for two reasons: 1) practical
constraints to the building time of the new release
model, 2) using too old and therefore unrepresen-
tative data could degrade model performance. As
a consequence, each NLU model is trained on an
almost constant number of training utterances. For
example, assuming that the overall training size is
constrained to 400.000 utterances, then, if in a new
release 10.000 new utterances are added, the oldest
10.000 will be removed.

3.4 Maturity and workflow evaluation
When NLU models are released for the first time,
only human annotated data are used for training

as previous versions of the NLU model are not
available. This means in theory, the two workflows
can be implemented from the second release on-
ward. This implies that during the first few releases
the majority of the training data is human anno-
tated data. However, due to the data elimination
procedure described in Section 3.3, after a certain
number of releases with the verification workflow
the manually annotated data from the first release
will be fully removed from the training set. Here
we assume to be in that maturity stage, where the
full training dataset is derived from either the verifi-
cation or annotation workflow, and hence no mixed
training set between the two workflows is consid-
ered. For evaluation of the proposed workflows,
we simulate the described updates and consider a
specific model update for evaluation. A schematic
timeline is shown in Figure 1. As we are con-
sidering a mature NLU model, this evaluation is
representative of other model updates.

Figure 1: Schematic depiction of the NLU model up-
dates timeline. Each dash represents a release. Results
are reported for Evaluation point.

4 Proposed workflow

Figure 2: Schematic depiction of the proposed verifi-
cation workflow. Note that the NLU model is updated
periodically.

4.1 Detailed Workflow Description

This section describes the two workflows in de-
tail. Throughout this paper we denote the human
annotation workflow as the benchmark.

10

1. Human annotation workflow - benchmark:
In each model update, the new training utter-
ances are sent for manual annotation. Hence,
the whole training dataset on which the NLU
model is retrained (or-fine-tuned) periodically
is human annotated, including the recently
added utterances. The annotator only has ac-
cess to the annotation guideline, but cannot
see any kind of hypothesized annotation of
the utterance.

2. Human verification workflow - proposed:
Before each model update, the new training
instances are first fed into the previous NLU
model. The NLU hypothesis is then sent for
human verification to assess if the NLU hy-
pothesis is correct or not. If the annotation
is evaluated as correct, the NLU hypothesis
is ingested as ground-truth in the new NLU
model training dataset. If the annotation is
evaluated as incorrect, the utterance is sent
for human annotation before being ingested.
In this workflow, the evaluator has access to
both the annotation guideline as well as the
NLU annotation hypothesis of the utterance.
Figure 2 depicts the proposed workflow. The
training dataset on which the NLU model is re-
trained (or fine-tuned) only partially consists
of human-annotated data.

With the proposed workflow, the cost is dramat-
ically reduced as verifying is faster and cheaper
than annotating. However, the question is if the ver-
ification workflow is also favorable in terms of data
quality and model performance. In our experiments
we therefore evaluate which of the two workflows
is able to generate higher quality training data and
enhance the NLU model performance. Results are
discussed in Section 7.

5 Datasets

For training, we start with a dataset of unlabelled
utterances representative of the user engagement
with a dialog system. The dataset spans over a
large number of intent and slots representative of
multiple functionalities. High level statistics are
listed in Table 5.

In order to have the same annotation and ver-
ification quality as in the production system, we
requested the support from professional annota-
tors. Trained and experienced annotators mimicked
both workflows. For each utterance, one annotator

of the team followed the human annotation work-
flow, while another followed the human verification
workflow. For each training utterance, we also have
the corresponding NLU hypothesis from the pro-
duction model when the utterance was sampled. As
a result two labelled training datasets were gener-
ated from one unlabelled dataset following each
workflow. The overall training dataset has been
built over multiple NLU releases as explained in
Section 3.3.
The two training sets are then used to re-train or
fine-tune each of the considered architecture. As
a test set, we also consider a dataset of utterances
representative of the engagement of the users with
a voice assistant (see Table 5), also sampled as ex-
plained in Section 3.3. In order to have a correct
and unbiased test set, test data are annotated follow-
ing a different pipeline than the ones for training.
For each test utterances three annotators need to
produce the same annotation (100% agreement).
This allows us to assume that the annotation of the
test data is almost surely correct. The updated mod-
els are then evaluated on the test set to compare
performance.

6 Experiments

This section describes the conducted experiments
to evaluate both workflows and provides more de-
tails about how we selected utterances for annota-
tion through AL.

6.1 Considered Model Architectures

To evaluate the proposed verification workflow, we
consider two NLU architectures:

• CRF+MaxEnt classifier architecture:
We use a Conditional Random Field (CRF)
(Lafferty et al., 2001; Okazaki, 2007) for slot
filling and a Maximum Entropy (MaxEnt)
classifier (Berger et al., 1996) for intent clas-
sification. The new NLU model is obtained
by re-training from scratch on the updated
training dataset.

• BERT architecture:
We use a transformer based BERT model (De-
vlin et al., 2018) that jointly solves the task of
intent classification and NER. Hidden states
are fed into a softmax layer to solve the two
tasks. We use pre-trained mono-lingual BERT
for German trained on unsupervised data from

11

utterances # distinct intents # distinct slots
training set 400 000 316 282
test set 100 000 316 282

Table 1: High level statistics for training and test set.

Wikipedia pages. We tokenize the input sen-
tence, feed it to BERT, get the last layer’s ac-
tivations, and pass them through a final layer
to make intent and NER predictions. In this
case the updated NLU model is obtained by
fine-tuning the initial NLU model on the new
training dataset.

For both approaches we keep the set of features,
hyperparameters and configuration constant for our
experiments. All experiments are conducted for
German. For each architecture, the models are
trained by using the annotated data from the anno-
tation vs verification workflows, respectively. For
the BERT models, this step is preceeded by pre-
training both models on unsupervised Wikipedia
data. We then compare the performance of the
resulting models.

6.2 Active Learning

We perform AL in two steps considering a corpus
of millions of unlabelled utterances initially:

1. For each domain, select through a binary clas-
sifier which utterances from the unsupervised
corpus are relevant to the domain.

2. Out of the candidate pool, select those with the
lowest confidence score product of MaxEnt
classifier (IC) and CRF (NER) and send them
for annotation.

Note that a low product of IC and NER score indi-
cates that the utterance is difficult to label for the
model. We selected a total of 30.000 utterances
through AL for human annotation.

7 Results

This section discusses all obtained results. We first
evaluate the annotation quality for both workflows
and quantify the possible cost reduction for the pro-
posed workflow, see Sections 7.1 and 7.2. Second,
we compare the performance of the NLU models
when trained on data labeled through the respective
workflow. Results are shown in Section 7.3.

7.1 Annotation reduction with the proposed
workflow

To investigate by how much human annotation
could be reduced through the proposed workflow,
we calculate the percentage of utterances for which
the NLU hypothesis of the previous model was as-
sessed as correct between each update. We find
that 97% of the annotation from the NLU model
are assessed as correct. This means that only 3% of
the utterances would be manually annotated consti-
tuting a significant reduction in annotation volume.
Annotating an utterance takes about 2.5 the time of
verification. Note that time is proportional to cost
as we assume that human annotation specialists are
paid a certain wage per hour and are able to pro-
cess a certain amount of utterances depending on
the task, annotation vs. verification. Let N denote
the number of sampled utterances, tA the annota-
tion time per utterance and tV the verification time
per utterance in minutes. Then tA = 2.5 · tV or
tV = 0.4 · tA. The total cost for the verification
workflow can then be written as:

totalV = N · tV + 0.03 ·N · tA (3)

Substituting tV = 0.4 · tA into 3 gives totalV =
0.43 ·N · tA. Note that N · tA denotes the total cost
of the annotation workflow totalA, so

totalV = 0.43 · totalA. (4)

Thus the verification workflow leads to an overall
cost reduction of almost 60 %.

7.2 Quality of evaluation vs annotation
To compare the frequency of human errors in an-
notation and verification workflow, we requested
an assessment by specialized annotators for the an-
notations from each workflow for one sample of
utterances. For each utterance, three specialists had
to agree in their assessment. Note that we took a
sample of utterances assessed as correct in the hu-
man verification workflow as we wanted to estimate
the percentage of incorrect training data that might
be ingested through the verification workflow.

Table 3 shows the human errors in the verifica-
tion workflow relative to the annotation workflow.

12

ICER SemER F-ICER F-SemER Annotation Reduction
1 MaxEnt+CRF -3.85% -2.62% -6.81% -3.45% -97%
2 MaxEnt+CRF+AL -24.58% -20.44% -26.04% -17.26% -90%
3 BERT -14.16% -8.77% -9.47% -1.80% -97%

Table 2: Rel. difference in error metrics for verification vs annotation (baseline) workflow for all experiments.

An annotation or verification is treated as incorrect
if the intent or at least one of the slots is incor-
rect. We can see the verification workflow reduces
overall human errors by 66% compared to the an-
notation workflow. Note that this large human error
reduction is mostly driven by fewer intent errors,
which are reduced by 80% for the verification work-
flow relative to the annotation workflow. Overall,
the frequency of verification human errors is signif-
icantly lower than the frequency of annotation hu-
man errors. This means that looking at an already
annotated utterance helps to reduce the number of
low-quality training data compared to annotating
an utterance from scratch, where the person has no
indication.

To evaluate the annotation consistency in each
training dataset generated through the respective
workflow, we calculate the average entropy across
each dataset on token level in Table 4. Entropy will
be lower the fewer interpretations we see for the
same token and the more consistent the annotation
is. The entropy of the training set from the verifica-
tion workflow is 5% lower than for the annotation
workflow.

Rel. human error
Intent Errors -80%
Slot Errors -50%
Overall Errors -66%

Table 3: Human error frequencies for verfication vs an-
notation on a sample of utterances.

Avg. entropy
annotation workflow 0.5677
verification workflow 0.5378
relative -5.3%

Table 4: Average entropy on token level for each train-
ing dataset generated through the respective workflow.

7.3 Experiment Results

Table 2 displays all the experimental results to mea-
sure the impact of the verification workflow vs an-

notation workflow on model performance. Specifi-
cally, we show the relative percentage change of the
metric values considering the verification workflow
relative to the metric values considering the annota-
tion workflow as a baseline. As SemER and ICER
are error based metrics, a “-” means an improve-
ment of the performance for verification compared
to annotation, while “+” means a degradation.

It is evident that the verification workflow out-
performs the annotation workflow, often even by a
substantial margin, for all experiments and metrics
while drastically reducing manual annotation vol-
ume for each iteration. This is in line with the previ-
ous observation of a lower error rate and higher con-
sistency in the training data from the verification
annotation workflow, see Section 7.2. Moreover,
the gain in terms of ICER is higher than SemER for
all experiments, which is driven by the greater re-
duction of intent errors in the verification workflow.
We assume the display of the NLU hypothesis in-
fluences verifiers and results in a more consistent
annotation when it comes to ambiguous utterances
that have multiple valid interpretations. This again
leads to more consistency in the training data by
reducing the number of utterances for which the
model sees two different annotations.

The gains for BERT are larger than for Max-
Ent+CRF, except for F-SemER. This suggests that
BERT is more sensitive to contradictory training
data which is why the proposed workflow yields
even higher performance gains compared to the
MaxEnt+CRF architecture.

Given the high reduction in annotation volume
through the proposed workflow, we used some of
the freed up capacities instead to have AL data
annotated. We added an additional 30.000 AL ut-
terances for the most confused intents and slots to
the training dataset of each workflow. As shown in
Table 2, adding comparatively few AL data boosts
model performance of the verification vs annota-
tion models by more than 20% for almost all met-
rics while increasing the annotation volume by less
than 10%. The great relative difference in per-
formance for verification vs annotation suggests

13

that AL is even more beneficial for the verification
workflow.

8 Conclusion

With the aim of reducing annotation costs, we test
a methodology where mature NLU models are it-
eratively updated by ingesting labelled data via a
human verification instead of a human annotation
workflow. Our findings show that the proposed ver-
ification workflow not only cuts annotation costs by
almost 60 %, but it also boosts the performance of
the NLU system for both considered architectures.
This is in line with the annotation quality evalua-
tion we performed, where we found that the human
error rate for verification is lower than the human
error rate for annotation yielding more consistent
training data in the former. Our findings have an
important practical implication: verifying is better
than annotating for mature systems. Moreover, a
fraction of the annotation savings should be utilized
to annotate more impactful data, for instance AL
data, which generated a large performance gain in
the proposed workflow with a minimal increase in
annotation volume.

Acknowledgements

The authors would like to thank the Alexa
DeepNLU team for providing the pre-trained BERT
model for German language.
The authors would also like to thank Tobias Falke
for his valuable comments on an earlier draft of
this paper.

References
Adam L. Berger, Vincent J. Della Pietra, and Stephen

A. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Comput. Lin-
guist., 22(1):39–71.

David A Cohn, Zoubin Ghahramani, and Michael I Jor-
dan. 1996. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–
145.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Quynh Ngoc Thi Do and Judith Gaspers. 2019. Cross-
lingual transfer learning for spoken language under-
standing. Proceedings of the 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, ICASSP.

Ksenia Konyushkova, Raphael Sznitman, and Pascal
Fua. 2017. Learning active learning from data. In
Advances in Neural Information Processing Systems,
pages 4225–4235.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Dong-Hyun Lee. 2013. Pseudo-label: The simple and
efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in rep-
resentation learning, ICML, volume 3.

Ming Li and Zhi-Hua Zhou. 2005. Setred: Self-
training with editing. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 611–
621. Springer.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152–
159.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs). URL http://www.
chokkan. org/software/crfsuite.

Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003.
Learning subjective nouns using extraction pattern
bootstrapping. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL
2003, pages 25–32.

Claudia Schulz, Christian M Meyer, Jan Kiesewetter,
Michael Sailer, Elisabeth Bauer, Martin R Fischer,
Frank Fischer, and Iryna Gurevych. 2019. Anal-
ysis of automatic annotation suggestions for hard
discourse-level tasks in expert domains. arXiv
preprint arXiv:1906.02564.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Weiwei Shi, Yihong Gong, Chris Ding, Zhiheng MaX-
iaoyu Tao, and Nanning Zheng. 2018. Transductive
semi-supervised deep learning using min-max fea-
tures. In Proceedings of the European Conference
on Computer Vision (ECCV).

Pannaga Shivaswamy and Thorsten Joachims. 2015.
Coactive learning. Journal of Artificial Intelligence
Research, 53:1–40.

Isaac Triguero, Salvador García, and Francisco Herrera.
2015. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study.
Knowledge and Information systems, 42(2):245–
284.

14

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck. 2010.
What is left to be understood in atis? In 2010 IEEE
Spoken Language Technology Workshop, pages 19–
24. IEEE.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational
linguistics, pages 189–196.

Chicheng Zhang and Kamalika Chaudhuri. 2015. Ac-
tive learning from weak and strong labelers. arXiv
preprint arXiv:1510.02847.

Xiaoya Zhang, Lianjie Wang, Jin Xie, and Pengfei Zhu.
2020. Human-in-the-loop image segmentation and
annotation. Science China Information Sciences,
63(11):1–3.

Xueyuan Zhou and Mikhail Belkin. 2014. Chapter 22 -
semi-supervised learning. In Paulo S.R. Diniz, Jo-
han A.K. Suykens, Rama Chellappa, and Sergios
Theodoridis, editors, Academic Press Library in Sig-
nal Processing: Volume 1, volume 1 of Academic
Press Library in Signal Processing, pages 1239 –
1269. Elsevier.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning
literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sci-
ences.

15

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 16–23
June 11, 2021. ©2021 Association for Computational Linguistics

ViziTex: Interactive Visual Sense-Making of Text Corpora

Natraj Raman1, Sameena Shah2, Tucker Balch2, Manuela Veloso2

J.P.Morgan AI Research
1London, UK.

2New York, USA.
first.last@jpmorgan.com

Abstract

Information visualization is critical to analyt-
ical reasoning and knowledge discovery. We
present an interactive studio that integrates per-
ceptive visualization techniques with powerful
text analytics algorithms to assist humans in
sense-making of large complex text corpora.
The novel visual representations introduced
here encode the features delivered by modern
text mining models using advanced metaphors
such as hypergraphs, nested topologies and
tessellated planes. They enhance human-
computer interaction experience for various
tasks such as summarization, exploration, or-
ganization and labeling of documents. We
demonstrate the ability of the visuals to sur-
face the structure, relations and concepts from
documents across different domains.

1 Introduction

Despite admirable progress in machine learning,
human participation in data analysis and decision
making is a reality. Human efforts are often re-
quired for bootstrapping labels, interpreting deci-
sions and verifying outcomes. It is important to
design intuitive visualizations that can exploit the
pattern recognition and spatial reasoning capabil-
ities of humans in order to transform the human-
computer interaction experience. While traditional
bar charts and heat map displays hold value, com-
plex interactive graphical representations (Yuan
et al., 2020) are often required to effectively slice
and dice high-dimensional data. Furthermore, it is
essential for these visuals to encode all the features
delivered by machine learning models.

Interactive information processing in large com-
plex text corpora pose a significant challenge due
to the sheer volume, lack of structure and multi-
faceted nature of text material. Existing efforts
around visual interfaces for sense-making of text
documents do not characterize the true potential of
the text analytics algorithms (Liu et al., 2012), are

Figure 1: Architecture Overview.

often tied to a particular model (Vig, 2019) or re-
main fragmented with task specific solutions (Wang
et al., 2016).

There is a compelling opportunity for percep-
tive visualization techniques that fully leverage the
capabilities of text mining models and cater to anal-
ysis at various levels of task granularity and hu-
man expertise. Towards this effort, we propose an
interactive studio that delivers novel visual repre-
sentations for common text oriented tasks such as
theme discovery, document organization and label
exploration. Visualizations presented here include
a hypergraph that encodes distributional similar-
ity between words, a multi-level radial layout to
capture distinguishing terms, a clutter-free parallel
coordinate plot of topic relations, a nested topology
for document hierarchies and a tessellated plane
to capture boundary points. These visualizations
highlight interesting linguistic patterns in the cor-
pus, surface complex relations between documents
and reduce the burden of annotations for labeling
exercises.

The structure of the framework, which follows a
loosely coupled architecture pattern, is outlined in
Fig. 1. There are three main components that drive
the system: a text corpora, a suite of text analytics
algorithms and a set of visualization techniques.
We particularly focus on metadata rich corpus with
multiple facets or data dimensions along which a
corpus can be subdivided. The visualizations are

16

independent of the analytical models and newer
algorithms can be flexibly plugged-in. All the gen-
erated graphical elements are interactive, with the
end user being able to zoom, pan, hover and click
for receiving contextual information. The users
merely require a web-browser to access the visuals.

We demonstrate the domain agnostic nature of
the visuals by providing illustrations from publicly
available datasets that span across informal, legal
and scientific language formats. In the following
sections, we review related efforts and present eight
different visualizations.

2 Related Work

Research in visual text analytics has gained promi-
nence and surveys such as (Liu et al., 2018) pro-
vide an overview of recent progress. Differently,
Kucher and Kerren (2015) present a visual survey
by collating the images generated by the various
visualization methods and offer an interactive filter
for exploration.

There has been several efforts towards the devel-
opment of software tools for analyzing text data.
For example, the Leximancer (Angus et al., 2013)
application plots word frequency statistics to help
an analyst examine concepts in text. Tiara (Liu
et al., 2012) is a visual text analysis tool that uses
topic models to summarize documents. The popu-
lar pyLDAViz package (Sievert and Shirley, 2014)
offers interactive visualization for topic models.
Our work differs from these by introducing new
metaphors and integrating a variety of text mining
tasks.

Designing interactive graphics for the creation
of interesting visualization techniques is popular.
StoryPrint (Watson et al., 2019) is a visualization
method for script-based media that presents promi-
nence and emotion of characters in a scene. The vi-
sual analytic system in Verifi (Karduni et al., 2019)
enables investigation of misinformation on social
media. Vig (2019) introduced a multi-scale vi-
sualization tool to illustrate the inner workings of
attention patterns generated by neural Transform-
ers. Unlike these application and model specific
efforts, our work is intended to be agnostic both to
the data domain and underlying algorithm.

3 Visualizations

We present several techniques for visually analyz-
ing a corpus at word, topic and document levels be-
low. Samples from three different datasets namely

Figure 2: Hypergraph depicting word co-occurrences.

Amazon Reviews (McAuley and Leskovec, 2013),
Arxiv Abstracts1 and Code of Federal Regulations
(CFR)2 are used to illustrate the visualizations.

3.1 Word Hypergraph

A usual first step in text analytics is to plot the fre-
quency of words in the corpus with a word cloud.
However, the absence of context limits the ability
of a word cloud visual to provide any insights be-
yond a basic overview. Following the principle of
"characterizing a word by the company it keeps",
we depict the co-occurrences of words (Weeds and
Weir, 2005) to indicate semantic proximity. Rather
than the structure-less cloud visual, a graph for-
mat with word nodes inter-connected by weighted
edges is used. The words are scaled by a measure
of how often they appear and colored by their dom-
inant facet. The co-occurrence strength between
words is encoded in the edge thickness. Further-
more, hyper-edges are used to connect the linked
nodes that share similar attributes.

Formally, we are given a corpus with D doc-
uments comprising of N terms and a discrete
attribute associated with each document. Let
G = (V,E,H) be a hypergraph with term nodes
{vn}Nn=1, a set of edges E ⊂ V × V and hyper-
edges H ⊂ P(V). We set the dyadic connections
between terms i and j based on weighted mutual

1https://doi.org/10.6078/D1708G
2https://www.ecfr.gov/

17

information as

eij =
| ti ∩ tj |

D
log

N2 | ti ∩ tj |
D| ti || tj |

, (1)

where |t| is an occurrence measure and eij ∈ E.
Let ci ∈ {C1...CP } be the dominant attribute of
term i. An hyper-edge h ∈ H connecting poten-
tially arbitrary number of nodes is defined as

hi = {vi} ∪ {vk : ci = ck ∧ eik > τ, ∀k ∈ V\i}
(2)

where τ is a threshold to control visual clutter.
This hypergraph visualization allows the user

to identify words that are central to characterizing
a particular subset of the corpus. For example,
by paying attention to the hyper-edges connecting
nodes air, flight, passenger and aircraft in Fig. 2,
the user can conclude that flight is a key-word in the
Aeronautics subset of the CFR corpus while words
such as operation or access is more ambiguous in
describing the corpus.

3.2 Word Relations
Domain experts are often interested in understand-
ing how subsets of a text collection differ. The
identification of terms that are distinct to particular
subsets will aid in this effort. To achieve this, we
construct a radial layout of the top relevant terms
that are shared across the various subsets. Each
subset occupies a non-uniform slice based on its
bandwidth in an inner concentric circle while its
corresponding terms appear along the outer circle.
The prominence of a term to a particular subset
is reflected in its font-size. The relations between
the terms are modeled as a B-Spline curve (Holten,
2006) in order to reduce visual clutter. The curve is
drawn with a linear interpolation of the term colors
and its width depends on the relationship strength.

In detail, let ηp = {wi}Np

i=1, ∃p
′

: wi ∈ ηp′ be the
set of relevant terms in subset p of the corpus. The
arc length for p is set toNp/

∑
p′ Np′ and the curve

width between p and p
′

for term i is computed as

γi
pp

′ =
[
1/Z

]
f(wp

i) + f(wp
′

i), (3)

where f is a measure of term occurrence and Z
is a normalization constant. Fig. 3 shows the rela-
tion between words across different facets of the
Amazon corpus. When inspecting the word music,
the user can visually infer that this word is com-
mon to CDs, Android Apps, Movies/TV and Video
Games subsets unlike a word such as great that

is prevalent across all subsets, thereby unearthing
distinguishing terms.

3.3 Topic Graph

Summarizing a corpus using a small set of underly-
ing topics is a popular text mining technique to dis-
cover semantic structures. We improve over exist-
ing topic model visualizations by introducing three
new features: the ability to capture correlations
between topics, rank a topic by the significance
of its semantic content, and associate meaningful
labels with a topic. Consequently, the topics are
now represented as a graph with the links between
topic nodes denoting the extent of their correlation
(Blei and Lafferty, 2006). While a node is colored
by the dominant facet of its topic, its opacity is
controlled by the topic’s significance (Röder et al.,
2015). Thus topics that are less coherent are de-
emphasized, blending into the background. Both
the automatically extracted topic label (Mei et al.,
2007) and the top ranked terms of a topic are dis-
played, with the latter decorated in an elliptical arc
around a node.

In order to extract the topic label, we first con-
struct a set of candidate phrases 1...L and score the
semantic relevance of a phrase l to topic k as

score(l, k) =
∑

m

log
p(wmk)

p(wm)
, (4)

where p(wmk) denotes the probability of the mth

term in the phrase for topic k and p(wm) is the
probability of the term across all topics. The topic
label is then selected from the top ranked scores.

The utility of this visualization is evident in
Fig. 4. The presence of labels such as convex op-
timization problem and multivariate asset return
makes the topic theme of Arxiv corpus more inter-
pretable than merely viewing a generic term such
as problem or model.

3.4 Topic Relations

It is useful to discover differentiating topics across
corpus subsets, similar to the identification of dis-
tinguishing words. However, it is difficult to accom-
modate the additional topic level grouping in the
radial layout discussed above without disrupting
legibility. Hence we employ a parallel co-ordinate
(Siirtola et al., 2009; Collins et al., 2009) repre-
sentation to portray this high-dimensional data.
Specifically, the subsets are visualized along paral-
lel columns and the top ranked topics for a subset

18

Figure 3: Relations between words across different subsets are displayed in a radial layout.

Figure 4: Topic Graph encoded with correlations, co-
herence and labels.

are scaled by their corresponding topic distribution.
The topic terms themselves are relatively sized.

Naively showing all the links between related
topics will clutter the visual. Hence the edges ap-
pear clipped by default, and are expanded only
when the user hovers over a topic of interest.
Fig. 5 demonstrates this concept, with the full-links
shown only for Topic 3 and rest of the elements are
de-emphasized. The user can judge whether a topic
is distinctive or not from the presence or absence
of the clipped edges. For example, unlike Topic 1,
Topic 2 does not contain any edge implying that it
captures Aliens subset specific terms.

3.5 Document Clusters

Visualizing the documents in the corpus in a man-
ner that reflects the similarity and differences be-
tween them is essential for efficient organization
and navigation. The spatial relations between the
documents can be determined by comparing their
embedding representations, which may range from
a simple bag-of-words model to a modern pre-

trained contextual text encoder (Devlin et al., 2018).
Instead of simply plotting a 2D projection of these
document embeddings, we cluster the documents
using their original high-dimensional representa-
tion and visualize their relative positions in the
clustered space.

Formally, we convert a document d to a fixed
length continuous vector of size m through a func-
tion φ : d → Rm. The pdf of the document is
modeled based on this vector as a mixture of K
multi-variate Gaussian densities as follows:

p(d) =

K∑

k=1

πkN (µk,Σk). (5)

Here µk ∈ Rm, Σk ∈ Rm×m and πk ∈ R denotes
a mixture proportion. The above model partitions
the corpus into K different clusters and the cluster
index of a document sampled from this density
function is used to determine its position in the
cluster network.

Fig. 6 illustrates such a cluster network of doc-
uments for the CFR corpus. The documents are
centered around their corresponding cluster and
colored by their facet. Nearby clusters are linked
together denoting their similarity and a cluster can
be collapsed interactively to simplify the view. The
visual enables the user to reason say "Why is an
Aeuronatics document grouped in a cluster with
predominantly Federal Elections documents?" and
provide feedback, thereby improving the tagging
process in an active learning setting.

3.6 Document Hierarchy
Examining the relationship between documents
within a same cluster is critical to gaining gran-
ular insights about the corpus structure. Instead

19

Figure 5: Topic Relations rendered using a parallel coordinate plot and clipped edges. Topic boxes and links are
highlighted on hover to reduce clutter.

Figure 6: Network representation of document clusters.

of partitioning the documents exclusively, a bet-
ter alternative is to organize them in a hierarchical
fashion, from generic to specific (Ibrahim et al.,
2019). This would empower the users to decide
the level of detail, as dictated by their target task.
We recursively partition the corpus to create hier-
archical clusters and visualize them using a nested
structure enclosure diagram.

Each circle in Fig.7 denotes an hierarchical level,
with the circles contained inside the same parent
being more similar. Leaf level circles denote the
documents and are colored by their facet. The user
can zoom-in to each circle and access the document
content to explore anomalous patterns. For exam-

ple, we investigated the reasons for the placement
of an orange point (Clothing/Shoes) in the midst of
violet points (Android Apps) and observed that it
was a data quality issue.

3.7 Document Boundaries
Selecting the right data to label is important for an-
notation exercises and in active learning tasks. An
effective strategy when sampling the data points is
to identify points that are near decision boundaries
(Monarch, 2021). The idea being that such uncer-
tain points may have subjective interpretation and
hence are worthy of human attention. We focus on
presenting such boundary documents to the user
in conjunction with documents that the machine is
confident about.

In detail, the documents are first partitioned us-
ing a flat clustering algorithm based on their em-
bedding representations using (5). Let Dk ⊂ Rm

denote the set of documents in cluster k. A con-
vex hull encompassing the points in this cluster is
defined from their convex combinations of Dk as
{∑

j

λjDkj :
∑

j

λj = 1∧λj ≥ 0∧Dkj ⊂ Dk

}
.

(6)
The vertices of the hull are treated as the bound-

ary points of a cluster. For visualization, a Voronoi
diagram (Phillips, 2021) is constructed by using the
cluster centroids as seed points. Thus each cluster
is now visualized as a Voronoi cell bounded by a
polygon with the polygon segments overlapping
for nearby cells. The boundary points of a cluster
are placed adjacent to the polygon sides while the
interior points are arranged in a radial fashion at
the center. Fig. 8 depicts this structure. The user

20

Figure 7: Hierarchical relations between the documents portrayed using a nested topology. Documents inside the
same circle are more similar than the documents in sibling and parent circles.

Figure 8: Voronoi tessellation of the cluster space show-
ing both boundary and interior points.

can drill down to see details about the boundary
points and the sampled interior points. The Voronoi
cells adjacent to Cluster 1 is highlighted, signify-
ing that the boundary points for this cluster may be
assigned to its neighbors such as Cluster 20 or 23.

3.8 Document Relations

All the document specific visualizations outlined
above consider the corpus holistically. Sometimes
it is required to anchor the analysis to a particular
subset of the corpus and compare with the rest of
the subsets in a one-vs-all setting. Such intra and
inter subset relations is explored in Fig. 9. The
top hemisphere contains the ids of documents only
from Aeuronatics and Space subset of CFR corpus.
The documents from other subsets that are close to
these documents in the embedding space are listed

Figure 9: Relations (intra vs inter) between documents.

in the bottom hemisphere, with related documents
being linked. The documents with strong intra-
segment links are highlighted in bold font. The user
can analyze the similarity and differences between
a select set of documents based on the link cues.

4 Conclusion

Large and complexly related text collections re-
quire perceptive information visualization tech-
niques to assist human understanding and reason-
ing. The interactive visualizations proposed here
facilitates discovering concepts, themes, clusters,
outliers and structure in a corpus by integrating text
analytics models with novel visual representations.
In future, we wish to extend the suite of statistical
models for selection and incorporate new visuals
for temporal analysis that exploits animations.

21

Acknowledgments

This paper was prepared for information purposes
by the Artificial Intelligence Research group of
JPMorgan Chase & Co and its affiliates (“JP Mor-
gan”), and is not a product of the Research De-
partment of JP Morgan. J.P. Morgan makes no
representation and warranty whatsoever and dis-
claims all liability for the completeness, accuracy
or reliability of the information contained herein.
This document is not intended as investment re-
search or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or
service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall
not constitute a solicitation under any jurisdiction
or to any person, if such solicitation under such ju-
risdiction or to such person would be unlawful. ©
2021 JP Morgan Chase & Co. All rights reserved.

References
Daniel Angus, Sean Rintel, and Janet Wiles. 2013.

Making sense of big text: a visual-first approach for
analysing text data using leximancer and discursis.
International Journal of Social Research Methodol-
ogy, 16(3):261–267.

David Blei and John Lafferty. 2006. Correlated topic
models. Advances in neural information processing
systems, 18:147.

Christopher Collins, Fernanda B Viegas, and Martin
Wattenberg. 2009. Parallel tag clouds to explore and
analyze faceted text corpora. In 2009 IEEE Sym-
posium on Visual Analytics Science and Technology,
pages 91–98. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Danny Holten. 2006. Hierarchical edge bundles: Visu-
alization of adjacency relations in hierarchical data.
IEEE Transactions on visualization and computer
graphics, 12(5):741–748.

R Ibrahim, S Zeebaree, and K Jacksi. 2019. Survey
on semantic similarity based on document clustering.
Adv. Sci. Technol. Eng. Syst. J, 4(5):115–122.

Alireza Karduni, Isaac Cho, Ryan Wesslen, Sashank
Santhanam, Svitlana Volkova, Dustin L Arendt,
Samira Shaikh, and Wenwen Dou. 2019. Vulnera-
ble to misinformation? verifi! In Proceedings of the
24th International Conference on Intelligent User In-
terfaces, pages 312–323.

Kostiantyn Kucher and Andreas Kerren. 2015. Text
visualization techniques: Taxonomy, visual survey,
and community insights. In 2015 IEEE Pacific Vi-
sualization Symposium (PacificVis), pages 117–121.
IEEE.

Shixia Liu, Xiting Wang, Christopher Collins, Wenwen
Dou, Fangxin Ouyang, Mennatallah El-Assady, Liu
Jiang, and Daniel A Keim. 2018. Bridging text vi-
sualization and mining: A task-driven survey. IEEE
transactions on visualization and computer graph-
ics, 25(7):2482–2504.

Shixia Liu, Michelle X Zhou, Shimei Pan, Yangqiu
Song, Weihong Qian, Weijia Cai, and Xiaoxiao Lian.
2012. Tiara: Interactive, topic-based visual text
summarization and analysis. ACM Transactions on
Intelligent Systems and Technology (TIST), 3(2):1–
28.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM conference on Recommender systems, pages
165–172.

Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai.
2007. Automatic labeling of multinomial topic mod-
els. In Proceedings of the 13th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 490–499.

Robert Monarch. 2021. Human-in-the-Loop Ma-
chine Learning: Active learning and annotation for
human-centered AI, volume 1. Manning, Shelter Is-
land, NY.

M Jeff Phillips. 2021. Mathematical Foundations for
Data Analysis, volume 1. Springer.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the eighth ACM inter-
national conference on Web search and data mining,
pages 399–408.

Carson Sievert and Kenneth Shirley. 2014. Ldavis:
A method for visualizing and interpreting topics.
In Proceedings of the workshop on interactive lan-
guage learning, visualization, and interfaces, pages
63–70.

Harri Siirtola, Tuuli Laivo, Tomi Heimonen, and Kari-
Jouko Räihä. 2009. Visual perception of parallel
coordinate visualizations. In 2009 13th Interna-
tional Conference Information Visualisation, pages
3–9. IEEE.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
37–42, Florence, Italy. Association for Computa-
tional Linguistics.

22

Xiting Wang, Shixia Liu, Junlin Liu, Jianfei Chen, Jun
Zhu, and Baining Guo. 2016. Topicpanorama: A
full picture of relevant topics. IEEE transactions on
visualization and computer graphics, 22(12):2508–
2521.

Katie Watson, Samuel S Sohn, Sasha Schriber, Markus
Gross, Carlos Manuel Muniz, and Mubbasir Ka-
padia. 2019. Storyprint: an interactive visualiza-
tion of stories. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces,
pages 303–311.

Julie Weeds and David Weir. 2005. Co-occurrence
retrieval: A flexible framework for lexical dis-
tributional similarity. Computational Linguistics,
31(4):439–475.

Jun Yuan, Changjian Chen, Weikai Yang, Mengchen
Liu, Jiazhi Xia, and Shixia Liu. 2020. A survey
of visual analytics techniques for machine learning.
Computational Visual Media, pages 1–34.

23

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 24–30
June 11, 2021. ©2021 Association for Computational Linguistics

A Visualization Approach for Rapid Labeling of Clinical Notes for
Smoking Status Extraction

Saman Enayati
saman.enayati@temple.edu

Ziyu Yang
tug27634@temple.edu

Benjamin Lu
lu.ben@pennmutual.com

Slobodan Vucetic
vucetic@temple.edu

Abstract

Labeling is typically the most human-intensive
step during the development of supervised
learning models. In this paper, we propose
a simple and easy-to-implement visualization
approach that reduces cognitive load and in-
creases the speed of text labeling. The ap-
proach is fine-tuned for task of extraction of
patient smoking status from clinical notes. The
proposed approach consists of the ordering
of sentences that mention smoking, centering
them at smoking tokens, and annotating to en-
hance informative parts of the text. Our exper-
iments on clinical notes from the MIMIC-III
clinical database demonstrate that our visual-
ization approach enables human annotators to
label sentences up to 3 times faster than with a
baseline approach.

1 Introduction

Deep learning algorithms achieve state-of-the-art
accuracy on a range of natural language processing
tasks. However, to achieve high accuracy, deep
learning algorithms typically require a lot of la-
beled data. In extremely error-sensitive applica-
tions, such as those in the medical domain, the
trade-off between labeling effort and prediction ac-
curacy is strongly skewed towards maximizing the
accuracy. In such applications, data labeling arises
as the most costly and human-intensive step during
the development of deep learning models. In this
paper, we focus on a scenario where the require-
ment is to label all available data because the goal
is to maximize the accuracy using the available
corpus of documents. In such a scenario, none of
the labeling shortcuts developed in the machine
learning community such as active learning are of
much help on their own.

Our focus is on presenting textual information to
human annotators in a way that minimizes their
cognitive load, thus improving their focus, and
maximizes their labeling speed, thus reducing the

cost of labeling. Our proposed visualization ap-
proach is fine-tuned to enable text labeling in the
specific application where the objective is to extract
information about smoking status of patients from
their medical notes. Smoking status of patients
is critical information in many practical applica-
tions, ranging from recruiting participants in clini-
cal trials to determining medical and life insurance
premiums for prospective customers.

Smoking status extraction is a specific instance
of information extraction problems. Our visualiza-
tion approach relies on several key observations
about this particular type of problem. We first
observed that smoking status could typically be
extracted from sentences that contain one of the
smoking keywords such as smoke, smoking, to-
bacco, nicotine. Thus, our first step was to extract
from the corpus only sentences containing one of
those keywords. Our second observation was that
smoking status can typically be deduced from sev-
eral words surrounding the keyword. Thus, it might
be possible to prune very long sentences to sub-
sentences surrounding the keyword without loss
of information. This observation allows reserving
only a single line to display each relevant sentence.

Our third observation is that the space of possi-
ble smoking-related sentences occurring in clinical
notes is relatively limited and that for any smoking-
related sentence there are likely very similar sen-
tences in the corpus. We hypothesized that dis-
playing similar sentences next to each other would
allow human annotators to process the text much
faster than if sentences are shown in random or-
der. Our fourth observation is that some common
discriminative keywords reveal the smoking status,
such as denies, quit, former, packs. We hypothe-
sized that highlighting those keywords in the text
could allow a human annotator to work faster.

Our final observation was that by training a pre-
dictive model on the currently available labels, even
when the number of available labels is relatively

24

Figure 1: An illustration of the proposed sequence visualization approach for rapid labeling. The predicted labels
for each sentence are shown inside the yellow boxes. where N refers to Non-Smoker, F to Former Smoker, and S
to Smoker. Only the 5th sentence in the bottom panel is misclassified by the current prediction model and has to
be overwritten by a human annotator.

small, would likely result in prediction accuracy
that is significantly higher than a baseline that as-
signs labels randomly or based on the majority
class labels. Thus, providing labels obtained by
the current prediction model would allow a human
annotator to skip the correctly labeled sentences
and only enter the labels for the incorrectly labeled
ones. As the number of labels grows, the accuracy
of the prediction model is expected to increase, and
the effort to correct the labels would decrease, thus
increasing the speed of labeling.

The resulting visualization approach developed
by exploiting the stated observations is illustrated
in Figure 1. A panel at the top shows 7 randomly
selected smoking-related sentences from our cor-
pus. A panel at the bottom shows the same sen-
tences displayed using our approach. The main
features of our visualization approach are (1) sen-
tence ordering, (2) sentence centering around the
smoking keyword, (3) text annotation to empha-
size discriminative keywords, and (4) displaying
of the predicted labels. We are claiming, and our
user study (described in Section 4) confirms it, that
the bottom panel makes it much easier and faster
for a human annotator to label a large corpus of
smoking related sentences for the smoking status
of a patient.

To produce the bottom panel in Figure 1, we had

to decide (1) what are the smoking keywords, (2)
what keywords are discriminative of the smoking
status, (3) how to order the sentences, (4) how to
provide predicted labels, (5) what to do during the
cold start when no or very few sentences are la-
beled, and (6) how to implement the visualization
approach. Details about the proposed approach are
provided in Section 3. In Section 2 we provide a
brief overview of the related work. In Section 4 we
describe the experimental design, explain our user
study, and provide experimental results that con-
vincingly indicate the usefulness of the proposed
approach.

2 Related Work

Extracting smoking status of patients from Elec-
tronic Health Records [EHR] has been crucial in
clinical settings, and especially useful to health
care providers to select the best care plan for pa-
tients at risk of smoking-related diseases. (Rajen-
dran and Topaloglu, 2020) investigates the appli-
cation of three Deep Learning models on EHR
data to extract the smoking status of patients. Au-
thors compare their approach with traditional ma-
chine learning models on both binary (Smoker vs
Non-Smoker) and multi-class classification (Cur-
rent Smoker vs. Former Smoker vs. Non-smoker)
tasks. (Wang et al., 2016) extracts smoking status

25

from three different sources such as narrative texts,
patient-provided-information, and diagnosis codes.
They conclude that narrative text proves to be the
most useful source for smoking status extraction.
(Palmer et al., 2019; Hegde et al., 2018) develop
rule-based algorithms to determine tobacco use by
patients. (Palmer et al., 2019) further identify the
cessation date and smoking intensity of patients.
Common for the aforementioned work on smoking
status extraction is a need to label sentences and
train an appropriate machine learning model. None
of those papers discuss issues related to labeling
nor attempt to reduce labeling costs.

A common approach to annotate a large amount
of data is through crowdsourcing (Fang et al., 2014;
Good and Su, 2013; Lim et al., 2020). It has been
used in variety of tasks such as Image Classification
(Fang et al., 2014), Bioinformatics (Good and Su,
2013), and Text mining (Li et al., 2020). Although
crowdsourcing is a cost-effective way to collect
labeled data, it can still be costly when the required
labeling effort is significant. Moreover, when using
imperfect annotators with varying levels of exper-
tise, it is important to develop appropriate label
integration approaches (Settles, 2011). Beyond the
crowdsourcing issues, one popular approach to re-
duce labeling costs is to apply Active Learning and
label only the most informative examples (Fang
et al., 2014).

More recently, Human-In-the-Loop [HIL] ap-
proaches were proposed to improve the efficiency
of annotation (Klie et al., 2020; Kim and Pardo,
2018). (Kim and Pardo, 2018) present a HIL sys-
tem for sound event detection, which directs the
annotator’s attention to the most promising regions
of an audio clip for labeling. (Klie et al., 2020) ap-
ply a similar technique on Entity Linking [EL] task,
in which the machine learning component makes
recommendations about the most relevant entries
in a knowledge base, and the annotator selects the
correct candidate. The recommender improves it-
self based on the obtained feedback. In addition,
(Qian et al., 2020) present an interface for entity
normalization annotation in which they measure
the number of clicks in a tool to quantify the human
effort.

While many papers attempt to minimize labeling
effort, a vast majority of them are measuring the
effort by counting the number of labeled examples.
There are very few papers (Zhang et al., 2019) that
measure labeling effort in terms of elapsed time.

The uniqueness of our work is in demonstrating
that annotation speed can be significantly impacted
by the way data is presented to an annotator. Fur-
thermore, our work is specific in its focus on an
extreme labeling scenario where the task is to la-
bel the complete corpus in order to maximize the
prediction accuracy.

3 Methodology

Problem Definition: Given a document corpus
D representing clinical notes of patients from
which a set of N unlabeled smoking-related sen-
tences S1, S2, ..., SN is extracted, the goal is to
ask human annotators to label all N sentences
for smoking status. There are 4 types of labels:
Smoker (S), Non-Smoker (N), Former Smoker (F),
and Other (O), where Others refer to sentences that
do not reveal the smoking status.

In this section, we describe a visualization ap-
proach that improves human annotation speed. The
main components of the approach are sequence or-
dering, label prediction, and text visualization. The
details are explained in the following subsections.

3.1 Ordering

Our goal is to order sentences in a computationally-
efficient manner by combining clustering and align-
ment algorithms. We use clustering to find groups
of similar sequences that will subsequently be or-
dered with help of an alignment algorithm.

In order to cluster sentences, we rely on their vec-
tor embeddings. In particular, we use sequence em-
beddings of the pre-trained BERT model (Devlin
et al., 2019). K-Means Clustering, whose computa-
tional cost is O(N) as implemented by (Pedregosa
et al., 2011), is used to find k clusters, where k is
selected such that the average cluster size is limited
to a specified size.

Sentences in each cluster are then ordered, such
that neighboring sentences are perceived by a hu-
man annotator to be as similar as possible. Rather
than ordering sentences based on BERT embed-
dings, we instead resort to sequence alignment dis-
tance, which we hypothesize are closer to human
perception of similarity. In particular, we apply
Needleman–Wunsch algorithm [NWA] 1 (Needle-
man and Wunsch, 1970), which is a dynamic pro-
gramming algorithm that finds a similarity score be-
tween a pair of sentences in O(L2) time, where L

1http://emboss.sourceforge.net/docs/
emboss_tutorial/node3.html

26

is the length of a sentence, For each cluster, we cre-
ate a pairwise score matrix, Score, of size Nc×Nc,
where Nc is the number of sequences within the
cluster c.

To find the order of the sentences in each clus-
ter, we apply the following greedy algorithm. It
starts by selecting the first sentence at random. The
next sentence is its nearest neighbor, according to
Score matrix. The process continues by adding the
nearest neighbors of previous sentences.

3.2 Sentence Visualization

Once the sentences are sorted, our next objective
is to display them in a way that reduces the cogni-
tive load of a human annotator. Our first idea is to
center the sequences around smoking-related key-
words such as Smoke, Smoking, Tobacco, Nicotine.
We find those keywords by applying word2vec
(Mikolov et al., 2013) to our document corpus D
and by finding neighbors of word Smoke in the
resulting embedding. Then, we manually select
neighbors that are indicative of smoking-related
sentences.

According to the maximum screen width, we
align the sentences such that the smoking keyword
appears in the middle of the screen. In addition, we
fill the empty spaces before the sentence starts with
dashes (-) to improve readability.

Our labeling approach proceeds in batches. After
selecting the first batch of M unlabeled sentences
at random (in our experiments we use M = 200),
we do not display any predicted labels and orders.
After we obtain labels for the first batch, we train a
baseline machine learning model such as logistic
regression using the bag of words representation
(in our experiments we used the most frequent 500
non-stop words). Then, we analyze the statistical
significance of the logistic regression weights and
select K words associated with the most signifi-
cant weights as discriminative words. Examples of
discriminative keywords are cigarette, denies, quit,
former, packs.

We select the second batch of unlabeled sen-
tences at random, order them, and display them
centered with the discriminative words in bold red
font to improve readability. In addition, we display
the predicted labels by the logistic regression next
to the ordered sentences.

Rather than building a specialized sentence vi-
sualization and annotation tool, we use MS Ex-

cel2. Each sentence occupies one row in the Ex-
cel spreadsheet, where the first column is reserved
for prediction labels, and the second column is re-
served for the centered annotated sentences. An
advantage of Excel is that it enables the use of the
built-in cell drag feature to quickly change annota-
tions of neighboring sentences. In addition, we use
Courier as the font format, since it is a monospaced
font type. The monospaced font displays each char-
acter or letter in the same amount of horizontal
space. As a result, it makes the alignment and
centering precise.

We continue selecting batches, labeling them,
and retraining the prediction models. Once the
number of labels becomes sufficiently large (1, 000
in our experiments) we replace logistic regression
with deep learning. We also allow for the batches
to become larger over time.

4 Experimental Design

We performed our experiments using 52,726 dis-
charge notes from the MIMIC-III dataset (Johnson
et al., 2016), which contains de-identified records
of the Beth Israel Deaconess Medical Center’s In-
tensive Unit emergency department patients from
2001 to 2012.

We defined smoking-related keywords by select-
ing keyword smoke and its selected word2vec near-
est neighbors. We collected 26 unique keywords.
Using those keywords, we found 34,149 unique
matching sentences.

4.1 Results

We evaluate the effectiveness of our proposed ap-
proach in three different rounds of labeling. We
performed a user study with 2 human annotators
(the first two co-authors of this paper) to measure la-
beling time in each of the 3 rounds of labeling. The
total number of sentences annotated by each user in
our experiments was 3,000 sentences each. In addi-
tion, in Section 4.2, we performed an ablation study
to analyze the impact of different components of
the proposed visualization approach.

In addition to labeling time, we also report the
labeling rate, which is the number of sentences
labeled per minute:

Rate =
of annotated sequences

elapsed time

2https://www.microsoft.com/en-us/
microsoft-365/excel

27

Groups & Settings User 1
(mins)

User 2
(mins)

Rate
User 1
(Sent/min)

Rate
User 2
(Sent/min)

Total
rate
(Sent/min)

Round 1

Batch1 (Unordered) 27 19 7 10 17

Round 2

Batch1 (Unordered) 19 17 10 11 21
Batch2 (Ordered) 12 11 16 17 33
Batch3 (Ordered) 11 9 17 21 38
Batch4 (Unordered) 16 16 12 12 24

Table 1: The annotation results in Round 1 and 2. The experiments are conducted in the same order as the numbers
indicate. Each group contains 200 sentences. Unordered refers to the baseline, and Ordered is our visualization
approach.

Groups and Settings User 1
(mins)

User 2
(mins)

Rate
User 1
(Sent/min)

Rate
User 2
(Sent/min)

Total
rate
(Sent/min)

Batch1 (Unordered) 40 35 12 14 26
Batch2 (Ordered) 23 23 21 21 42
Batch3 (Ordered) 19 20 26 24 50
Batch4 (Unordered) 34 34 14 14 28

Table 2: The results for Round 3. The experiments are conducted in the same order as the numbers indicate. Each
Group contains 500 samples. The labels for these experiments are provided by fine-tuned Clinical BERT model.
Unordered refers to the baseline, and Ordered is our visualization approach.

In the following subsections, we explain the ba-
sics of each baseline method as well as the experi-
mental design for each round of labeling.

4.1.1 Round 1

In this round of the experiment, we select 200 ran-
dom sentences. We display them in the same way
as it is shown in the upper panel in Figure 1. Once
we obtain the labels from the first batch, we train a
logistic regression model. The first row of Table 1
shows the annotation details.

4.2 Round 2

We asked users to annotate 800 sentences in 4
batches. We chose the Latin square design to pro-
ceed as unordered, ordered, ordered, and unordered
batches. We have also use logistic regression model
to predict the labels for all the batches. Table 1
demonstrates the result of this round.

On average, the annotation rate using our method
is 1.9× compared to round 1. Additionally, it is
1.5× faster compared to the unordered set in Round
2. By repeating the annotation task in batches 3
and 4, we can speed up the rate in our method by
15% (from 33 to 38) and in the unordered set by
14% (from 21 to 24).

4.2.1 Round 3

We annotated 2,000 sentences in 4 batches, each
batch containing 500 sentences. Similar to Round
2, we set up the experiments with the Latin Trian-
gle mixture design (unordered, ordered, ordered,
unordered).

Given the annotated data from Round 1 and 2,
we replaced the classifier with a deep learning al-
gorithm. We use the Clinical BERT, which is pre-
trained on all the discharge summary notes in the
MIMIC dataset. We split the data into 800 train-
ing and 200 for testing. The hyperparameters are
selected according to (Devlin et al., 2019). We set
the batch size to 16, learning rate to 2e−5, maxi-
mum sentence length to 200, and fine-tuned it for 4
epochs. We have also performed experiments with
SVM, logistic regression. Table 3 demonstrates the
performance of all the classifiers.

According to Table 2, the annotation rate in-
creased from Round 2 to Round 3 by 29% (from
35.5 to 46) with our approach. However, it in-
creased by 16% (from 22.5 in Round 2 to 27 in
Round 3) using the baseline approach.

Comparing the annotation speed in Round 3, our
approach is 1.7× faster than the baseline (46 com-
pared to 27). Since the size of the batches increased

28

in Round 3, there was more redundancy in the sen-
tences and our approach was more helpful to the
annotators than in Round 2. In particular, ordering
resulted in smoother transitions between sentences,
which contributed to faster human annotation.

Last but not the least, by repeating the label-
ing task, we expect users to get used to the data,
and therefore, we expected the annotation rate to
increase regardless of the visualization approach.
Confirming this assumption, users on average got
19% faster with our method during Round 3 (rate
increased from 42 to 50), while they got only 7%
faster with the baseline approach (rate increased
from 26 to 28).

Model Accuracy
Round 1

Accuracy
Round 2

Baseline 0.35 0.36
Logistic Regression 0.76 0.79
SVM 0.78 0.80
Fine-tuned Clinical BERT 0.78 0.89

Table 3: All the classifiers are trained to predict
4 classes: Smoker, NonSmoker, Former, and Other.
Baseline accuracy is the fraction of the majority class
in the test set. In Round 1, there are 800 training and
200 test sentences. In Round 2, there are 3,400 training
and 600 test sentences.

4.3 Ablation Study

In this section, we analyze the impact of two com-
ponents of our system on the final annotation rate.
We asked one of the users to annotate an additional
1,000 sentences. We split the set into two groups,
each group with 500 samples. First, we studied the
impact of centering. Therefore, we aligned all the
data to the left and kept the ordering and feature
visualization. Second, we removed the feature vi-
sualization component, and kept the ordering and
centering. Table 4 shows the results of these two
experiments.

Components User 2
(mins)

Rate
User 2
(Sent/min)

No centering 22 22
No coloring 21 23

Table 4: Ablation study on the impact of centering and
feature visualization. In the first row, we do not cen-
ter the sentences around the smoke keywords. In the
second row, we do not highlight the important features.

According to the results for Round 2 in Table

2, the highest rate for User 2 was 24 sentences per
minute. However, when we removed the centering
component, the rate decreased by 8%, to 22 per
minute. In addition, by removing the coloring com-
ponent, the rate decreased by 4%, to 23 per minute.
The centering component had a stronger impact
on the labeling rate than the coloring component.
However, both of the removals reduced the rate of
labeling.

Given the annotated data from the ablation study,
and adding all the labeled data from the first and
second rounds, we re-trained all the classifiers on
3,400 training sentences and used 600 sentences
for testing. We observed 15% improvement in the
BERT model accuracy and 3% improvement in the
Logistic Regression model accuracy compared to
the models trained on Round data.

5 Conclusion

We presented a visualization approach that enables
rapid annotation of sentences for smoking status
of patients. Our framework contains three main
components: sentence ordering, sentence presenta-
tion, and sentence labeling by the prediction model.
Our approach does not depend on high-quality ML
predictors to provide initial labels. The display has
a significant impact on speeding up the annotation
process. We evaluated our visualization approach
with a user study on sentences from MIMIC-III dis-
charge summaries. We achieved close to 3× faster
annotation rate compared to the baseline method
that displayed sentences randomly in their origi-
nal shape. As the annotation progressed, as the
batches of unlabeled sentences became larger, and
as the prediction models improved, the annotation
speed kept increasing in our user experiments. The
proposed visualization approach is applicable to
similar text classification tasks. It is a topic of
further research to study how to modify the pre-
sented approach to make it applicable to a large
number of text annotation tasks in natural language
processing.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

29

pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Meng Fang, Jie Yin, and Dacheng Tao. 2014. Active
learning for crowdsourcing using knowledge trans-
fer. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 28(1).

Benjamin M. Good and Andrew I. Su. 2013. Crowd-
sourcing for bioinformatics. Bioinformatics,
29(16):1925–1933.

Harshad Hegde, Neel Shimpi, Ingrid Glurich, and
Amit Acharya. 2018. Tobacco use status from clin-
ical notes using natural language processing and
rule based algorithm. Technology and Health Care,
26(3):445–456.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3:160035.

Bongjun Kim and Bryan Pardo. 2018. A human-in-the-
loop system for sound event detection and annota-
tion. ACM Transactions on Interactive Intelligent
Systems (TiiS), 8(2):1–23.

Jan-Christoph Klie, Richard Eckart de Castilho, and
Iryna Gurevych. 2020. From Zero to Hero: Human-
In-The-Loop Entity Linking in Low Resource Do-
mains. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6982–6993, Online. Association for Computa-
tional Linguistics.

Maolin Li, Hiroya Takamura, and Sophia Ananiadou.
2020. A neural model for aggregating corefer-
ence annotation in crowdsourcing. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 5760–5773, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Sora Lim, Adam Jatowt, Michael Färber, and
Masatoshi Yoshikawa. 2020. Annotating and ana-
lyzing biased sentences in news articles using crowd-
sourcing. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 1478–
1484, Marseille, France. European Language Re-
sources Association.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453.

Ellen L Palmer, Saeed Hassanpour, John Higgins, Jen-
nifer A Doherty, and Tracy Onega. 2019. Building
a tobacco user registry by extracting multiple smok-
ing behaviors from clinical notes. BMC medical in-
formatics and decision making, 19(1):1–10.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Kun Qian, Lucian Popa, and Yunyao Li. 2020. An
intuitive user interface for human-in-the-loop entity
name parsing and entity variant generation. In Pro-
ceedings of (DaSH@KDD). Association for Com-
puting Machinery.

Suraj Rajendran and Umit Topaloglu. 2020. Extracting
smoking status from electronic health records using
nlp and deep learning. AMIA Summits on Transla-
tional Science Proceedings, 2020:507.

Burr Settles. 2011. Closing the loop: Fast, interactive
semi-supervised annotation with queries on features
and instances. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1467–1478, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Liwei Wang, Xiaoyang Ruan, Ping Yang, and Hong-
fang Liu. 2016. Comparison of three information
sources for smoking information in electronic health
records. Cancer informatics, 15:CIN–S40604.

Shanshan Zhang, Lihong He, Eduard Dragut, and Slo-
bodan Vucetic. 2019. How to invest my time:
Lessons from human-in-the-loop entity extraction.
In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery amp;
Data Mining, KDD ’19, page 2305–2313, New York,
NY, USA. Association for Computing Machinery.

30

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 31–40
June 11, 2021. ©2021 Association for Computational Linguistics

Semi-supervised Interactive Intent Labeling

Saurav Sahay Eda Okur Nagib Hakim Lama Nachman
Intel Labs, USA

{saurav.sahay,eda.okur,nagib.hakim,lama.nachman}@intel.com

Abstract

Building the Natural Language Understanding
(NLU) modules of task-oriented Spoken Dia-
logue Systems (SDS) involves a definition of
intents and entities, collection of task-relevant
data, annotating the data with intents and en-
tities, and then repeating the same process
over and over again for adding any function-
ality/enhancement to the SDS. In this work,
we showcase an Intent Bulk Labeling system
where SDS developers can interactively label
and augment training data from unlabeled ut-
terance corpora using advanced clustering and
visual labeling methods. We extend the Deep
Aligned Clustering (Zhang et al., 2021) work
with a better backbone BERT model, explore
techniques to select the seed data for labeling,
and develop a data balancing method using
an oversampling technique that utilizes para-
phrasing models. We also look at the effect
of data augmentation on the clustering process.
Our results show that we can achieve over 10%
gain in clustering accuracy on some datasets
using the combination of the above techniques.
Finally, we extract utterance embeddings from
the clustering model and plot the data to inter-
actively bulk label the samples, reducing the
time and effort for data labeling of the whole
dataset significantly.

1 Introduction

Acquiring an accurately labeled corpus is neces-
sary for training machine learning (ML) models
in various classification applications. Labeling is
an expensive and labor-intensive activity requiring
annotators to understand the domain well and to
label the instances one at a time. In this work, we
explore the task of labeling multiple intents visu-
ally with the help of a semi-supervised clustering
algorithm. The clustering algorithm helps learn
an embedding representation of the training data
that is well-suited for downstream labeling. In
order to label, we further reduce the high dimen-
sional representation using the UMAP (McInnes

et al., 2018). Since utterances are short, uncovering
their semantic meaning to group them together is
very challenging. SBERT (Reimers and Gurevych,
2019) showed that out-of-the-box BERT (Devlin
et al., 2018) maps sentences to a vector space
that is not very suitable to be used with common
measures like cosine-similarity and euclidean dis-
tances. This happens because in the BERT net-
work, there is no independent sentence embed-
ding computation, which makes it difficult to de-
rive sentence embeddings. Researchers utilize the
mean pooling of word embeddings as an approx-
imate measure of the sentence embedding. How-
ever, results show that this practice yields inappro-
priate sentence embeddings that are often worse
than averaging GloVe embeddings (Pennington
et al., 2014; Reimers and Gurevych, 2019). Many
researchers have developed sentence embedding
methods: Skip-Thought (Kiros et al., 2015), In-
ferSent (Conneau et al., 2017), USE (Cer et al.,
2018), SBERT (Reimers and Gurevych, 2019).
State-of-the-art SBERT adds a pooling operation to
the output of BERT to derive a fixed-sized sentence
embedding and fine-tunes a Siamese network on
the sentence-pairs from the NLI (Bowman et al.,
2015; Williams et al., 2017) and STSb (Cer et al.,
2017) datasets.

The Deep Aligned Clustering (DAC) (Zhang
et al., 2021) introduced an effective method for
clustering and discovering new intents. DAC trans-
fers the prior knowledge of a limited number of
known intents and incorporates a technique to align
cluster centroids in successive training epochs. The
limited known intents are used to pre-train the
model. The authors use the pre-trained BERT
model (Devlin et al., 2018) to extract deep intent
features, then pre-train the model with a randomly
selected subset of labeled data. The pre-trained
parameters are used to obtain well-initialized in-
tent representations. K-Means clustering is per-
formed on the extracted intent features along with

31

a method to estimate the number of clusters and
the alignment strategy to obtain the final cluster
assignments. The K-Means algorithm selects clus-
ter centroids that minimize the Euclidean distance
within the cluster. Due to this Euclidean distance
optimization, clustering using the SBERT model to
extract feature embeddings naturally outperforms
other embedding methods. In our work, we have
extended the DAC algorithm with the SBERT as an
embedding backbone for clustering of utterances.

In semi-supervised learning, the seed set is se-
lected using a sampling strategy: “A simple random
sample of size n consists of n individuals from the
population chosen such that every set of n individ-
uals has an equal chance to be the sample actually
selected.” (Moore and McCabe, 1989). However,
these sample subsets may not represent the original
data adequately because randomization methods do
not exploit the correlations in the original popula-
tion. In a stratified random sample, the population
is classified first into groups (called strata) with
similar characteristics. Then a simple random sam-
ple is chosen from each strata separately. These
simple random samples are combined to form the
overall sample. Stratified sampling can help en-
sure that there are enough observations within each
strata to make meaningful inferences. DAC uses
the Random Sampling method for seed selection.
In this work, we have explored a couple of stratified
sampling approaches for seed selection in hope to
mitigate the limitations of random sampling and
improve the clustering outcome.

Another issue we address in this work is class
sample imbalance. Seed selection generally yields
an imbalanced dataset, which in turn impairs the
predictive capability of the classification algo-
rithms (Douzas et al., 2018). Some methods ma-
nipulate the training data, aiming to change the
class distribution towards a more balanced one by
undersampling or oversampling (Kotsiantis et al.,
2006; Galar et al., 2011). SMOTE (Chawla et al.,
2002) is a popular oversampling technique pro-
posed to improve random oversampling. In one
variant of SMOTE, borderline minority instances
are heuristically selected and linearly interpolated
to create synthetic samples. In this work, we take
inspiration from the SMOTE method and choose
borderline minority instances and paraphrase them
using a Sequence to Sequence Paraphrasing model.
The paraphrases provide natural and meaningful
augmentations of the dataset that are not synthetic.

Previous work has shown that data augmen-
tation can boost performance on text classifica-
tion tasks (Barzilay and McKeown, 2001; Dolan
and Brockett, 2005; Lan et al., 2017; Hu et al.,
2019). Wieting et al. (2017) used Neural Ma-
chine Translation (NMT) (Sutskever et al., 2014)
to translate the non-English side of the parallel
text to get English-English paraphrase pairs. This
method has been scaled to generate large para-
phrase corpora (Wieting and Gimpel, 2018). Prior
work in learning paraphrases has used autoen-
coders (Socher et al., 2011), encoder-decoder ar-
chitectures as in BART (Lewis et al., 2019), and
other learning frameworks such as NMT (Sokolov
and Filimonov, 2020). Data augmentation using
paraphrasing is a simple yet effective strategy that
we explored in this work to improve the clustering.

For interactive visual labeling of utterances, we
build up from the learnt embedding representation
of the data and fine-tune it using the clustering.
DAC learns to cluster with a weak self-supervised
signal to update its representation and to optimize
both local (via K-Means) and global information
(via cluster alignment). This results in an optimized
intent-level feature representation. This high di-
mensional latent representation can be reduced to 2-
3 dimensions using the Uniform Manifold Approx-
imation and Projection (UMAP) (McInnes et al.,
2018). We use Rasa WhatLies1 library (Warmer-
dam et al., 2020) to extract the UMAP embeddings.
For interactive labeling, we utilize an interactive vi-
sualization library called Human Learn2 (Warmer-
dam et al., 2021) that allows us to draw decision
boundaries on a plot. By building on top of the
work of Rasa Bulk Labelling3 UI (Warmerdam,
2020; Bokeh Development Team, 2018), we aug-
ment the interface with our learnt representation for
interactive labeling. Although we focus on NLU,
other studies like ‘Conversation Learner’ (Shukla
et al., 2020) focus on interactive dialogue managers
(DM) with human-in-the-loop annotations of dia-
logue data via machine teaching. Note also that
although the majority of task-oriented SDS still
involves defining intents/entities, there are recent
examples that argue for a richer target representa-
tion than the classical intent/entity model, such as
SMCalFlow (Andreas et al., 2020).

1rasahq.github.io/whatlies/
2koaning.github.io/human-learn/
3github.com/RasaHQ/rasalit/blob/

main/notebooks/bulk-labelling/
bulk-labelling-ui.ipynb

32

Figure 1: Interactive Labeling System Architecture

2 Methodology

Figure 1 describes the semi-supervised labeling
process. We start with the unlabeled utterance cor-
pus and apply seed sampling methods to select a
small subset of the corpus. Once the selected subset
is manually labeled, we address the data imbalance
with our paraphrase-based minority oversampling
method. We can also augment the labeled corpus
with paraphrasing to provide more data for the clus-
tering process. The DAC algorithm is applied with
improved embeddings to extract the utterance rep-
resentation for interactive labeling.

2.1 Sentence Representation
For sentence representation, we use the Hug-
gingFace Transformers model BERT-base-nli-stsb-
mean-tokens4. This model was first fine-tuned
on a combination of Stanford Natural Language
Inference (SNLI) (Bowman et al., 2015) (570K
sentence-pairs with labels contradiction, entail-
ment, and neutral) and Multi-Genre Natural Lan-
guage Inference (Williams et al., 2017) (430K di-
verse sentence-pairs with same labels as SNLI)
datasets, then on Semantic Textual Similarity
benchmark (STSb) (Cer et al., 2017) (provide la-
bels between 0 and 5 on the semantic relatedness of
sentence pairs) training set. This model achieves a
performance of 85.14 (Spearman’s rank correlation
between the cosine-similarity of the sentence em-
beddings and the gold labels) on STSb regression

4https://huggingface.co/sentence-transformers/bert-base-
nli-stsb-mean-tokens/tree/main

evaluation. For context, the average BERT em-
beddings achieve a performance of 46.35 on this
evaluation (Reimers and Gurevych, 2019).

2.2 Seed Selection
We explore two selection and sampling strategies
for seed selection as follows:

• Cluster-based Selection (CB): In this
method, we apply K-Means clustering on the
N utterances to partition the data into n seed
number of subsets. For example, if 10% of the
data has 100 utterances, this method creates
100 clusters from the dataset. We then pick
the centroid’s nearest neighbor as part of the
seed set for all the clusters. The naive intu-
ition for this strategy is that it would create a
large number of clusters spread all over the
data distribution (N/n instances per cluster on
average for uniformly distributed instances).

• Predicted Cluster Sampling (PCS): This is
a stratified sampling method where we first
predict the number of clusters and then sample
instances from each cluster. We use the cluster
size estimation method from the DAC work as
follows: K-Means is performed with a large
K ′ (initialized with twice the ground truth
number of classes). The assumption is that
real clusters tend to be dense and the cluster
mean size threshold is assumed to be N/K’.

K =
K′∑

i=1

δ(|Si| >= t)

33

Dataset #Classes #Train #Valid #Test Vocab Length (max / mean)

CLINC 150 18,000 2,250 2,250 7,283 28 / 8.31
BANKING 77 9,003 1,000 3,080 5,028 79 / 11.91
KidSpace 19 1,289 445 419 2,581 74 / 5.10

Table 1: Dataset Statistics

where |Si| is the size of the ith produced clus-
ter, and δ(condition) is an indicator function.
It outputs 1 if condition is satisfied, and out-
puts 0 if not. The method seems to perform
well as reported in DAC work.

2.3 Data Balancing and Augmentation
For handling data imbalance, we propose a
paraphrasing-based method to over-sample the mi-
nority classes. The method is described as follows:

1. For every instance pi (i = 1, 2, ..., pnum)
in the minority class P , we calculate its m
nearest neighbors from the whole training set
T . The number of majority examples among
the m nearest neighbors is denoted by m′

(0 ≤ m′ ≤ m).

2. If m′ = m , i.e., all the m nearest neighbors
of pi are majority examples, pi is considered
to be noise and is not operated in the following
steps. If m

2 ≤ m′ < m, namely the number
of pi’s majority nearest neighbors is larger
than the number of its minority ones, pi is
considered to be easily misclassified and put
into a set DANGER. If 0 ≤ m′ < m

2 , pi is
safe and does not need to participate in the
following steps.

3. The examples in DANGER are the borderline
data of the minority class P , and we can see
that DANGER ⊆ P . We set DANGER =
{p′1, p′2, ..., p′dnum

}, 0 ≤ dnum ≤ pnum
4. For each borderline data (that can be eas-

ily misclassified), we paraphrase the instance.
For paraphrasing, we fine-tuned the BART Se-
quence to Sequence model (Lewis et al., 2019)
on a combination of 3 datasets: ParaNMT (Wi-
eting and Gimpel, 2018), PAWS (Zhang et al.,
2019; Yang et al., 2019), and the MSRP cor-
pus (Dolan and Brockett, 2005).

5. We classify the paraphrased sample with a
RoBERTa (Liu et al., 2019) based classifier
fine-tuned on the labeled data and only add
the instance if the classifier predicts the same

label as the minority instance. We call this
the ‘ParaMote’ method in our experiments.
Without this last step (5), we call this overall
approach our ‘Paraphrasing’ method.

We use the Paraphrasing model and the classifier as
a data augmentation method to augment the labeled
training data (refer to as ‘Aug’ in our experiments).

Note that we augment the paraphrased sample if
it belongs to the same minority class (‘ParaMote’)
as we do not want to inject noise while solving the
data imbalance problem. The opposite is also pos-
sible for other purposes such as generating seman-
tically similar adversaries (Ribeiro et al., 2018).

3 Experimental Results

To conduct our experiments, we use the BANK-
ING (Casanueva et al., 2020) and CLINC (Lar-
son et al., 2019) datasets similar to the DAC
work (Zhang et al., 2021). We also use another
dataset called KidSpace that includes utterances
from a Multimodal Learning Application for 5-to-8
years-old children (Sahay et al., 2019; Anderson
et al., 2018). We hope to utilize this system to la-
bel future utterances into relevant intents. Table 1
shows the statistics of the 3 datasets where 25%
random classes are kept unseen at pre-training.

3.1 Sentence Representation

The choice of pre-trained embeddings has the
largest impact on the clustering results. We ob-
serve huge performance gains for the single domain
KidSpace and BANKING datasets. For the multi-
domain and diverse CLINC dataset with the largest
number of intents, we saw a slight degradation in
performance. While this needs further investiga-
tion, we believe the dataset is diverse enough and
already has very high clustering scores and that
the improved sentence representations may not be
helping further.

3.2 Seed Selection

Seed selection is an important problem for limited
data tasks. Law of large numbers does not hold and

34

Dataset BERT Data Bal/Aug Seed Selection NMI ARI ACC

BANKING Standard None RandomSampling 79.22 52.96 63.84±1.91
ClusterBased 78.51 51.53 63.73±1.73

PredictedClusterSampling 78.62 51.72 62.72±0.97

Sentence None RandomSampling 82.96 60.72 71.27±2.28
ClusterBased 80.65 55.03 65.44±1.24

PredictedClusterSampling 82.11 58.43 69.78±2.08

Sentence Paraphrasing RandomSampling 83.00 60.95 71.95
PredictedClusterSampling 82.20 58.86 69.62

Sentence ParaMote RandomSampling 82.58 59.54 69.92
PredictedClusterSampling 81.88 58.13 69.74

Sentence Aug (3x) RandomSampling 82.94 60.78 71.66
PredictedClusterSampling 81.69 58.18 69.99

CLINC Standard None RandomSampling 93.90 79.70 86.34±1.47
ClusterBased 90.60 69.60 77.87±1.70

PredictedClusterSampling 93.76 79.42 86.41±0.65

Sentence None RandomSampling 93.80 79.06 85.76±1.17
ClusterBased 90.25 67.23 74.25±1.83

PredictedClusterSampling 93.60 78.57 85.43±0.96

Sentence Paraphrasing RandomSampling 93.78 79.14 85.86
PredictedClusterSampling 93.40 77.68 84.89

Sentence ParaMote RandomSampling 93.79 79.10 85.81
PredictedClusterSampling 93.48 77.97 84.86

Sentence Aug (3x) RandomSampling 93.69 78.67 85.52
PredictedClusterSampling 92.96 76.50 83.96

KidSpace Standard None RandomSampling 71.40 48.26 58.55±4.22
ClusterBased 68.13 39.26 53.48±4.47

PredictedClusterSampling 70.53 45.33 56.80±4.56

Sentence None RandomSampling 75.62 63.41 68.66±4.96
ClusterBased 71.27 53.16 62.10±9.59

PredictedClusterSampling 75.74 61.99 67.04±7.66

Sentence Paraphrasing RandomSampling 76.41 63.02 68.83
PredictedClusterSampling 75.52 61.53 68.21

Sentence ParaMote RandomSampling 76.28 61.20 68.09
PredictedClusterSampling 76.33 62.05 68.21

Sentence Aug (3x) RandomSampling 76.48 61.33 68.07
PredictedClusterSampling 76.37 58.97 68.78

Table 2: Semi-supervised DeepAlign Clustering Results with BERT Model, Data Balance/Augmentation and Seed
Selection on BANKING, CLINC, and KidSpace datasets (averaged results over 10 runs with different seed values;
labeled ratio is 0.1 for BANKING and CLINC, 0.2 for KidSpace; known class ratio is 0.75 in all cases)

random sampling strategy may lead to larger vari-
ance in outcomes. We explored Cluster-based Se-
lection (CB) and Predicted Cluster Sampling (PCS)
besides other techniques (see detailed results in
Appendix A.1). Our results trend towards smaller
standard deviations and similar performance for
the BANKING and CLINC datasets with the PCS
method. Surprisingly, this does not hold for the
KidSpace dataset that needs further investigation.
Figure 2 shows the KidSpace data visualised with
various colored clusters and centroids. While we
non-randomly choose seed data, we still hide 25%
of the classes at random (to enable unknown intent

discovery). Our recommendation is to use PCS
if one cannot run the training multiple times for
certain situations to have less variance in results.

3.3 Data Balancing for Imbalanced Data

Figure 3 shows the histogram for the seed data,
which is highly imbalanced and may adversely im-
pact the clustering performance. We apply Para-
phrasing and ParaMote methods to balance the data.
Paraphrasing almost always improves the perfor-
mance while the additional classifier to check for
class-label consistency (ParaMote) does not help.

35

Figure 2: Cluster Visualization

Figure 3: Label Distribution

3.4 Data Augmentation

We augmented the entire labeled data including
the majority class using Paraphrasing (with class-
label consistency) by 3x in our experiments. We
aimed to understand if this could help get a better
pre-trained model that could eventually improve
the clustering outcome. We do not observe any
performance gains with the augmentation process.

3.5 Interactive Data Labeling

Our goal in this work is to develop a well-
segmented learnt representation of the data with
deep clustering and then to use the learnt represen-
tation to enable fast visual labeling. Figure 4 shows
the two clustered representations, one without pre-
training and BERT-base embedding while the other
with a fine-tuned sentence BERT representation
and pre-training. We can obtain well separated vi-
sual clusters using the latter approach. We use the
drawing library human-learn to visually label the
data. Figure 5 shows selected region of the data
with various labels and class confusion. We notice
that this representation not only helps with the la-
beling but also helps with correcting the labels and
identify utterances that belong to multiple classes
which cannot be easily segmented. For example,

Figure 4: Cluster Visualization on KidSpace with
BERT-base/SBERT w/wo pre-training

Figure 5: Cluster Mixup on KidSpace due to Game Se-
mantics

‘children-valid-answer’ and ‘children-invalid-grow’
(invalid answers) contain semantically similar con-
tent depending on the game logic of the interaction.
We perhaps need to group these together and use an
alternative logic for implementing game semantics.

3.6 Conclusion

In this exploration, we have used fine-tuned sen-
tence BERT model to significantly improve the
clustering performance. Predicted Cluster Sam-
pling strategy for seed data selection seems to be a
promising approach with possibly lower variance
in clustering performance for smaller data labeling
tasks. Paraphrasing-based data imbalance handling
slightly improves the clustering performance as
well. Finally, we have utilized the learnt represen-
tation to develop a visual intent labeling system.

36

References
Glen J. Anderson, Selvakumar Panneer, Meng

Shi, Carl S. Marshall, Ankur Agrawal, Rebecca
Chierichetti, Giuseppe Raffa, John Sherry, Daria
Loi, and Lenitra Megail Durham. 2018. Kid space:
Interactive learning in a smart environment. In Pro-
ceedings of the Group Interaction Frontiers in Tech-
nology, GIFT’18, New York, NY, USA. Association
for Computing Machinery.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder,
Stephon Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko, Jason
Wolfe, Abby Wray, Yuchen Zhang, and Alexander
Zotov. 2020. Task-Oriented Dialogue as Dataflow
Synthesis. Transactions of the Association for Com-
putational Linguistics, 8:556–571.

Regina Barzilay and Kathleen R. McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 50–57,
Toulouse, France. Association for Computational
Linguistics.

Bokeh Development Team. 2018. Bokeh: Python li-
brary for interactive visualization.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Georgios Douzas, Fernando Bacao, and Felix Last.
2018. Improving imbalanced learning through a
heuristic oversampling method based on k-means
and smote. Information Sciences, 465:1–20.

Mikel Galar, Alberto Fernandez, Edurne Barrenechea,
Humberto Bustince, and Francisco Herrera. 2011.
A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based ap-
proaches. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
42(4):463–484.

J. Edward Hu, Abhinav Singh, Nils Holzenberger, Matt
Post, and Benjamin Van Durme. 2019. Large-
scale, diverse, paraphrastic bitexts via sampling and
clustering. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 44–54, Hong Kong, China. Associ-
ation for Computational Linguistics.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis
Pintelas, et al. 2006. Handling imbalanced datasets:
A review. GESTS International Transactions on
Computer Science and Engineering, 30(1):25–36.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. CoRR, abs/1708.00391.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019.
An evaluation dataset for intent classification and
out-of-scope prediction. In Proceedings of the

37

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1311–1316, Hong Kong,
China. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2019. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. CoRR, abs/1910.13461.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

L. McInnes, J. Healy, and J. Melville. 2018. UMAP:
Uniform Manifold Approximation and Projection
for Dimension Reduction. ArXiv e-prints.

David S. Moore and George P. McCabe. 1989. Intro-
duction to the practice of statistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Saurav Sahay, Shachi H. Kumar, Eda Okur, Haroon
Syed, and Lama Nachman. 2019. Modeling intent,
dialog policies and response adaptation for goal-
oriented interactions. In Proceedings of the 23rd
Workshop on the Semantics and Pragmatics of Di-
alogue, London, United Kingdom. SEMDIAL.

Swadheen Shukla, Lars Liden, Shahin Shayandeh, Es-
lam Kamal, Jinchao Li, Matt Mazzola, Thomas Park,
Baolin Peng, and Jianfeng Gao. 2020. Conversation
Learner - a machine teaching tool for building dialog
managers for task-oriented dialog systems. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 343–349, Online. Association for
Computational Linguistics.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Proceedings
of the 24th International Conference on Neural
Information Processing Systems, NIPS’11, page
801–809, Red Hook, NY, USA. Curran Assoc. Inc.

Alex Sokolov and Denis Filimonov. 2020. Neural ma-
chine translation for paraphrase generation. arXiv
preprint arXiv:2006.14223.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Vincent Warmerdam, Thomas Kober, and Rachael
Tatman. 2020. Going beyond T-SNE: Exposing
whatlies in text embeddings. In Proceedings of Sec-
ond Workshop for NLP Open Source Software (NLP-
OSS), pages 52–60, Online. Association for Compu-
tational Linguistics.

Vincent D. Warmerdam. 2020. Rasa algorithm
whiteboard - bulk labelling ui. The relevant
notebook can be found on GitHub: https:
//github.com/RasaHQ/rasalit/blob/
main/notebooks/bulk-labelling/
bulk-labelling-ui.ipynb.

Vincent D. Warmerdam, Gabriel Luiz Freitas Almeida,
Joshua Adelman, and Kay Hoogland. 2021.
koaning/human-learn: 0.2.5.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462, Melbourne, Australia.
Association for Computational Linguistics.

John Wieting, Jonathan Mallinson, and Kevin Gim-
pel. 2017. Learning paraphrastic sentence embed-
dings from back-translated bitext. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 274–285, Denmark.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. CoRR,
abs/1704.05426.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason
Baldridge. 2019. PAWS-X: A Cross-lingual Adver-
sarial Dataset for Paraphrase Identification. In Proc.
of EMNLP.

Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu.
2021. Discovering new intents with deep aligned
clustering. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase Adversaries from Word Scram-
bling. In Proc. of NAACL.

38

Dataset BERT Seed Selection labeled_ratio NMI ARI ACC

BANKING Standard RandomSampling 0.1 79.22 52.96 63.84±1.91
ClusterBased 0.1 78.51 51.53 63.73±1.73

KnownClusterBased 0.1 68.86 34.87 47.76±1.81
ClusterBasedSentenceEmb 0.1 79.35 53.89 65.83±1.22
PredictedClusterSampling 0.1 78.62 51.72 62.72±0.97

Sentence RandomSampling 0.1 82.96 60.72 71.27±2.28
ClusterBased 0.1 80.65 55.03 65.44±1.24

KnownClusterBased 0.1 74.21 42.37 53.89±2.53
ClusterBasedSentenceEmb 0.1 80.87 56.07 66.72±1.42
PredictedClusterSampling 0.1 82.11 58.43 69.78±2.08

CLINC Standard RandomSampling 0.1 93.90 79.70 86.34±1.47
ClusterBased 0.1 90.60 69.60 77.87±1.70

KnownClusterBased 0.1 85.33 55.35 66.65±3.14
ClusterBasedSentenceEmb 0.1 90.70 69.92 78.17±2.03
PredictedClusterSampling 0.1 93.76 79.42 86.41±0.65

Sentence RandomSampling 0.1 93.80 79.06 85.76±1.17
ClusterBased 0.1 90.25 67.23 74.25±1.83

KnownClusterBased 0.1 84.95 53.34 63.89±1.55
ClusterBasedSentenceEmb 0.1 90.03 66.23 73.60±1.73
PredictedClusterSampling 0.1 93.60 78.57 85.43±0.96

KidSpace Standard RandomSampling 0.2 71.40 48.26 58.55±4.22
ClusterBased 0.2 68.13 39.26 53.48±4.47

KnownClusterBased 0.2 - - -
KnownClusterBased 0.4 69.76 55.52 61.10±6.15

ClusterBasedSentenceEmb 0.2 66.92 38.46 53.87±6.58
PredictedClusterSampling 0.2 70.53 45.33 56.80±4.52

Sentence RandomSampling 0.2 75.62 63.41 68.66±4.96
ClusterBased 0.2 71.27 53.16 62.10±9.59

KnownClusterBased 0.2 62.42 36.02 48.83±3.75
KnownClusterBased 0.4 63.31 37.83 49.91±4.62

ClusterBasedSentenceEmb 0.2 69.51 47.19 60.05±8.03
PredictedClusterSampling 0.2 75.74 61.99 67.04±7.66

Sentence RandomSampling 0.1 65.21 38.04 48.85±2.47
ClusterBased 0.1 62.60 35.41 49.62±5.40

KnownClusterBased 0.1 63.32 38.00 50.95±4.65
ClusterBasedSentenceEmb 0.1 61.96 34.98 47.76±2.85
PredictedClusterSampling 0.1 66.98 40.55 51.20±4.15

Table 3: Semi-supervised DeepAlign Clustering Results with BERT Model, Data Balance/Augmentation and Seed
Selection on BANKING, CLINC, and KidSpace datasets (averaged results over 10 runs with different seed values;
known class ratio is 0.75 in all cases)

A Appendix

A.1 Additional Experimental Results
In addition to the Cluster-based Selection (CB) and
Predicted Cluster Sampling (PCS) methods, we
have explored other seed selection techniques com-
pared with the Random Sampling. These are the
Known Cluster-based Selection (KCB) and Cluster-
based Sentence Embedding (CSE) methods. KCB
is a variation of CB where we cluster into a number
of known labels’ subsets (based on known class ra-
tio) and pick up certain % of data (based on labeled
ratio) from each cluster’s data points. CSE, on the
other hand, is another variation of CB where, in-
stead of BERT word embeddings as the pre-trained
representations, we use the sentence embeddings

model before running K-Means (the rest is the same
as the CB method).

Table 3 presents detailed clustering performance
results on three datasets using all five seed selection
methods we explored, with varying labeled ratio
and BERT embeddings (standard/BERT-base vs.
sentence/SBERT models). In Table 4, we expand
our analysis on the KidSpace dataset with data bal-
ancing/augmentation approaches on top of these
five seed selection methods, once again with stan-
dard/sentence BERT embeddings. Table 5 presents
additional results on the BANKING dataset to com-
pare data balancing/augmentation methods on top
of standard vs. the sentence BERT representations.

39

Dataset BERT Data Bal/Aug Seed Selection labeled_ratio NMI ARI ACC

KidSpace Standard None RandomSampling 0.2 71.40 48.26 58.55
ClusterBased 0.2 68.13 39.26 53.48

KnownClusterBased 0.2 - - -
ClusterBasedSentenceEmb 0.2 66.92 38.46 53.87
PredictedClusterSampling 0.2 70.53 45.33 56.80

Standard Paraphrasing RandomSampling 0.2 71.99 50.35 59.21
ClusterBased 0.2 68.04 39.80 55.06

KnownClusterBased 0.2 66.31 39.40 51.10
ClusterBasedSentenceEmb 0.2 67.44 39.49 54.42
PredictedClusterSampling 0.2 72.15 51.78 61.12

Standard ParaMote RandomSampling 0.2 71.46 47.77 58.64
ClusterBased 0.2 67.82 39.59 54.56

KnownClusterBased 0.2 67.67 46.99 55.88
ClusterBasedSentenceEmb 0.2 66.64 39.61 53.82
PredictedClusterSampling 0.2 72.38 49.98 59.98

Sentence None RandomSampling 0.2 75.62 63.41 68.66
ClusterBased 0.2 71.27 53.16 62.10

KnownClusterBased 0.2 62.42 36.02 48.83
ClusterBasedSentenceEmb 0.2 69.51 47.19 60.05
PredictedClusterSampling 0.2 75.74 61.99 67.04

Sentence Paraphrasing RandomSampling 0.2 76.41 63.02 68.83
ClusterBased 0.2 70.71 48.19 60.88

KnownClusterBased 0.2 67.58 54.05 58.62
ClusterBasedSentenceEmb 0.2 70.93 52.60 62.67
PredictedClusterSampling 0.2 75.52 61.53 68.21

Sentence ParaMote RandomSampling 0.2 76.28 61.20 68.09
ClusterBased 0.2 70.98 51.03 62.82

KnownClusterBased 0.2 67.13 49.47 56.64
ClusterBasedSentenceEmb 0.2 71.02 51.03 62.39
PredictedClusterSampling 0.2 76.33 62.05 68.21

Sentence Aug (3x) RandomSampling 0.2 76.48 61.33 68.07
PredictedClusterSampling 0.2 76.37 58.97 68.78

Table 4: Semi-supervised DeepAlign Clustering Results with BERT Model, Data Balance/Augmentation and Seed
Selection on KidSpace dataset (averaged results over 10 runs with different seed values; known class ratio is 0.75
in all cases)

Dataset BERT Data Bal/Aug Seed Selection labeled_ratio NMI ARI ACC

BANKING Standard None RandomSampling 0.1 79.22 52.96 63.84
PredictedClusterSampling 0.1 78.62 51.72 62.72

Standard Paraphrasing RandomSampling 0.1 79.31 53.31 64.83
PredictedClusterSampling 0.1 78.79 52.41 64.62

Standard ParaMote RandomSampling 0.1 79.62 54.08 65.37
PredictedClusterSampling 0.1 79.30 53.08 65.08

Sentence None RandomSampling 0.1 82.96 60.72 71.27
PredictedClusterSampling 0.1 82.11 58.43 69.78

Sentence Paraphrasing RandomSampling 0.1 83.00 60.95 71.95
PredictedClusterSampling 0.1 82.20 58.86 69.62

Sentence ParaMote RandomSampling 0.1 82.58 59.54 69.92
PredictedClusterSampling 0.1 81.88 58.13 69.74

Sentence Aug (3x) RandomSampling 0.1 82.94 60.78 71.66
PredictedClusterSampling 0.1 81.69 58.18 69.99

Table 5: Semi-supervised DeepAlign Clustering Results with BERT Model, Data Balance/Augmentation and Seed
Selection on BANKING dataset (averaged results over 10 runs with different seed values; known class ratio is 0.75
in all cases)

40

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 41–43
June 11, 2021. ©2021 Association for Computational Linguistics

Human-In-The-Loop
Entity Linking for Low Resource Domains

Jan-Christoph Klie Richard Eckart de Castilho Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science
Technical University of Darmstadt, Germany

www.ukp.tu-darmstadt.de

Abstract

Entity linking (EL) is concerned with disam-
biguating entity mentions in a text against a
knowledge base (KB). To quickly annotate
texts with EL in low-resource domains and
noisy text, we present a novel Human-In-The-
Loop EL approach. We show that it greatly
outperforms a strong baseline in simulation. In
a user study, annotation time is reduced by 35
% compared to annotating without interactive
support; users report that they strongly prefer
our new approach. An open-source and ready-
to-use implementation based on the text an-
notation platform INCEpTION1 is made avail-
able 2.

1 Introduction

Entity linking (EL) describes the task of disam-
biguating entity mentions in a text by linking them
to a knowledge base (KB), e.g. the text span Earl
of Orrery can be linked to the KB entry John Boyle,
5th Earl of Cork, thereby disambiguating it. EL
is highly relevant in many fields like digital hu-
manities, classics, technical writing or biomedical
sciences for applications like search (Meij et al.,
2014), semantic enrichment (Schlögl and Lejtovicz,
2017) or information extraction (Nooralahzadeh
and Øvrelid, 2018).

In these scenarios, the first crucial step is typi-
cally to annotate data. Manual annotation is labori-
ous and often prohibitively expensive. To improve
annotation speed and quality, we have developed a
novel Human-In-The-Loop (HITL) entity linking
approach. It helps annotators finding entity men-
tions in the text and linking them to the correct
knowledge base entries. The more mentions get
linked over time, the better the annotation support
will be.

1https://inception-project.github.io
2https://github.com/UKPLab/

acl2020-interactive-entity-linking

We demonstrate the effectiveness of our ap-
proach with extensive simulation as well as a user
study on different, challenging datasets. We have
implemented our approach based on the open-
source annotation platform INCEpTION (Klie
et al., 2018) and publish all datasets and code.

2 Implementation

Entity linking describes the task of disambiguating
mentions in a text against a knowledge base. Man-
ual annotation of EL consists of three steps (Shen
et al., 2015). First, the annotator selects a span that
contains an entity. Then, they search for the correct
entity in a KB. These search results are reranked to
rank more suitable candidates higher. Each candi-
date from the knowledge base is assumed to have a
label and a description.

To speed up this annotation process, we support
users twofold: To find suitable spans, we provide
recommenders that suggest potential entity spans.
They can also classify these entity spans (e.g. as
person, location, etc.). These recommenders learn
from new annotations and are retrained in the back-
ground. For candidate ranking, we follow Zheng
et al. (2010) and model it as a learning-to-rank
problem: given a marked span, search query and
a list of candidates, sort the candidates so that the
most relevant candidate is at the top. By selecting
an entity label from the candidate list, users express
that the selected one was preferred over all other
candidates. These preferences are used to train
state-of-the-art pairwise learning-to-rank models
from the literature: the gradient boosted trees vari-
ant LightGBM (Ke et al., 2017) and RankSVM
(Joachims, 2002). The continuously updated mod-
els improve over time with an increasing number
of annotations. As input features, we use different
similarity measures between the marked span and
the candidate label, between the spans’ context and
the candidate description as well as dense word and
sentence embeddings of the descriptions.

41

0 5k 10k 15k 20k 25k 30k 35k
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
1

0 5k 10k 15k 20k 25k 30k 35k
Number of annotations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
5

MFLE baseline
LightGBM
RankSVM

AIDA-CoNLL

0 2.5k 5k 7.5k 10k 12.5k
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
1

0 2.5k 5k 7.5k 10k 12.5k
Number of annotations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
5

MFLE baseline
LightGBM
RankSVM

Women Writers

0 100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
1

0 100 200 300 400 500
Number of annotations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

@
5

MFLE baseline
LightGBM
RankSVM

1641 Depositions

Figure 1: Human-in-the-loop simulation results for our three datasets and models. One can see that the model
achieves good Accuracy@5 with only a few annotations, especially for the RankSVM.

Datasets We use the following three datasets for
validating our approach: 1) the AIDA-YAGO state-
of-the art dataset introduced by Hoffart et al. (2011).
2) Women Writers Online3 is a collection
of texts by pre-Victorian women writers. It in-
cludes texts on a wide range of topics and from
various genres including poems, plays, and novels.
3) The 1641 Depositions4 contain legal texts
in form of court witness statements recorded after
the Irish Rebellion of 1641.

3 Experiments

To validate our approach, we simulate a user anno-
tating with our HITL ranker. Then, we conduct a
user study to test it in a real-life setting. Similar to
other work on EL, our main metric for ranking is
accuracy. We also measure Accuracy@5, as our ex-
periments showed that users can quickly scan and
select the right entity from a list of five elements.

Simulation Fig. 1 depicts the simulation results.
All models outperform a majority baseline over
most of the annotation process. It can be seen
that both of our used models achieve high per-
formance even if trained on very few annota-
tions. The RankSVM handles low data better than
LightGBM, but quickly reaches its peak perfor-
mance due to it being a linear model. This po-
tentially allows to first use a RankSVM for the
cold start and when enough annotations are made,
LightGBM, thereby combining the best of both.

3https://www.wwp.northeastern.edu/wwo
4http://1641.tcd.ie/

User Study In order to validate the viability of
our approach in a realistic scenario, we conduct
a user study. For that, we augmented the already
existing annotation tool INCEpTION (Klie et al.,
2018) with our Human-In-The-Loop entity rank-
ing and automatic suggestions. We let five users
re-annotate parts of the 1641 corpus. We compare
two configurations: one uses our reranking, one
uses the default ranking. We randomly selected
eight documents which we split in two sets of four
documents. We measure annotation time, number
of suggestions used and search queries performed.
The evaluation of the user study shows that us-
ing our approach, users on average annotated 35%
faster and needed 15% fewer search queries.

4 Conclusion

We presented a domain-agnostic annotation ap-
proach for annotating entity linking for low-
resource domains. It consists of two main com-
ponents: recommenders that are algorithms that
suggest potential annotations to users and a ranker
that, given a mention span, ranks potential entity
candidates so that they show up higher in the can-
didate list, making it easier to find for users. Both
systems are retrained whenever new annotations
are made, forming the Human-In-The-Loop. In a
user study, results show that users prefer our ap-
proach compared to the typical annotation process;
annotation speed improves by around 35% when
using our system relative to using no reranking
support.

42

References
Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-

dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust Disambiguation of Named
Entities in Text. In Proceedings of EMNLP’11,
pages 782–792.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’02,
pages 133–142.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. LightGBM: A Highly Efficient Gradient
Boosting Decision Tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 3146–3154.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION Platform: Machine-
Assisted and Knowledge-Oriented Interactive Anno-
tation. In Proceedings of the 27th International
Conference on Computational Linguistics: System
Demonstrations, pages 5–9.

Edgar Meij, Krisztian Balog, and Daan Odijk. 2014.
Entity linking and retrieval for semantic search. In
Proceedings of the 7th ACM international confer-
ence on Web search and data mining - WSDM '14,
pages 683–684.

Farhad Nooralahzadeh and Lilja Øvrelid. 2018.
SIRIUS-LTG: An Entity Linking Approach to Fact
Extraction and Verification. In Proceedings of the
First Workshop on Fact Extraction and VERification
(FEVER), pages 119–123.

Matthias Schlögl and Katalin Lejtovicz. 2017. APIS -
Austrian Prosopographical Information System. In
Proceedings of the Second Conference on Biograph-
ical Data in a Digital World 2017.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity Linking with a Knowledge Base: Issues, Tech-
niques, and Solutions. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):443–460.

Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xi-
aoyan Zhu. 2010. Learning to Link Entities with
Knowledge Base. In Prooceedings of NAACL-
HLT’10, pages 483–491.

43

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 44–46
June 11, 2021. ©2021 Association for Computational Linguistics

Bridging Multi-disciplinary Collaboration Challenges in
ML Development Workflow via Domain Knowledge Elicitation

Soya Park
MIT CSAIL

soya@mit.edu

Abstract

Building a machine learning model in a so-
phisticated domain is a time-consuming pro-
cess, partially due to the steep learning curve
of domain knowledge for data scientists. We
introduce Ziva, an interface for supporting
domain knowledge from domain experts to
data scientists in two ways: (1) a concept
creation interface where domain experts
extract important concept of the domain
and (2) five kinds of justification
elicitation interfaces that solicit elicita-
tion how the domain concept are expressed in
data instances.

1 Introduction

In recent decades, machine learning (ML) technolo-
gies have been sought out by an increasing number
of professionals to automate their work tasks or
augment their decision-making (Yang et al., 2019).
Broad areas of applications are benefiting from
integration of ML, such as healthcare (Cai et al.,
2019a,b), finance (Culkin and Das, 2017), employ-
ment (Manyika et al., 2017), and so on. However,
building an ML model in a specialized domain is
still expensive and time-consuming for at least two
reasons. First, a common bottleneck in developing
modern ML technologies is the requirement of a
large quantity of labeled data. Second, many steps
in an ML development pipeline, from problem def-
inition to feature engineering to model debugging,
necessitate an understanding of domain-specific
knowledge and requirements (Piorkowski et al.,
2021). Data scientists therefore often require in-
put from domain experts to obtain labeled data, to
understand model requirements, to inspire feature
engineering, and to get feedback on model behav-
ior. In practice, such knowledge transfer between
domain experts and data scientists is very much
ad-hoc, with few standardized practices or proven
effective approaches, and requires significant di-
rect interaction between data scientists and domain

experts. Building a high-quality legal, medical, or
financial model will inevitably require a data scien-
tist to consult with professionals in such domains.
In practice, these are often costly and frustrating
iterative conversations and labeling exercises that
can go on for weeks and months, which usually still
do not yield output in a form readily consumable
by a model development pipeline.

In this work, we set out to develop methods and
interfaces that facilitate knowledge sharing from
domain experts to data scientists for model devel-
opment. We developed a domain-knowledge acqui-
sition interface Ziva (With Zero knowledge, How
do I deVelop A machine learning model?). Instead
of a data-labeling tool, Ziva intends to provide a
diverse set of elicitation methods to gather knowl-
edge from domain experts, then present the results
as a repository to data scientists to serve their do-
main understanding needs and to build ML models
for specialized domains. Ziva scaffolds the knowl-
edge sharing in desired formats and allows asyn-
chronous exchange between domain experts and
data scientists. It also allows flexible re-use of the
knowledge repository for different modeling tasks
in the domain.

Specifically, Ziva focuses on eliciting key con-
cepts in the text data of a domain (concept
creation), and rationale justifying a label that
a domain expert gives to a representative data in-
stance (justification elicitation). In
the current version of Ziva, we provide five differ-
ent justification elicitation methods
– bag of words, simplification, perturbation, concept
bag of words, and concept annotation.

2 Ziva System

2.1 Concept creation

Creating a taxonomy is an effective way of organiz-
ing information (Laniado et al., 2007; Chilton et al.,
2013). Ziva provides an interface where SMEs can

44

Data scientists

raw input
The red velvet is rich and moist!
I think that the waiter was friendly.
The clam chowder was not tasty.
Took forever to get my drink
Yesterday I ate a terrible burger.

…

Upload a dataset

Ziva

raw input
The red velvet is rich and moist!
I think that the waiter was friendly.
Took forever to get my drink

Domain experts

Input curation: Ziva automatically selects representative
inputs to domain experts

Knowledge extraction:
A domain expert (1) extracts
taxonomy from the inputs and (2)
explains rationales of the labeling

Data scientists use domain
experts’ review to understand the
domain and build a model.

“restaurant”: {
 “Food”: [“tasty”, “lukewarm”, “unique”],
 “Service time": [“immediate”, “forever”]
 }

The red velvet is rich and moist!
Took forever to get my drink

df

The soup of the day was clam chowder and it was not incredible.

The red velvet cake is tasteless.

Figure 1: To facilitate domain knowledge sharing, Ziva presents representative instances and to interfaces to review
the instances to domain experts, then which will be used by data scientists.

extract domain concepts. Users are asked to cate-
gorize each example instance, presented as a card,
via a card-sorting activity. Users first group cards
by topic (general concepts of the domain such as
atmosphere, food, service, price). Cards in each
topic are then further divided cards into descrip-
tions referencing specific attributes for a topic (e.g.,
cool, tasty, kind, high).

2.2 Justification-elicitation interface

Once a domain expert finishes the concept extrac-
tion, they review each instance using one of elici-
tation interfaces, which ask the domain expert to
justify an instance’s label (this information is then
intended for consumption by data scientists).

The justification elicitation inter-
faces were designed through an iterative process
of paper prototyping, starting with initial designs
inspired by our preliminary interviews. As we con-
ducted paper prototyping, we examined if (1) the
answers from different participants were consistent
and (2) the information from participants’ answers
were useful to data scientists.

Bag of words. This base condition reflects the
most common current approach. Given an instance
and a label (e.g., positive, negative), the domain
experts are asked to highlight the text snippets that
justify the label assignment.

Instance perturbation. Inspired by one of our
data scientists in the formative study, this condition
asks a domain expert to perturb (edit) the instance
such that the assigned label is no longer justifiable
by the resulting text. For example, in the restaurant
domain, “our server was kind”, can be modified
to no longer convey a positive sentiment by either
negating an aspect (e.g., “our server was not kind”)
or altering it (e.g., “our server was rude”).

Instance simplification. This condition asks
domain experts to shorten an instance as much as
possible, leaving only text that justifies the assigned
label of the original instance. For example, “That’s

right. The red velvet cake... ohhhh.. it was rich
and moist”, can be simplified to “The cake was
rich and moist”, as the rest of the content does not
convey any sentiment, and can therefore be judged
irrelevant to the sentiment analysis task.

Concept bag of words. This condition incorpo-
rates the concept extracted in the prior step. Similar
to the Bag of words condition, domain experts are
asked to highlight relevant text within each instance
to justify the assigned label; however, each high-
light must be grouped into one of the concepts. If,
during Concept creation, the domain expert
copied a card to assign multiple topics and descrip-
tions, then the interface prompts multiple times to
highlight relevant text for each one. For example,
if they classified the instance, “That’s right. The
red velvet cake... ohhhh.. it was rich and moist”,
into the concept “food is tasty”, they can select
rich, moist and cake as being indicative words for
that concept.

Concept annotation. This condition is simi-
lar to the above Concept bag of words condition.
However, when annotating the instance text, do-
main experts are directed to distinguish between
words relevant to the topic and words relevant to
the description. Given the above sample instance,
the domain expert would need to indicate which
part of the sentence applies to food (e.g., cake) and
which to tasty (e.g., rich and moist). Both this and
the previous concept condition are motivated by
the well-established knowledge that a variety of
NLP tasks, such as relation extraction, question
answering, clustering and text generation can ben-
efit from tapping into the the conceptual relation-
ship present in the hierarchies of human knowledge
(Zhang et al., 2016). Learning taxonomies from
text corpora is a significant NLP research direc-
tion, especially for long-tailed and domain-specific
knowledge acquisition (Wang et al., 2017).

Details of the interface design and the evaluation
can be found in Park et al. (2021).

45

References
Carrie Jun Cai, Samantha Winter, David Steiner, Lau-

ren Wilcox, and Michael Terry. 2019a. "hello ai":
Uncovering the onboarding needs of medical practi-
tioners for human-ai collaborative decision-making.

Carrie Jun Cai et al. 2019b. Human-centered tools
for coping with imperfect algorithms during medical
decision-making.

Lydia B Chilton, Greg Little, Darren Edge, Daniel S
Weld, and James A Landay. 2013. Cascade: Crowd-
sourcing taxonomy creation. In Proceedings of the
SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 1999–2008.

Robert Culkin and Sanjiv R Das. 2017. Machine learn-
ing in finance: The case of deep learning for op-
tion pricing. Journal of Investment Management,
15(4):92–100.

David Laniado, Davide Eynard, Marco Colombetti,
et al. 2007. Using wordnet to turn a folksonomy
into a hierarchy of concepts. In Semantic Web Ap-
plication and Perspectives-Fourth Italian Semantic
Web Workshop, pages 192–201.

James Manyika, Michael Chui, Mehdi Miremadi, et al.
2017. A future that works: Ai, automation, employ-
ment, and productivity. McKinsey Global Institute
Research, Tech. Rep, 60.

Soya Park, April Yi Wang, Ban Kawas, Q Vera Liao,
David Piorkowski, and Marina Danilevsky. 2021.
Facilitating knowledge sharing from domain experts
to data scientists for building nlp models. In 26th
International Conference on Intelligent User Inter-
faces, pages 585–596.

David Piorkowski, Soya Park, April Yi Wang, Dakuo
Wang, Michael Muller, and Felix Portnoy. 2021.
How ai developers overcome communication chal-
lenges in a multidisciplinary team: A case study.

Chengyu Wang, Xiaofeng He, and Aoying Zhou. 2017.
A short survey on taxonomy learning from text cor-
pora: Issues, resources and recent advances. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1190–
1203. Association for Computational Linguistics.

Qian Yang, Aaron Steinfeld, and John Zimmerman.
2019. Unremarkable ai: Fitting intelligent decision
support into critical, clinical decision-making pro-
cesses. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, pages 1–
11.

Hao Zhang et al. 2016. Learning concept taxonomies
from multi-modal data. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1791–1801. Association
for Computational Linguistics.

46

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 47–51
June 11, 2021. ©2021 Association for Computational Linguistics

Active learning and negative evidence for language identification

Thomas Lippincott Benjamin Van Durme
Johns Hopkins University

{tom,vandurme}@cs.jhu.edu

Abstract

Language identification (LID), the task of deter-
mining the natural language of a given text, is
an essential first step in most NLP pipelines.
While generally a solved problem for docu-
ments of sufficient length and languages with
ample training data, the proliferation of mi-
croblogs and other social media has made it
increasingly common to encounter use-cases
that don’t satisfy these conditions. In these situ-
ations, the fundamental difficulty is the lack of,
and cost of gathering, labeled data: unlike some
annotation tasks, no single “expert” can quickly
and reliably identify more than a handful of lan-
guages. This leads to a natural question: can
we gain useful information when annotators
are only able to rule out languages for a given
document, rather than supply a positive label?
What are the optimal choices for gathering and
representing such negative evidence as a model
is trained?

In this paper, we demonstrate that using nega-
tive evidence can improve the performance of a
simple neural LID model. This improvement is
sensitive to policies of how the evidence is rep-
resented in the loss function, and for deciding
which annotators to employ given the instance
and model state. We consider simple policies
and report experimental results that indicate the
optimal choices for this task. We conclude with
a discussion of future work to determine if and
how the results generalize to other classifica-
tion tasks.

1 Background

Language identification (LID) is the task of classi-
fying a document according to the natural language
in which it is written (Lui and Baldwin, 2011).
It is a special case of text classification, where a
document is assigned a label l from a finite set of
discrete values L. Such problems, and LID as a
special case, have been widely studied for decades
(Kranig, 2005; Jauhiainen et al., 2018), with recent

state-of-the-art methods focusing on neural archi-
tectures over character representations (Joulin et al.,
2017; Zhang et al., 2015). Most methods share the
intuition (verified by many traditional studies) that
the signal for LID comes from the character level.
This intuition is reinforced by the difficulty that
flexible neural architectures have unseating tradi-
tional n-gram methods (Lippincott et al., 2019):
frequencies of short character-sequences seem to
hold most signal for the task.

Negative evidence, for a feature or label, is ex-
plicit evidence that it is not present in or does
not apply to an instance (Schneider, 2004): in
this study, it refers to annotations that say “this
document is not language X”. A given annotator
can only know a handful of languages, so in addi-
tion to the positive evidence when presented with
one of them, there may be a much higher volume
of implicit negative evidence, i.e. the documents
whose language they couldn’t recognize. Among
text classification tasks, the LID task is a partic-
ularly acute, naturally-occurring example of this
imbalance, in contrast to specific phenomena like
linguistic structure or small-inventory tasks like
named-entity recognition or sentiment, where an-
notators are expected to have a full grasp of the
potential label-space.

Our use of model estimates to choose annotators
has similarities to work on multi-armed contextual
bandits (Riquelme et al., 2018), where the con-
text includes both the new instance and the current
model state. Similar to Bayesian last layer opti-
mization (Weber et al., 2018) we focus on the final
linear layer in the model, though rather than em-
ploying reinforcement learning we directly spec-
ify simple policies based on the output distribu-
tions. The choice of likeliest annotators is similar
to Thompson sampling (Riquelme et al., 2018).

Figure 11 shows the performance of a LID model

1All figures in this paper show results for four values
of annotations_per_instance, 2, 4, 8, and 16, indicated by

47

Figure 1: Performance when training only on nega-
tive evidence (“this is not language X”) and no use of
the model for routing instances to annotators or for es-
timating probabilities (i.e. the Random and Uniform
policies described in Section 2). As languages are ruled
out, probability-mass is shifted to the set containing the
correct label. Improvements occur with more labeled
instances (x-axis), and with more labels-per-instance.

trained on just negative evidence. The curves
clearly demonstrate that negative evidence contains
useful information for the task. Figure 2 compares
positive evidence with both positive and negative
evidence, when negative evidence is incorporated
naively (see descripions of Uniform and Random
in Section 2). There is no performance gain from
including the negative evidence under these con-
ditions. Our goal is to preserve the signal from
Figure 1, that is currenly being lost in Figure 2, and
determine how to best employ annotation resources
as training progresses.

2 Methods

Data The Twitter Language Identification dataset
consists of 70k tweet IDs distributed evenly over
70 languages (Twitter, 2015). This provides a sig-
nificant LID challenge due to the short, idiosyn-
cratic messages and a large label space that includes
many less-studied languages. We balance the data
by randomly shuffling and keeping the first 400
instances of each language, and discarding seven
languages with less than 400 total, as some tweets
have become unavailable since the data set was
published.

Model Our model truncates and pads input sen-
tences to 128 characters, and maps each charac-
ter into a randomly initialized 64-dimension em-
bedding space. The (128x64xBatchSize) tensors

increasingly-solid lines: for better readability, we omit this
from the legends

Figure 2: Performance using positive evidence, with
and without negative evidence, also with no use of the
model for routing or estimation. The signal identified in
Figure 1 brings no advantages under this simple policy.
Here and in subsequent figures, the black line indicates
performance under the ideal situation where the full
training set is positively labeled.

are fed to a two-dimensional CNN layer with fil-
ters of widths w ∈ 1 : 5 followed by ReLU non-
linearity. The CNN outputs are concatenated, fed
to a dense linear layer and softmax to produce dis-
tributions over the labels. The choice of character-
level CNNs of the given widths gives the model
access to the same statistical information employed
by traditional n-gram models.

Training We simulate L annotators, one per la-
bel, each only capable of recognizing their re-
spective label. Starting with zero instances and a
randomly-initialized model, at each step we are pro-
vided with 500 new instances, and for each of them,
allowed to query annotators_per_instance of
the annotators, ranked according to an annotator
policy. Each annotator returns positive if the in-
stance is in the language they recognize, negative
otherwise. This evidence is represented as a tar-
get categorical distribution for the model’s loss
function, according to a representation policy.
The model is then trained via SGD for a maxi-
mum of 500 epochs, with learning rate=0.1, mo-
mentum=0.9, maximum iterations=500, minibatch
size=32, early stop=20, learning rate reduction of
magnitude=0.1 and patience=10, and dropout of
0.5 on the CNN outputs.2 Note that we are training
to convergence between receiving each new batch
of annotated instances.

Evidence Given the annotations received during
the training process, we can selectively employ evi-

2This training configuration produced optimal results on
dev performance across all experimental conditions

48

dence: Positive and Positive+Negative are the most
important point of comparison, while Negative was
used in Figure 1 to illustrate the potential value of
the negative annotations.

Annotation policies We experiment with two
policies for ranking potential annotators for a new
instance: in both cases, the instance is labeled by
the first annotators_per_instance annotators in
the ranked list. The Random policy simply shuffles
the annotators randomly. The Likeliest policy ranks
annotators by the probability the model currently
assigns to their language for the new instance, from
most likely to least. The intuition is that getting
annotations for the likeliest languages will either 1)
correctly label the instance or 2) remove the maxi-
mal amount of misallocated probability mass under
the current model parameters.

Representation policies We also experiment
with two policies for representing negative evi-
dence as an L-dimensional categorical distribution
for input to the loss function (positive evidence
is always the corresponding one-hot distribution).
The Uniform policy, given negative evidence for
labels Lneg, builds the distribution P (l) = 0 if
l ∈ Lneg, otherwise P (l) = 1

|L−Lneg | . The Esti-
mated policy also sets P (l) = 0 if l ∈ Lneg, but
otherwise sets P (l) proportional to the model’s
current estimate of that language for the instance.
We experimented with treating each potential label
for each instance as a binary task via binary cross-
entropy loss metrics, and with selectively propagat-
ing the loss depending on whether an annotation
(positive or negative) had been seen for the task,
but found that the best approach was to treat it as a
categorical, with a KL-divergence loss metric.

t r a i n = []
f o r s i n 1 : S :

new = g e t _ m o r e _ i n s t a n c e s (5 0 0)
l a b e l e d = l a b e l (new , a n n o t a t o r _ p o l i c y)
t r a i n += encode (l a b e l e d , r e p r e s e n t a t i o n _ p o l i c y)
c o n t i n u e _ t r a i n i n g (model , t r a i n)
r e c o r d S c o r e (model , t e s t)

Figure 3: Training procedure: the model is incremen-
tally fed additional labeled documents, and each time
SGD is run until dev set performance stops improv-
ing, at which point the test set score is recorded for the
current amount of training data.

Measurements We perform five folds of each
experiment, in which the full data set is randomly
shuffled, and split into train/dev/test sets in 0.8, 0.1,
and 0.1 proportions, respectively. Performance on

the dev sets was used for early stopping and learn-
ing rate decay, while we report test performance
averaged over the five folds. Variance was low,
and we omit it from figures, but include it in Ad-
ditional Materials. Figures show macro F1 score
as a function of training instance count: line style
corresponds to annotators_per_instance, while
color corresponds to the policies being compared.
The solid horizontal line at the top of the figures
is a reference point of performance with complete,
positive annotation of all instances.

We assume that we have access to one annotator
per language and route each document as it arrives.
In the absence of active learning, a document has a
1/70 chance to be labeled as its correct language,
and 69/70 chance to be labeled as not one of the
other languages. We also experiment with a simple
policy of routing each document to the annotator
for the model’s current best-guess language, with
the hypothesis this will reassign the most misallo-
cated probability mass.

1. Treat the outputs as a categorical distribution
by applying softmax and use standard cross-
entropy between this and positive labels, mak-
ing no use of negative labels. As extreme as
this seems, it’s not unrealistic in situations
that focus on under-represented populations
like sub-Saharan Africa or fine-grained dis-
tinctions like Arabic dialects to have an acute
lack of on-demand expertise, or a large cost
associated with it.

2. Treat the outputs and labels as independent
Bernoulli distributions, and for each docu-
ment only back-propagate the error from its
explicitly-labeled language (be it a positive or
negative label). This focuses the objective on
the precise information the annotators have
provided.

3. Treat the outputs as a categorical distribution,
so identical to 1) for positive labels, but to
additionally cast the negative labels as under-
specified categorical distributions. With zero
additional evidence we can use the maximum
entropy distribution subject to the constraints
of any negative labels, i.e. the uniform dis-
tribution with the negative labels set to zero
and renormalized. We could also use external
information, such as the population language
distribution from another source, or an itera-
tive prior estimation from current estimates, to

49

inform how the probability mass is distributed
across the label space.

3 Results and Discussion

Figure 4: Comparison of the best approach using
Positive evidence, and the best approach using Posi-
tive+Negative evidence, both of which use Likeliest
annotation policy and Estimated representation policy.
Given the same number of annotations-per-instance
(line solidity), negative evidence provides significant
performance improvements, after a brief initial delay
(see Figure 6).

Figure 4 shows our primary result: the use of
negative evidence, in combination with the Esti-
mated representation policy and Likeliest annotator
policy, produces large improvements over the best
baseline approach using positive evidence alone.
In particular, when the algorithm is given a small
number of annotation opportunities per instance (2,
4, 8), it surpasses the baseline at 20k instances by 7,
15, and 10 points, respectively. Positive+negative
with 4 annotations per instance exceeds perfor-
mance of positive with 8 annotations per instance,
and with 8 annotations per instance is within 3
points of performance with perfect positive evi-
dence.

On the other hand, the Positive+Negative models
show performance delays compared to the corre-
sponding positive models. Because the negative
instances rely on the quality of the current esti-
mates for constructing target distributions, these
are initially quite poor until the model escapes its
random initialization. This escape is easier to ac-
complish with more annotations, which can be seen
by comparing where the Positive+Negative models
start outperforming their Positive counterparts.

Figures 6 and 5 compare representation and an-
notator policies under the simplest configurations.
The delayed performance is clearest between the

Figure 5: Comparison of Random and Likeliest anno-
tator policies, both using the Uniform representation
policy and Positive+Negative evidence. The Likeliest
policy lacks the performance delay seen in Figure 4, but
also falls short of the improvement given more training
instances.

Figure 6: Comparison of Uniform and Estimated rep-
resentation policies, both using the Random annotator
policy and Positive+Negative evidence. The Estimated
policy exhibits the performance delay of Figure 4, indi-
cating this stems from the model’s initial poor estimates
of unseen label probabilities, but also shows the value
of those estimates in the improvements once those esti-
mates are based on sufficient training instances.

representation policies. The Estimated representa-
tion policy also provides the most performance im-
provement, eventually providing benefits for every
value of annotators_per_instance. The annota-
tor policies, on the other hand, only provide signifi-
cant benefits when annotators_per_instance ≥
8. Referring back to Figure 4 confirms the combina-
tion of both policies outperforms either in isolation.

4 Conclusions and future work

We have demonstrated a general method for exploit-
ing negative evidence using an underlying virtuous
cycle, where an improved model leads to better
annotator selections and more accurate target distri-

50

butions. These appear to be crucial ingredients for
negative evidence to provide benefit: when we re-
move them, and always select annotators at random
and employ CMEDs, the positive+negative models
provide no advantage over the positive-only mod-
els throughout training. It may be that the benefits
would only materialize on larger training sets, but
since the models already approach the optimum
(black line) this is never seen in practice for this
LID task.

Negative evidence can be gathered (and simu-
lated) for any classification task, and it is an open
question whether the same approaches will general-
ize. In particular, we would like to run experiments
in speech processing, which has its own language
identification problem as well as a number of tasks
with even sparser annotation abilities (e.g. speaker
identification), and image recognition.

The initial performance delays we observed in
Figures 4 and 6 come from the Estimated policy’s
use of the model before it has sufficiently improved.
Representation policies that take this into account
should be able to shift the early performance curves
to the left, similar to work on multi-armed bandits
(Weber et al., 2018) emphasizing the importance
of uncertainty estimates. The annotation policies
we considered can only gather annotations for in-
coming instances: it may be useful to expand this
to include all currently-known instances, to allow
more flexible shifting of probability mass using the
same amount of annotation resources.

References
Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Timo-

thy Baldwin, and Krister Lindén. 2018. Automatic
Language Identification in Texts: A Survey. CoRR,
abs/1804.08186.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Simon Kranig. 2005. Evaluation of language identifica-
tion methods. Bakalárska práca, Universität Tübin-
gen, Nemecko.

Tom Lippincott, Pamela Shapiro, Kevin Duh, and Paul
McNamee. 2019. JHU system description for the
MADAR Arabic dialect identification shared task. In
Proceedings of the Fourth Arabic Natural Language
Processing Workshop, pages 264–268, Florence, Italy.
Association for Computational Linguistics.

Marco Lui and Timothy Baldwin. 2011. Cross-domain
feature selection for language identification. In Pro-
ceedings of 5th international joint conference on nat-
ural language processing, pages 553–561.

Carlos Riquelme, George Tucker, and Jasper Snoek.
2018. Deep Bayesian Bandits Showdown: An Em-
pirical Comparison of Bayesian Deep Networks for
Thompson Sampling. In International Conference
on Learning Representations.

Karl-Michael Schneider. 2004. On word frequency in-
formation and negative evidence in Naive Bayes text
classification. In Advances in Natural Language Pro-
cessing, pages 474–485. Springer.

Twitter. 2015. Evaluating language identification per-
formance.

Noah Weber, Janez Starc, Arpit Mittal, Roi Blanco, and
Lluís Màrquez. 2018. Optimizing over a Bayesian
Last Layer. In Advances in neural information pro-
cessing systems.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

51

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 52–58
June 11, 2021. ©2021 Association for Computational Linguistics

Towards integrated, interactive, and extensible text data analytics with
LEAM

Peter Griggs∗
MIT

pgriggs@mit.edu

Çağatay Demiralp∗

Sigma Computing
cagatay@sigmacomputing.com

Sajjadur Rahman
Megagon Labs

sajjadur@megagon.ai

Abstract

From tweets to product reviews, text is ubiqui-
tous on the web and often contains valuable in-
formation for both enterprises and consumers.
However, the online text is generally noisy and
incomplete, requiring users to process and an-
alyze the data to extract insights. While there
are systems effective for different stages of
text analysis, users lack extensible platforms
to support interactive text analysis workflows
end-to-end. To facilitate integrated text an-
alytics, we introduce LEAM, which aims at
combining the strengths of spreadsheets, com-
putational notebooks, and interactive visual-
izations. LEAM supports interactive analy-
sis via GUI-based interactions and provides
a declarative specification language, imple-
mented based on a visual text algebra, to en-
able user-guided analysis. We evaluate LEAM
through two case studies using two popular
Kaggle text analytics workflows to understand
the strengths and weaknesses of the system.

1 Introduction

The growth of e-commerce has contributed to
the proliferation of digital text, particularly user-
generated text (reviews, Q&As, discussions),
which often contain useful information for improv-
ing the services and products on the web. Enter-
prises increasingly adopt text mining technologies
to extract, analyze, and summarize information
from such unstructured text data. However, online
text collections are incomplete, ambiguous, and
often sparse in informational content. Cleaning,
featurizing, modeling, visualizing, extracting infor-
mation from, and identifying topics in such text
collections can be daunting and time-consuming
without integrated systems that take the whole text
analytics pipeline into account.

DaSH-LA 2021, June 11, 2021, Virtual Conference.

The characteristics of online text make inter-
active workflows and visualizations essential for
rapid iterative analysis (Ittoo et al., 2016). There-
fore we focus on visual interactive text analysis
(VITA hereafter) and related systems. Few com-
mercial and open-source tools can support different
stages of VITA, e.g., spreadsheets, computational
notebooks, and visualization tools (Liu et al., 2018;
Smith et al., 2020). Customized visual text an-
alytics tools focus on specific use-cases like re-
view exploration (Zhang et al., 2020a), sentiment
analysis (Kucher et al., 2018), and text summa-
rization (Carenini et al., 2006). None of these
solutions accommodate the inherently cyclic, trial-
and-error-based nature of VITA pipelines end-to-
end (Drosos et al., 2020; Wu et al., 2020).

Designing and building VITA systems can be
difficult. The primary challenge is the number and
diversity of the tasks that need to be supported.
Programmatic tools such as computational note-
books can provide extensibility and expressivity
to incrementally build such support but they often
lack in interactivity and do not facilitate direct data
manipulation, impeding analysis.

In response, we propose LEAM , that provides
an integrated environment for VITA. LEAM com-
bines the advantages of spreadsheets, computa-
tional notebooks, and visualization tools by inte-
grating a Code Editor with interactive views of raw
(Data View) and transformed data (Chart View).
Figure 1 shows a snapshot of LEAM. A key compo-
nent in the design of LEAM is the instrumentation
of text analysis operations via VITAL, a python
API. These built-in operations can also be used
directly from the interactive Operations Menu. To
evaluate LEAM, we conduct two case studies using
two popular Kaggle text analytics workflows. The

*Work done while authors were at Megagon Labs.

52

A

CD

B

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

create UDF
col.project().lowercase()

col.project().remove_punctuat ion()

col.project().remove_stopwords()

new_col = col.mutate().t f_idf ()

col2 = data.get_column(new_col)

new_col = col2.project().pca()

col3 = data.get_column(new_col)

col3.project().indices([0,1])

col2.mutate().kmeans()

In[2]:

view barchart
col2.aggregate().word_scores("feature_labels")

col2.visualize("tw_barchart", "top_scores")

In[3]:

Figure 1: LEAM user interface. (A) Operations Menu enables users to perform visual interactive text analytics (VITA)
operations using drop-down menus, (B) Chart View holds a carousel of interactive visualizations created by users, (C) Data View
displays the data and its subsequent transformations, and (D) Code Editor allows users to compose and run VITA operations
using a declarative specification called VITAL.

study showed that participants preferred the inte-
grated analysis environment and the ability to spec-
ify various workflows both interactively (via Oper-
ations Menu) and declaratively (via VITAL). How-
ever, participants asked for enhanced workflow
transparency and consistency of operations. We
have released the source-code of LEAM at https:
//github.com/megagonlabs/leam.

2 Related Work

LEAM draws from prior work on interactive text
analysis, computational notebook, and declarative
specification of analysis workflows.
Interactive visual text analytics. Prior research
on visual text analytics have limitations in flexibil-
ity and extensibility due to their fixed choices of
models, visualizations, and interactions (Kucher
et al., 2018; Liu et al., 2018). LEAM adopts the
vision of a VITA system outlined in our prior
work (Rahman et al., 2020). In this paper, we
primarily focus on expressivity (e.g., declarative
workflow specification), resusability (e.g., reusing
operators and models), on-demand coordination
(e.g., linking visualizations and data), and trans-
parency (e.g., GUI interaction logging).

Computational notebooks. Computational note-
books such as Jupyter (Jupyter, 2020) allow pro-
grammers to interleave code with visualizations.
This linear layout often introduces a physical dis-
tance between related charts, limiting an analyst’s
ability to derives insights by visually comparing
different charts. Tools like B2 (Wu et al., 2020) and
LUX (Lee, 2020), provide a non-linear interface
where charts are placed in a separate visualization
pane. While LEAM shares the same principle, it
additionally features a Data View and enables co-
ordination between visualization and the data—a
desirable property of such interactive programming
environments (Chattopadhyay et al., 2020).

Declarative data analysis and visualization.
Prior work on data analysis workflow specifica-
tion focused on several different stages, from data
cleaning to exploration. To support data cleaning,
Wrangler (Kandel et al., 2011) combines a mixed-
initiative interface with a declarative transforma-
tion language. Text Extension python library (Co-
dait, 2021) enables users to operate on intermedi-
ate data, e.g., spans and tensors, in all phases of an
NLP workflow. Grammars of graphics like Vega-
Lite (Satyanarayan et al., 2016) and ggplot2 (Wick-

53

ham, 2016) support visualization specification via
abstractions, e.g., JSON. However, users cannot
dynamically add new interactions to the visual-
izations using these abstractions. LEAM enables
users to add new interactions to visualizations and
create coordination among data and visualizations
on-the-fly using declarative specifications devel-
oped based on grammar for visual text analysis
introduced in our prior work (Rahman et al., 2020).

3 Design Considerations

We now outline our design considerations for cre-
ating LEAM. Table 1 shows which of these de-
sign considerations are supported by existing tools
discussed in Section 2. These design consider-
ations were informed by prior work on identify-
ing challenges related to live programming inter-
faces (Chattopadhyay et al., 2020; Rule et al., 2018;
Kery et al., 2020), studies on exploratory data sci-
ence practices (Alspaugh et al., 2018; Kery et al.,
2018; Zhang et al., 2020b), and guidelines for mul-
tiple coordinated view design (Wang et al., 2000),
and refined through our experiences working with
user-generated text data at MEGAGON LABS:

Design Notebooks Visualization VITA
Crietria Jupyter LUX B2 Platforms (LEAM)

D1/D2. Code X X X x X
D1. Visualization X X X X X
D1. Data x x x x X
D3. On-demand
Coordination x x x x x

D4. Reusability x x x x X
D5. Transparency x x X x x

Table 1: Unlike existing tools, LEAM supports all of the
design considerations (D1−D5) outlined in Section 3.

D1. Enable integrated analytics. VITA systems
should provide a single platform where users can
directly manipulate (spreadsheets) and visualize
(visualization tools) data while writing codes (note-
books) without context switching between tools.
D2. Specify operations declaratively. VITA sys-
tems should provide an expressive specification
language to represent and communicate the entire
breadth of workflows within the domain.
D3. Facilitate on-demand coordination. Within
an integrated environment, VITA systems should
enable users to specify coordination between all
the available views on demand.
D4. Ensure reusability of operations. Users
should be able to craft their analysis pipeline and
share and reuse the workflow across use-cases.

D5. Ensure transparency of operations. VITA
systems should ensure transparency of interactions
on the interface—effect of direct manipulation and
programmatic interactions should be immediately
visible via visual cues or prompts.

4 LEAM User Interface

The four key components of the interface are a
Code Editor, an Operations Menu, a Data View,
and a Chart View. We discuss how these compo-
nents enable integrated visual text analysis (D1).

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

clean column content
col.project().strip_html()

col.project().remove_emoji()

col.project().lowercase()

col.project().correct_spellings()

In[2]:

ceate a new column with review t f - idf
new_col = col.mutate().t f_idf ()

col2 = data.get_column(new_col)

In[3]:

access metadata to visualize top words
col2.aggregate().word_scores("feature_labels")
col2.visualize("barchart", "top_scores")

In[4]:

(a) VITAL commands

(b) Cleaning operations

(c) Featurization operations

Clean

Featurize

Visualize

Figure 2: (a) Users writes scripts in Code Editor using the
VITAL API for cleaning, featurizing, and visualizing data.
Alternatively, users can also utilize the operators in Operations
Menu, e.g., cleaning (b) and featurization (c).

Code Editor and Operations Menu. While the
Code Editor design (see Figure 1C) is inspired by
computational notebooks, it only supports writ-
ing, editing, and executing scripts—visualizations
and data tables are displayed separately in Chart
View and Data View, respectively. The multi-
view representation is intended to help users relate
their workflows with the underlying data and their
visualizations—a benefit of multiple coordinated
views. Users can write scripts in the Code Editor
in Python. We also implement a Python-based
visual interactive text analysis library, VITAL,
for issuing various text analysis and visualization
operations in the Code Editor (discussed in Sec-
tion 5). These operations are derived from an alge-
bra for visual text analysis introduced in our prior
work (Rahman et al., 2020). Users can also utilize
the Operations Menu to execute built-in text analy-
sis and visualization operations. Figure 2a shows
an example workflow in the Code Editor consisting
of data cleaning, featurization, and visualization
operations. Users can also perform these opera-
tions from Operations Menu without writing any
scripts (see Figure 2b, and 2c).
Data View. Data View (see Figure 1C) shows a
tabular representation of the underlying data. The

54

underlying data structure in LEAM is a dataframe.
Data View is kept in sync with the dataframe—
any changes made to the dataframe is immediately
reflected in Data View (D3). For example, in Fig-
ure 3 when a user cleans the review column in
the dataframe, the corresponding cleaned data is
displayed in the Data View. In traditional script-
based systems like computation notebooks, users
are required to explicitly specify a print operation
to view and inspect data.

(a) Noisy text (b) Cleaned text

Figure 3: As (a) user performs various cleaning operations
on the “review” column as shown in Figure 2, (b) the cleaned
column data is immediately displayed in Data View (D3).

Chart View. LEAM enables users to generate vi-
sualizations either from the Code Editor or Oper-
ations Menu and displays those visualizations in
the Chart View (see Figure 1B). Unlike compu-
tation notebooks, where analyzing visualizations
in distant cells can be cumbersome, the side-by-
side presentation of charts in Chart View enables
users to compare and analyze related visualization
without scrolling. We create the visualizations by
extending Vega-Lite (Satyanarayan et al., 2016).
These visualizations can be generated from Oper-
ations Menu or using VITAL commands and can
be dynamically updated to add new interactions
(discussed in Section 5).

5 Visual Text Analysis Using LEAM

The text analysis operations in LEAM are devel-
oped based on a visual text algebra, VTA (Rahman
et al., 2020). LEAM provides a Python API called
visual interactive text analysis library, VITAL, that
enables users to write VTA commands in Code
Editor. We now briefly introduce VTA and then
demonstrate the corresponding specification library
VITAL that we have developed.

5.1 VTA Operators and VITAL

VTA supports various operators for selecting a
subset of the data (selection), transforming se-
lected data into various representations for analysis
(transformation), coordinating different views

within the interface (coordination), and creat-
ing new operators by combining existing ones
(composition). The JSON-style specification for-
mat of VTA is quite different from scripting lan-
guages widely used by analysts, such as R and
Python. Composing operations in VTA can be
cumbersome as users are required to specify multi-
ple nested objects. Therefore, we have developed
VITAL for declaratively specifying VTA com-
mands in Code Editor of LEAM (D2). The VITAL
commands are compiled and executed by the back-
end Python runtime of LEAM. We show several
examples of VITAL commands that implement
the VTA operators as well as newly introduced
features next.

(c) Single bar selection(b) UDF creation

data.get_vis(0).select ion("funny")

col2.visualize("barchart ", "top_scores")

(b) Chart creation

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

create UDF
def get_ngrams(corpus, top_k, n):

vec = CountVectorizer(ngram_range=(n, n)).f it (corpus)

bow = vec.t ransform(corpus)

sum_words = bow.sum(axis=0)

words_f req = [(word, int(sum_words[0, idx]))

for word, idx in vec.vocabulary_.items()]

words_f req = sorted(words_f req,

 key = lambda x: x[1], reverse =True)

return dict(words_f req[:top_k])

In[2]:

add and then apply UDF
data.udf ().add(get_ngrams)

col.udf ().apply("get_ngrams", 10, 2, md_tag="ngrams")

In[3]:

Create UDF

Apply UDF

Figure 4: Declarative specification (D2): (a) using VITAL
user creates and applies a UDF to compute top-K n-grams of
reviews. Transparency (D5): (b) user generates a barchart of
top words from Operation Menu which is logged as a VITAL
script in Code Editor. Coordination (D3): (c) a user selected
bar is highlighted on-demand.

5.2 Towards Integrated Text Analysis

We now explain how users can perform text analy-
sis in LEAM.

5.2.1 User-guided Analysis
In Figure 2, we show how a user can analyze a text
reviews dataset using various VITAL commands
or menu operations like project (data cleaning)
and mutate (featurization). Moreover, users can
also combine multiple existing operators to declar-
atively specify user-defined operators (D2). For
example, as shown in Figure 4, a user creates a
new function to generate top n-grams in a given
text corpus and then uses VITAL to load and then
apply the UDF. Users can use the visualize com-
mand to create visualizations of the underlying
data (see Figure 4b) and interactions (Figure 4c).

5.2.2 Programmatic Coordination
A key feature of LEAM is the ability to dynami-
cally add coordination to existing visualizations

55

using VITAL (D3). Existing libraries like Vega-
Lite only allow users to predefine the visualization
and corresponding interactions without supporting
any dynamic coordination specification.

barchart .bi_link("table")
barchart .select("gif t ")

Figure 5: To relate a word in the chart with reviews both in
Data View and the scatterplot (D3), the user issues a VITAL
command in Code Editor (see inset). Clicking a bar in the
barchart filters reviews in Data View and highlights relevant
reviews in the scatterplot.

As shown in Figure 4c, users can update the
selection type of the barchart in Figure 4b to en-
able single bar selection. Moreover, using VITAL,
users can also dynamically specify external coordi-
nations (a) among charts in the Chart View and (b)
between Data View and charts. Vega-Lite does not
provide a formal interaction grammar for such ex-
ternal coordination. For example, Figure 5 shows
how users can enable coordination between the
barchart, scatterplots, and data. Such dynamicity
allows users to augment the visualizations instead
of recreating charts and connect different views on
demand to investigate data relationships. LEAM

maintains a coordination graph to keep track of the
linked views, which we discuss in Section 4.

5.2.3 Reusability and Transparency
Both VITAL and Operation Menu enable users
to issue both analysis and coordination operations
across different projects and workflows. More-
over, users can add their UDFs as new operators
to VITAL and menu operations using the add_UDF
command (see Figure 4a), thus ensuring reusabil-
ity (D4). Users can also upload pre-trained models
(e.g., classification, regression) from Operations
Menu and then access and reuse the models using
the get_model and predict commands. To en-
sure transparency of the user interactions (D5) on
the Operation Menu, LEAM logs the corresponding
VITAL command in a new cell in Code Editor (see
Figure 4b). The logging feature enables users to
track their interactions, debug the logs if required,
and re-execute those interactions.

6 LEAM Architecture

LEAM is developed as a web application and is
implemented using ReactJS and Flask framework.
We depict the architecture in Figure 6. LEAM client
is responsible for capturing user input, and for
rendering the views based on results returned by
the back-end. Given any user interaction on the
front end, the LEAM Request Processor issues a
request to the backend LEAM Controller. This
controller manages the uploaded data and sessions
while propagating user interactions to the session
manager.

CLIENT

System-X Controller VITAL Compiler

SERVER

Frontend
Request

Processor

Session Manager

DataFrame

Task Queue
Session Var iables

VITAL Scr ipts
Visual Interact ions
Menu Operat ions

Data Operat ions

Metadata

View Cache

data = VTA("xyz")

c1 = data.get_col()

c1.project().clean()

c1.mutate().t f_idf()

VITAL Executor

Coordination Graph

Figure 6: LEAM architecture. The front-end is a web ap-
plication. The back-end features various components such as
task queue, coordination graph, VITAL compiler, and execu-
tor to handle and execute user requests.

The session manager interprets the user
interaction—any interactions on the Operations
Menu is sent to a lightweight VTA Compiler while
the VITAL commands on the Code Editor are
pushed in a task queue. The VTA compiler trans-
lates the user-selected operator to a VITAL com-
mand which is then executed by the VTA Execu-
tor. LEAM backend employs a Task Queue to
keep track of the VITAL commands in Code Edi-
tor. LEAM session manager also employs a View
Cache to track the states of the front end views.
LEAM employs a Coordination Graph to manage
coordination among linked views—for any inter-
action on a view, all the views in its adjacency list
are updated. For example, selecting a bar in the
barchart in Figure 5 updates the scatterplot and
Data View in its adjacency list.

7 Case Studies

To assess the impact of LEAM in performing vi-
sual text analysis and collect early feedback, we
evaluated it through two case studies.

56

7.1 Study Design and Tasks

Design. The study consisted of three phases: (a)
an introductory phase to help participants familiar-
ize themselves with LEAM, (b) a workflow execu-
tion phase where the participants used LEAM to
implement a text analysis workflow, and (c) a semi-
structured interview to collect qualitative feedback
regarding LEAM.

Participants. We recruited two participants within
our professional network. Participant Pa was a re-
searcher in natural language processing with exten-
sive experience in review analysis and designing
personal assistants and conversational bots. Partic-
ipant Pb was a software engineer with experience
in NLP pipelines and text analysis.

Tasks. We selected a spam detection work-
flow (Kaggle, 2021b) and a tweet analysis work-
flow (Kaggle, 2021a) from Kaggle, that are related
to analyzing user-generated text as the respective
tasks of our use cases. We chose the workflows
based on their popularity and relevance to every-
day text data analytics workflows in practice. For
both the workflows, participants were provided pre-
trained models. They were asked first to explore
and preprocess a separate test dataset and then clas-
sify the data using the respective pre-trained model.
For the preprocessing tasks, participants had to cre-
ate a UDF. Participants were free to use any feature
of LEAM or write code in Code Editor.

7.2 Observations

Both participants were able to complete their tasks
with varying degrees of help from the experi-
menters. Participants appreciated the ability to per-
form the analysis both using Operations Menu (in-
teractive) and Code Editor (declarative). They also
found the user interface of LEAM more structured,
commenting on the “messiness” of analysis using
computational notebooks, also highlighted in prior
work (Alspaugh et al., 2018). Moreover, partici-
pants found having visualizations within their eye-
sight without the need for scrolling up and down
useful, a benefit of integrating multiple views (Rah-
man et al., 2021). They appreciated the ability to
specify interactive coordination between visual-
izations and Data View using VITAL. Pa appreci-
ated the ability to reuse operations from Operations
Menu for bootstrapping the analysis.

Figure 7: Bigram visualizations on Tweets dataset (Kaggle,
2021a) cleaned with a UDF. Users can immediately see the
impact of the cleaning operation: (a) before and (b) after
applying the UDF.

Participants also appreciated the ability to vi-
sualize the impact of their operations. Figure 7a
displays a bi-gram visualization of the unprocessed
tweets. After applying the cleaning operator on the
tweets, the visualization was automatically updated
(see Figure 7b). Such dynamic coordination high-
lights the importance of supporting context switch-
ing between stages in the data science pipeline,
such as cleaning and visualization.

Participants also provided feedback for improve-
ment. The most frequently raised issue was the
need for improved communication of errors and
the support for debugging, a requirement identi-
fied in earlier work (Chattopadhyay et al., 2020).
Moreover, participants were occasionally confused
about the effects of their operations, suggesting
the need for visual guidance and better cues. Re-
cent work explores such error detection methods
for computational notebooks (Macke et al., 2021).
Participants also pointed out a few syntactic incon-
sistencies of VITAL commands and suggested a
more consistent design for ease of learning.

8 Conclusion and Future Work

This paper presents LEAM, a tool that enables users
to perform interactive text analysis in-situ. Our
declarative specification API VITAL provides sup-
port for a suite of operators to author diverse VITA
workflows on-demand and enable different modes
of interactive coordination among views. Prelim-
inary evaluation of LEAM highlights the benefits
of integrating multiple views, supporting both in-
teractive and declarative specification of tasks, en-
abling reusability of operations, and ensuring trans-
parency of interactions. While the initial results
are promising, there is room for improvement in
adding more transparency and providing wider op-
erations coverage. LEAM can further benefit from
addressing challenges related to scalability, work-
flow optimization, and version control that related
work also explores.

57

References
Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin,

and Marti A Hearst. 2018. Futzing and moseying:
Interviews with professional data analysts on explo-
ration practices. IEEE transactions on visualization
and computer graphics, 25(1):22–31.

Carenini et al. 2006. Interactive multimedia sum-
maries of evaluative text. In IUI, pages 124–131.

Souti Chattopadhyay, Ishita Prasad, Austin Z Henley,
Anita Sarma, and Titus Barik. 2020. What’s wrong
with computational notebooks? pain points, needs,
and design opportunities. In Proceedings of the
2020 CHI Conference on Human Factors in Com-
puting Systems, pages 1–12.

Codait. 2021. Text extensions for pandas.

Ian Drosos, Titus Barik, Philip J Guo, Robert De-
Line, and Sumit Gulwani. 2020. Wrex: A unified
programming-by-example interaction for synthesiz-
ing readable code for data scientists. In ACM Hu-
man Factors in Computing Systems (CHI), pages 1–
12.

Ashwin Ittoo, Antal van den Bosch, et al. 2016. Text
analytics in industry: Challenges, desiderata and
trends. Computers in Industry.

Project Jupyter. 2020. Project jupyter.

Kaggle. 2021a. Basic eda, cleaning and glove.

Kaggle. 2021b. Simple eda with data cleaning &
glove.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein,
and Jeffrey Heer. 2011. Wrangler: Interactive vi-
sual specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3363–3372.

Mary Beth Kery, Marissa Radensky, Mahima Arya,
Bonnie E John, and Brad A Myers. 2018. The story
in the notebook: Exploratory data science using a lit-
erate programming tool. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1–11.

Mary Beth Kery, Donghao Ren, Kanit Wongsupha-
sawat, Fred Hohman, and Kayur Patel. 2020. The
future of notebook programming is fluid. In Ex-
tended Abstracts of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, pages 1–8.

Kucher et al. 2018. The state of the art in sentiment
visualization. In Computer Graphics Forum, vol-
ume 37, pages 71–96. Wiley Online Library.

Doris Lee. 2020. Lux: A python api for intelligent
visual discovery.

Liu et al. 2018. Bridging text visualization and mining:
A task-driven survey. IEEE TVCG, 25(7):2482–
2504.

Stephen Macke, Hongpu Gong, Doris Lee, Andrew
Head, Doris Xin, and Aditya Parameswaran. 2021.
Fine-grained lineage for safer notebook interactions.
Proceedings of the VLDB Endowment, 14(6):1093–
1101.

Sajjadur Rahman, Mangesh Bendre, Yuyang Liu,
Shichu Zhu, Zhaoyuan Su, Karrie Karahalios, and
Aditya Parameswaran. 2021. Noah: Interactive
spreadsheet exploration with dynamic hierarchical
overviews. Proceedings of the VLDB Endowment,
14(6):970–983.

Sajjadur Rahman, Peter Griggs, and Çağatay Demiralp.
2020. Leam: An interactive system for in-situ visual
text analysis. In Conference on Innovative Data Sys-
tems Research.

Adam Rule, Aurélien Tabard, and James D Hollan.
2018. Exploration and explanation in computational
notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–12.

Satyanarayan et al. 2016. Vega-lite: A grammar of
interactive graphics. IEEE TVCG, 23(1):341–350.

Smith et al. 2020. The machine learning bazaar: Har-
nessing the ml ecosystem for effective system devel-
opment. In ACM SIGMOD, pages 785–800.

Wang et al. 2000. Guidelines for using multiple views
in information visualization. In Proceedings of the
working conference on Advanced visual interfaces,
pages 110–119. ACM.

Hadley Wickham. 2016. ggplot2: elegant graphics for
data analysis. springer.

Yifan Wu, Joe Hellerstein, and Arvind Satyanarayan.
2020. B2: Bridging code and interactive visualiza-
tion in computational notebooks. In ACM UIST.

Zhang et al. 2020a. Teddy: A system for interactive
review analysis. In SIGCHI, pages 1–13.

Ge Zhang, Mike A Merrill, Yang Liu, Jeffrey Heer,
and Tim Althoff. 2020b. Coral: Code represen-
tation learning with weakly-supervised transform-
ers for analyzing data analysis. arXiv preprint
arXiv:2008.12828.

58

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 59–61
June 11, 2021. ©2021 Association for Computational Linguistics

Data Cleaning Tools for Token Classification Tasks
Karthik Muthuraman2, Frederick Reiss1,2, Hong Xu2,

Bryan Cutler2 and Zachary Eichenberger1,3

1IBM Research – Almaden, San Jose, CA 95120, USA
2IBM Center for Open Source Data and AI Technologies (CODAIT),

San Francisco, CA 94105, USA
3University of Michigan, Ann Arbor, MI 48109, USA

karthik.muthuraman@ibm.com, frreiss@us.ibm.com, hongx@ibm.com
bjcutler@us.ibm.com, zachary.eichen@gmail.com

Abstract

Human-in-the-loop systems for cleaning NLP
training data rely on automated sieves to iso-
late potentially-incorrect labels for manual re-
view. We have developed a novel technique
for flagging potentially-incorrect labels with
high sensitivity in named entity recognition
corpora. We incorporated our sieve into
an end-to-end system for cleaning NLP cor-
pora, implemented as a modular collection of
Jupyter notebooks built on extensions to the
Pandas DataFrame library. We used this sys-
tem to identify incorrect labels in the CoNLL-
2003 corpus for English-language named en-
tity recognition (NER), one of the most influ-
ential corpora for NER model research.

Unlike previous work that only looked at a sub-
set of the corpus’s validation fold, our auto-
mated sieve enabled us to examine the entire
corpus in depth. Across the entire CoNLL-
2003 corpus, we identified over 1300 incorrect
labels (out of 35089 in the corpus).

We have published our corrections, along with
the code we used in our experiments. We
are developing a repeatable version of the pro-
cess we used on the CoNLL-2003 corpus as an
open-source library.

1 Introduction

Human-in-the-loop systems for cleaning NLP
training data rely on automated sieves to iso-
late potentially-incorrect labels for manual review.
In this work, a full version of which has been
presented in (Reiss et al., 2020), we describe
how we developed a novel technique for flagging
potentially-incorrect labels with high sensitivity in
named entity recognition corpora.

We implemented our sieve in the context of a
set of extensions to the Pandas1 DataFrame library.
In addition to flagging errors, our extensions pro-
vide facilities for comparing NLP model results

1https://pandas.pydata.org/

and visualizing model outputs and training data in
context.

Because we built these facilities into the pri-
mary DataFrame library of the Python data analysis
stack, we were able to construct an end-to-end sys-
tem for NLP data cleaning as a series of Jupyter2

notebooks. This design gives sophisticated users a
view of the internals of the data cleaning process
and allows for easy customization.

Our Jupyter notebooks comprises a pipeline that
starts with training ensembles of models. Next,
the system analyzes the outputs of the ensembles
to identify potentially incorrect labels. Additional
notebooks provide human annotators with a view of
the suspicious labels in context. Later stages of the
pipeline merge and analyze the results of manual
annotation; then construct a corrected dataset and
reports on the nature of the corrections.

We used this system to identify errors in the
CoNLL-2003 NER corpus. The English-language
portion of the CoNLL-2003 shared task (Tjong
Kim Sang and De Meulder, 2003) (henceforth
CoNLL-2003) is one of the most widely-used
benchmarks for named entity recognition (NER)
models. It consists of news articles from the
Reuters RCV1 corpus (Lewis et al., 2004). Since
its debut, CoNLL-2003 has played a central role
in NLP research and continues to do so with more
than 2300 citations. While researchers have relied
heavily on the CoNLL-2003 corpus as a source of
ground truth, few have paid attention to the corpus
itself. Errors in the corpus could potentially mis-
lead and even divert the course of future research.

Unlike previous analyses of this dataset that only
examined small fractions of the CoNLL-2003 cor-
pus, our work leveraged a high level of automation
to analyze the entire corpus. We found over 1300
errors.

2https://jupyter.org

59

2 Process

Our approach builds on previous work in semi-
supervised labeling, with some key differences. Be-
cause we were looking for errors in a corpus that
already had many high-quality labels, we needed
a sieve with especially high sensitivity. We used
ensembles of NER models trained on the corpus,
and we focused on cases where the models agreed
strongly on a particular label, but that label does not
appear in the corpus. One of these ensembles was
the outputs of the original 16 entries in the 2003
competition. We also trained two other 17-model
ensembles ourselves by applying Gaussian random
projections to the BERT embeddings space.

We developed extensions to the Pandas
DataFrame library that enabled us to repre-
sent spans within documents as cells within a
DataFrame. This facility allowed us to use
DataFrames to track the spans of the entities that
each of our models produced and to aggregate to-
gether the results across models. Using these ca-
pabilities, we developed Jupyter notebooks that
analyzed our ensembles’ outputs to identify labels
that appeared in the outputs of multiple models but
were not in the corpus.

We used our Pandas extension types’ ability to
render spans to HTML to view these spans in the
context of the original document from within the
same Jupyter notebooks.We started with labels that
had a strong agreement among models and we pro-
gressed to labels with less agreement among mod-
els, the fraction of flagged labels that was actually
incorrect decreased. When this fraction dropped
below 20 percent, we stopped going through the
ordered list of flagged labels. We had an inter anno-
tation agreement and audit cycle for each correction
made. In total, we made 12 passes (3 ensembles
× 2 sets of labels × 2 human reviewers) of man-
ual review over the train and test folds of the
corpus and 8 passes over the test fold.

When we found that a label was incorrect, we
coded the type of error and the required correction
so that the error could be corrected automatically
later on. We divided errors into several categories
as explained in detail in the full version of this
paper at (Reiss et al., 2020).

3 Corrections

In total, we examined 3182 labels our ensembles
had flagged in the three folds of the corpus. We
considered any label where fewer than 7 models

Original models
Custom models

Custom models with
cross-validation

dev + test folds train fold

65

79

240 32

35

39

5
221 9341

Figure 1: Number of errors flagged by different combi-
nations of ensembles after filtering by human labelers.

agreed with the corpus label to be “flagged”. Of
these labels, 1274 came from the test fold, 854
came from the dev fold, and 1054 came from the
train fold; accounting for 22.6%, 14.3%, and
4.5% of their folds, respectively. Figure 1 shows
the split of final errors identified by ensemble and
source.

Manual inspection determined that 850 of these
3182 entities (27%) were incorrect. We also found
475 additional incorrect entities in close proximity
to the entities that our techniques flagged, for a
total of 1320 incorrect labels across the corpus.

After identifying incorrect tags, spans and sen-
tence boundaries, we created a corrected version of
the original CoNLL-2003 dataset, which we refer
to as the corrected CoNLL-2003 dataset.

4 Ongoing Work

While preparing our dataset of corrections for re-
lease, we identified additional improvements to the
corrections. We have released a second version
of the dataset containing these improvements plus
some additional corrections pointed out by mem-
bers of the open source NLP community.

We have released the code that we used in our
experiments so far3. To facilitate the reuse of this
code on other datasets, we are developing a more re-
fined version of this code. Key changes that we are
working on are reducing the number of passes of
manual review required, simplifying the creation of
ensembles of models, and extending the approach
from NER to other token classification tasks like
semantic role labeling. We plan to release these
improvements.

3https://github.com/CODAIT/
text-extensions-for-pandas

60

References
David D. Lewis, Yiming Yang, Tony G. Rose, and Fan

Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of Machine
Learning Research, 5:361–397.

Frederick Reiss, Hong Xu, Bryan Cutler, Karthik
Muthuraman, and Zachary Eichenberger. 2020.
Identifying incorrect labels in the CoNLL-2003 cor-
pus. In Proceedings of the 24th Conference on Com-
putational Natural Language Learning, pages 215–
226. Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the SIGNLL Conference on Computa-
tional Natural Language Learning, pages 142–147,
USA. Association for Computational Linguistics.

61

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 62–69
June 11, 2021. ©2021 Association for Computational Linguistics

Building Low-Resource NER Models Using Non-Speaker Annotations

Tatiana Tsygankova♮, Francesca Marini♮, Stephen Mayhew♭, Dan Roth♮
♮University of Pennsylvania, Philadelphia, PA, 19104

♭Duolingo, Pittsburgh, PA, 15206
ttasya@seas.upenn.edu, fmarini@seas.upenn.edu
stephen@duolingo.com, danroth@seas.upenn.edu

Abstract

In low-resource natural language processing
(NLP), the key problems are a lack of target
language training data, and a lack of native
speakers to create it. Cross-lingual methods
have had notable success in addressing
these concerns, but in certain common
circumstances, such as insufficient pre-
training corpora or languages far from the
source language, their performance suffers.
In this work we propose a complementary
approach to building low-resource Named
Entity Recognition (NER) models using
“non-speaker” (NS) annotations, provided by
annotators with no prior experience in the
target language. We recruit 30 participants in
a carefully controlled annotation experiment
with Indonesian, Russian, and Hindi. We
show that use of NS annotators produces
results that are consistently on par or better
than cross-lingual methods built on modern
contextual representations, and have the
potential to outperform with additional effort.
We conclude with observations of common
annotation patterns and recommended
implementation practices, and motivate how
NS annotations can be used in addition to
prior methods for improved performance.1

1 Introduction

Work in low-resource languages is not only
academically compelling, breaking from popular
use of massive compute power on unlimited
English data, but also useful, resulting in improved
digital tools for under-resourced communities.
Two common strategies for low-resource NLP
include (a) building cross-lingual models, and (b)
annotating data in the target language.
Cross-lingual approaches — in which models

are trained on some high-resource language, and
applied to the target language — have been

1For more details, see:
http://cogcomp.org/page/publication_view/941

�ुयॉक� 	शहर	के	अहम	�ह�े	स��ल	पाक� 	पर	उड़ती	सी	
नजर	डालते	�ए	गुजरता	�	ंतो..

nyuyorka		shahar	ke	aham	hisse		semttral	paarka	par

	uddatii	sii	najar	ddaalate	hue	gujarataa	huum	to...

New
York?

Central
Park?

GPE LOC

ROMANIZATION

Figure 1: An example of how romanized Hindi text can
be annotated without prior language knowledge.

shown to be surprisingly effective (Wu andDredze,
2019; Lample and Conneau, 2019). However, in
common circumstances, such as when working
with languages with insufficient training corpora
or those far from the available source languages,
cross-lingual methods suffer (Wu and Dredze,
2020; K et al., 2020). Absent sufficient cross-
lingual methods, conventional wisdom suggests
that only native (or fluent) speakers of a language
can provide useful data to train NLP models. But
in low-resource scenarios, fluent speakers may not
be readily available.
To address this limitation, we hypothesize that

the search for annotators can be extended beyond
fluent speakers. In this work, we propose an
unconventional approach for low-resource named
entity recognition (NER) by getting annotations
from annotators with no familiarity in the target
language, referred to as “non-speaker” (NS)
annotation. We posit that annotators are able
to use phonetic, syntactic, and even semantic
information from their languages of fluency to
inform recognition. One example of how phonetic
information can be used for NER annotation is
shown in Figure 1.
We test our hypothesis in a carefully

controlled annotation experiment, comparing
the performance of non-speaker (NS) annotators

62

to that of fluent speakers (FS) in Indonesian,
Russian, and Hindi.
Our findings are summarized in two key

takeaways: (1) non-speaker annotators are able
to produce useful annotations despite having
no experience annotating or learning the target
language; and (2) non-speaker annotations are on
par or better than cross-lingual methods built on
modern contextual representations. We conclude
with observations over factors that can influence
NS annotation quality, such as availability of
a good romanization system, or presence of
capitalization in the target language.

2 Related Work

NamedEntity Recognition (NER) has been studied
for many years (Ratinov and Roth, 2009; Lample
et al., 2016; Ma and Hovy, 2016), with most focus
on English and a few other European languages
(Tjong Kim Sang and De Meulder, 2003).
Recently, there has been growing interest in

low-resource NLP, with work in part-of-speech
tagging (Plank and Agić, 2018), parsing (Rasooli
and Collins, 2017), machine translation (Xia et al.,
2019), and other fields. Low-resource NER has
seen work using Wikipedia (Tsai et al., 2016),
self attention (Xie et al., 2018), and multilingual
contextual representations (Wu and Dredze, 2019).
There has been a small amount of work using

non-speaker annotations (Mayhew et al., 2019a),
but mainly as an application of a technique, falling
short of the exhaustive study in this paper.
Several interfaces exist for non-speaker

annotations in NER, including TALEN (Mayhew,
2018), which we use, ELISA IE (Lin et al.,
2018), and Dragonfly (Costello et al., 2020),
which performed small-scale experiments with
non-speaker annotators.
A similar approach has been proposed for

machine translation (Hermjakob et al., 2018b) and
speech recognition (Chen et al., 2016). In the
former case (assuming the translation direction
is Foreign-to-English), it is often sufficient to
translate several of the most important content
words, then reconstruct the most likely sentence
that uses these. In speech recognition, it is
possible to listen to a language one does not
speak, and produce a phonetic transcriptions that
can be aggregated with others into a reasonable
transcription, a process referred to as mismatched
crowdsourcing.

Language Script Capitalization Example

Indonesian Latin Yes Amerika
Russian Cyrillic Yes Америка
Hindi Devanagari No अमेȝरका

Table 1: Factors contributing to language difficulty,
with examples of the English word “America.”

3 Experimental Setup

Our experiment consisted of a series of trials,
typically attended by 1–5 participants. Each trial
ran for four hours and consisted of three tasks:
(1) one-hour instructional training, (2) 20-minute
English annotation exercise, and (3) series of five
30-minute sessions annotating documents in the
target language.

Language Selection We chose three target
languages: Indonesian, Russian, and Hindi. These
languages were chosen based on availability of
gold-annotated data and fluent speakers, and
language difficulty.
The constraint of available fluent speakers for

annotation, which we use as a point of comparison
on non-speaker annotation performance, led us
to choose mid- to high-resource languages for
evaluation. To read accounts of similar techniques
used on true low-resource languages, see the
applications section (§4.3).
We define language difficulty as the task-

specific difficulty experienced by an English
speaker creating NER annotations in the target
language. In practice, this difficulty mainly
depends on script and capitalization, but may also
depend on other factors such as language family
and number of English loanwords. Under this
task-specific definition and relevant properties
summarized in Table 1, Indonesian is identified as
the “easiest” language, Russian is “intermediate,”
and Hindi is the “hardest.”

Participant Selection In total, there were 30
participants involved in the study, selected largely
through a network of friends and acquaintances
at the University of Pennsylvania. All participants
were uniformly paid $10/hour for their time and
were preliminarily screened for language exposure.
We chose not to use crowd-sourcing platforms,
such as Mechanical Turk, to allow flexibility in
administration format and recruitment strategy.
The methodology for the study was approved by
the Institutional Review Board at the university.

63

NIFS NIFS

Bi-LSTM

NSNS4

NSNS1

NSNS4

NSNS1

Bi-LSTM

...

...
...
...

Figure 2: An overview of the data selection process involved in training models on the FS (fluent speaker) and
NS (non-speaker) annotations. In each document set, the stars refer to annotators with the higher English exercise
score, whose data is used in training. Details on model performance for each language are shown in Figure 3

Language Train Dev Test

Indonesian 76K 18K 16K
Russian 59K 16K 16K
Hindi 72K 18K 20K

Table 2: Size of LORELEI datasets for each language,
measured in tokens. Splits were created by the authors.

Data We used gold-annotated NER data from
the LORELEI project (Strassel and Tracey, 2016;
Tracey et al., 2019). This data uses 4 entity
tags: Person, Organization, Location, and Geo-
political Entity. We created splits of these datasets
ourselves, statistics of which can be seen in Table 2.
These corpora are not parallel.
Accounting for annotation speed differences, FS

and NS annotators were given document sets of
different sizes to annotate during the same time
frame. Each document set used in the experiment
was annotated by at least two participants. (visual
reference in Figure 2).

Task 1: Instructional Training In total, two
instructional documents were used – one providing
an overview of the task goals and annotation
software, and the other outlining key annotation
principles in the form of an interactive annotation
guideline quiz. The annotation software used was
TALEN (Mayhew, 2018), a tool designed for
annotating named entities when the annotators
don’t speak the target language.

Task 2: English Annotation Exercise After
the quiz, participants were asked to annotate
English LORELEI data for 20 minutes. The

Language FS NS

Indonesian 19K 38K
Russian 28K 38K
Hindi 18K 45K

Table 3: Size of datasets produced by fluent speaker
(FS) and non-speaker (NS) annotators, in tokens.

goal of this exercise was both to familiarize
the participants with the software interface and
provide an indicator of their annotator potential
and understanding of the annotation guidelines,
used later to filter out low-quality annotators.

Task 3: Target Language Annotation Sessions
Participants completed their 2.5 hours of
annotation in 5 sessions of 30 minutes each.
All FS annotators spent their time annotating
documents in their native language, while NS
annotators worked with foreign languages that
they had no prior exposure to. Given that all
of the languages used in the study were high-
to mid-resource, annotators were given explicit
instructions not to use external model resources
such as Google Translate, but were allowed to
use internet search to determine the nature of the
entities. For Russian and Hindi, which do not use
Latin script, we provided uroman (Hermjakob
et al., 2018a) romanization, so that the script was
not a barrier to successful annotation (Figure 1).
Summary statistics of the annotated documents

can be found in Table 3. Note that the larger
annotated data size from the NS annotators reflects
the fact that thereweremoreNS annotators than FS
annotators, a choice we deliberately made.

64

FS NS

Language P R F1 P R F1

Indonesian 80.6 75.6 78.0 59.8 55.7 57.7
Russian 69.0 67.3 68.1 57.0 45.9 50.9
Hindi 85.5 80.4 82.9 59.8 33.4 42.8

Table 4: Annotation quality of annotations collected
from fluent speaker (FS) and non-speaker (NS)
annotators against the gold data.

4 Experiments & Analysis

This section describes the analysis done on the
gathered FS and NS annotations, through the
setup of our models and metrics used and key
experimental takeaways.

4.1 Models & Metrics
Two Performance Measures In this work, we
report two distinct F1 performance measures:
Annotation Quality andModel Performance.

Annotation Quality refers to the results of
participant annotation compared to the existing
gold annotations on the same documents. In this
evaluation, no model is trained, and we simply
calculate the F1 scores by treating NS annotations
as predictions themselves (results reported in
Tables 3 and 5).
In contrast, Model Performance refers to the

more traditional NER setup, in which we train
a model over obtained annotations, and predict
on some held out test set. The following sections
outline the results of this performance metric
(results reported in Figure 3).

Data Preparation To account for random errors,
we prioritized recruiting at least two participants to
annotate each document set. We then used English
exercise scores to choose between the resulting
conflicting annotations for the same document sets.
A summary of the data selection process is shown
in Figure 2.
In order to ensure that documents lacking

annotations were considered to be NS annotator
mistakes rather than negative training examples,
we removed all empty documents from the NS data
before training. No other pre-processing was done.

Machine LearningModels For all experiments,
we used a standard BiLSTM-CRF model (Ma
and Hovy, 2016) implemented in AllenNLP
(Gardner et al., 2018), and usedmultilingual BERT
embeddings (Devlin et al., 2019), which have

Annotation Time (hr)

Language 0.5 1 1.5 2 2.5

Indonesian 55.5 54.7 57.8 57.3 57.5
Russian 42.5 47.5 47.5 49.7 50.6
Hindi 24.5 32.3 41.1 40.3 41.8

Table 5: Changes in mean annotation quality of non-
speaker (NS) annotations over time show an upwards
trajectory that steepens with language difficulty.

been shown to exhibit surprising cross-lingual
properties (Wu and Dredze, 2019). For the sake of
speed and simplicity, we use BERT embeddings as
features, and do not fine-tune the model. For each
dataset, we train with 5 random seeds (Reimers and
Gurevych, 2017) and report the average.
We recognize that these annotations are missing

many entities. Following recent work on partial
annotations, we use an iterative method from
(Mayhew et al., 2019a) called Constrained Binary
Learning (CBL) that detects unmarked tokens
likely to be entities and down-weights them in
training. Subsequent results reported use this
method on all FS and NS annotations.

Baseline Comparisons Given that there is little
prior work on this subject, it’s hard to compare
our results against an established baseline. To
contextualize our results, we compare NS models
against FS models and cross-lingual methods.
However, both are imperfect comparisons and
should be interpreted with caution.
In our comparison with FS models, the main

difficulty is unequal training data size. Our
experimental design intentionally left us withmore
NS annotations than FS annotations (see Table
3). It might be tempting to address this difficulty
by balancing data sizes, however constraining the
NS annotations to the sizes of the FS data would
not give a fair comparison: the imbalance reflects
the real-life scenario in which non-speakers of a
language are far easier to find than speakers of the
language, who may not be available at all.
In our comparison with cross-lingual models,

the main difficulty is the strength of pre-trained
embeddings for the baseline models. As a strong
language-independent baseline for existing cross-
lingual methods, we trained models on English
NER data and evaluated on the target language
test data (experiments with related languages
showed similar results, and were omitted for
space constraints). Our experimental decision

65

FS (CBL) NS (CBL) Eng Eng+NS

50

60

70

80
M

od
el

 P
er

fo
rm

an
ce

 F
1

64.1 63.7

60.3

66.3

Indonesian

Gold: 75.2

FS (CBL) NS (CBL) Eng Eng+NS

64.3

58.2 58.2
59.2

Russian

Gold: 77.2

FS (CBL) NS (CBL) Eng Eng+NS

61.0

53.4
54.8 54.0

Hindi

Gold: 72.8

Figure 3: Comparison of models trained on fluent speaker (FS) and non-speaker (NS) annotations to English cross-
lingual models, showing comparable or improved performance across all languages. Error bars show one standard
deviation calculated over five trials. CBL refers to Constrained Binary Learning. The Eng+NS model is trained on
the concatenation of English and NS data. The dashed lines refer to the performance of models trained on the gold
annotated training set.

to use relatively high-resource languages meant
that mBERT models had access to reasonably
large amounts of pre-training data (each language
was in the top 50 by Wikipedia size), and are
therefore unfairly strong. One would expect cross-
lingual performance to decrease on lower resource
languages (Wu and Dredze, 2020).

4.2 Main Results
Figure 3 summarizes the results of this experiment
by providing a comparison of models trained
on non-speaker (NS) and fluent speaker (FS)
annotations to cross-lingual models. From these
results we distill two main takeaways.

Takeaway 1: NS Annotation Works
The results of our experiments show that across
all languages, non-speaker annotations have
produced meaningful results. In Indonesian, NS
models are evidently strong and perform at a
similar level to models trained on fluent-speaker
annotations. This is likely attributable to the high
entity overlap between English and Indonesian and
limited language-specific information required for
successful annotation. In practice, this indicates
that 2.5 hours of language exposure was enough
for NS annotators to produce annotations with
quality sufficient enough to be useful.
The gap between NS and FSmodel performance

widens on other languages, and correlates with
an annotation quality drop. This suggests that 2.5
hours are not sufficient to produce NS annotations
rivaling FS models (however, as we will see in

Takeaway 2, this is sufficient to rival cross-lingual
baselines). One reason is that in more difficult
languages, annotators need more time to become
acquainted with the language, so we could expect
more substantial improvements over time. To test
this hypothesis, we examined mean annotation
quality trends of NS annotators, summarized in
Table 5. Across all languages, we see annotators
improving over time. For Russian and Hindi
in particular, we observe a more overt learning
curve indicating that there are more nuances
to these languages which must be noticed by
annotators over time. This upwards positive trend
in annotation quality suggests that the NS results
reported here are not the peak results that could be
achieved. With additional training and experience,
NS annotators can produce stronger results even in
more difficult languages.

Takeaway 2: NS Remains On Par With
Cross-Lingual Baselines
In Figure 3, across all languages performance
of models built on NS annotations (blue bars)
consistently matches or exceeds the performance
of cross-lingual models (red bars). Again, in a low-
resource scenario we might expect cross-lingual
model performance to drop substantially, so the
fact that they are comparable in this situation is
encouraging. Additional experiments combining
NS and English data (purple bars) shows
improvements in Indonesian and Russian, but
inconclusive changes in Hindi. Altogether, these
results demonstrate that using NS annotations

66

is one of the most effective available ways
of building an NER model in a low-resource
scenario.
While an unexpected observation shows that

FS scores are always 15–20 points below models
trained on gold-annotated data, we hypothesize
that this difference is mainly attributed to training
level and not language ability (Geva et al., 2019).

4.3 Low-resource Applications

Although the use of non-speaker annotators has
little representation in the research community,
there have been several projects that lean on
this idea heavily. In the LORELEI evaluations,2
research groups were tasked with producing
NLP tools on truly low-resource languages
(including Kinyarwanda, Sinhalese, Ilocano, and
Odiya) within a short time frame. A number of
new techniques came out of these evaluations,
and many groups resorted to using non-speaker
annotators (Cheung et al., 2017; Mayhew et al.,
2017, 2018, 2019b). In each group, annotators
were trained more thoroughly than in the empirical
study here, and exhibited a more focused and
long-term effort. However, in these projects, the
goal was to maximize the final score, not make
careful observations of the annotation process.
This paper fulfills that need.

5 Discussion

While Section 4 showed quantitative outcomes of
experimental processes, this section explores the
many factors that can contribute to obtaining high
quality NS annotations.

NS Annotation Practices & Strengths When
capitalization is available in the target language, it
is a strong indicator for named entities. Analyzing
NS annotations over languages with capitalization
– Indonesian and Russian – shows that over 90%
of annotated tokens are capitalized, a rate similar
to what we would expect in English.
For languages with non-Latin scripts – Russian

and Hindi – NS annotators often relied on
phonetic clues and always annotated on romanized
versions of the text. Having access to well-
romanized text is critical, as it helps NS annotators
make connections between English cognates or

2https://www.nist.gov/itl/iad/mig/
lorehlt-evaluations

previously tagged entities. Some real examples of
phonetically recognizable entities from Hindi are:

paakistaan, biibiisii hindii, baamglaadesh
A majority of entities tagged in languages with

no capitalization are either geo-political entities
(i.e. Pakistan, America) or well-known Western
names (i.e. Obama, Twitter, BBC). Once an
annotator learns a word representation in the target
language, they tend to tag every instance as an
entity. As a result, we found that NS annotators
tend to tag a proportionally less diverse set of
entities than FS annotators.

What makes a good annotator? Analyzing
participant language familiarity and instructional
quiz scores shows that neither multilingualism
nor initial guideline understanding present a clear
predictor for good annotators. Participants who
performed best were detail-oriented, patient, and
often proactively vocalized their interest in the task
or the top annotator award incentive.
One strength of human non-speaker annotators

to annotate NER is that, unlike an automatic
system, they are able to make inferences over
common sense world knowledge. For example,
they may use a header to pick out the domain of
a document, or use neighboring entities to inform
decisions, as in Figure 1, where the presence of
New York suggests Central Park as an entity.

How does this generalize to other tasks?
Looking to other NLP tasks, it seems clear that
NS annotations of conceptually in-depth tasks such
as dependency parsing or textual entailment are
unlikely to have usable quality. However, for tasks
such as part of speech tagging, it could be possible,
especially with the help of a tag lexicon and an
elementary grammar.

6 Conclusion

We demonstrate the effectiveness of using non-
speaker annotations as an alternative to cross-
lingual methods for building low-resource NER
models. A qualitative exploration of the resulting
data provides insights about what makes NS
annotators so unintuitively successful. One avenue
for future exploration is with active learning
(Settles, 2009), which has been shown to help in
low-resource situations (Chaudhary et al., 2019).
Further work may also explore optimal ways to
combine NS annotators with FS annotators, should
they be available.

67

7 Acknowledgement

This work was supported by Contract HR0011-
18-2-0052 and Contract HR0011-15-C-0113 with
the US Defense Advanced Research Projects
Agency (DARPA). Approved for Public Release,
Distribution Unlimited. The views expressed are
those of the authors and do not reflect the official
policy or position of the Department of Defense or
the U.S. Government.

References
Aditi Chaudhary, Jiateng Xie, Zaid Sheikh,

Graham Neubig, and Jaime Carbonell. 2019.
A little annotation does a lot of good: A study
in bootstrapping low-resource named entity
recognizers. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5164–5174, Hong Kong,
China. Association for Computational Linguistics.

Wenda Chen, Mark Hasegawa-Johnson, and Nancy F
Chen. 2016. Mismatched crowdsourcing based
language perception for under-resourced languages.
Procedia Computer Science, 81:23–29.

Leon Cheung, Thamme Gowda, Ulf Hermjakob,
Nelson Liu, Jonathan May, Alexandra Mayn,
Nima Pourdamghani, Michael Pust, Kevin Knight,
Nikolaos Malandrakis, et al. 2017. ELISA system
description for LoReHLT 2017.

Cash Costello, Shelby Anderson, Caitlyn Bishop,
James Mayfield, and Paul McNamee. 2020.
Dragonfly: Advances in non-speaker annotation for
low resource languages. In LREC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. AllenNLP: A deep semantic natural
language processing platform. In Proceedings of
Workshop for NLP Open Source Software (NLP-
OSS), pages 1–6, Melbourne, Australia. Association
for Computational Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an
investigation of annotator bias in natural language

understanding datasets. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1161–1166, Hong Kong,
China. Association for Computational Linguistics.

Ulf Hermjakob, Jonathan May, and Kevin Knight.
2018a. Out-of-the-box universal Romanization tool
uroman. In Proceedings of ACL 2018, System
Demonstrations, pages 13–18, Melbourne, Australia.
Association for Computational Linguistics.

Ulf Hermjakob, Jonathan May, Michael Pust, and
Kevin Knight. 2018b. Translating a language
you don’t know in the Chinese room. In
Proceedings of ACL 2018, System Demonstrations,
pages 62–67, Melbourne, Australia. Association for
Computational Linguistics.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2020. Cross-Lingual Ability of
Multilingual BERT: An Empirical Study.

Guillaume Lample, Miguel Ballesteros, Sandeep
Subramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity
recognition. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 260–270, San Diego, California.
Association for Computational Linguistics.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. arXiv preprint
arXiv:1901.07291.

Ying Lin, Cash Costello, Boliang Zhang, Di Lu, Heng
Ji, James Mayfield, and Paul McNamee. 2018.
Platforms for non-speakers annotating names in any
language. In Proceedings of ACL 2018, System
Demonstrations, pages 1–6, Melbourne, Australia.
Association for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1064–1074,
Berlin, Germany. Association for Computational
Linguistics.

Stephen Mayhew. 2018. TALEN: Tool for Annotation
of Low-resource ENtities. In ACL Demonstrations.

Stephen Mayhew, Snigdha Chaturvedi, Chen-Tse Tsai,
and Dan Roth. 2019a. Named Entity Recognition
with Partially Annotated Training Data. In Proc. of
the Conference on Computational Natural Language
Learning (CoNLL).

Stephen Mayhew, Chase Duncan, Mark Sammons,
Chen-Tse Tsai, Dan Roth, Xin Li, Haojie Pan,
Sheng Zhou, Jennifer Zou, and Yangqiu Song. 2017.
University of Illinois LoReHLT17 Submission.
Technical report.

68

Stephen Mayhew, Tatiana Tsygankova, Francesca
Marini, Zihan Wang, Jane Lee, Xiaodong Yu,
Xingyu Fu, Weijia Shi, Zian Zhao, Wenpeng
Yin, Karthikeyan K, Jamaal Hay, Michael Shur,
Jennifer Sheffield, and Dan Roth. 2019b. University
of Pennsylvania LoReHLT 2019 Submission.
Technical report.

Stephen Mayhew, Shyam Upadhyay, Wenpeng Yin,
Lucia Huo, Devanshu Jain, Prasanna Poudyal,
Tatiana Tsygankova, Yihao Chen, Xin Li, Nitish
Gupta, Chase Duncan, Mark Sammons, Jennifer
Sheffield, and Dan Roth. 2018. University
of Pennsylvania LoReHLT 2018 Submission.
Technical report.

Barbara Plank and Željko Agić. 2018. Distant
supervision from disparate sources for low-
resource part-of-speech tagging. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 614–620,
Brussels, Belgium. Association for Computational
Linguistics.

Mohammad Sadegh Rasooli and Michael Collins.
2017. Cross-lingual syntactic transfer with limited
resources. Transactions of the Association for
Computational Linguistics, 5:279–293.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition.
In Proc. of the Conference on Computational
Natural Language Learning (CoNLL).

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348, Copenhagen, Denmark. Association for
Computational Linguistics.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Stephanie Strassel and Jennifer Tracey. 2016.
LORELEI language packs: Data, tools, and
resources for technology development in low
resource languages. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC 2016), pages 3273–3280,
Portorož, Slovenia. European Language Resources
Association (ELRA).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages
142–147.

Jennifer Tracey, Stephanie Strassel, Ann Bies, Zhiyi
Song, Michael Arrigo, Kira Griffitt, Dana Delgado,
Dave Graff, Seth Kulick, Justin Mott, and Neil

Kuster. 2019. Corpus building for low resource
languages in the DARPA LORELEI program. In
Proceedings of the 2nd Workshop on Technologies
for MT of Low Resource Languages, pages 48–55,
Dublin, Ireland. European Association for Machine
Translation.

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth.
2016. Cross-Lingual Named Entity Recognition
via Wikification. In Proc. of the Conference
on Computational Natural Language Learning
(CoNLL).

Shijie Wu and Mark Dredze. 2019. Beto, bentz,
becas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 833–844, Hong Kong, China. Association for
Computational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual bert? In Proceedings
of the 5th Workshop on Representation Learning for
NLP. Association for Computational Linguistics.

MengzhouXia, XiangKong, Antonios Anastasopoulos,
and Graham Neubig. 2019. Generalized data
augmentation for low-resource translation. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5786–5796, Florence, Italy. Association for
Computational Linguistics.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A.
Smith, and Jaime Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal
resources. InProceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379, Brussels, Belgium. Association for
Computational Linguistics.

69

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 70–78
June 11, 2021. ©2021 Association for Computational Linguistics

Evaluating and Explaining Natural Language Generation with GenX
Kayla Duskin

Data Science and Analytics Group
Pacific Northwest National Laboratory

kayla.duskin@pnnl.gov

Shivam Sharma
Department of Computer Science

New Jersey Institute of Technology
ss4354@njit.edu

Ji Young Yun
Visual Analytics Group

Pacific Northwest National Laboratory
jiyoung.yun@pnnl.gov

Emily Saldanha
Data Science and Analytics Group

Pacific Northwest National Laboratory
emily.saldanha@pnnl.gov

Dustin Arendt
Visual Analytics Group

Pacific Northwest National Laboratory
dustin.arendt@pnnl.gov

Abstract

Current methods for evaluation of natural lan-
guage generation models focus on measuring
text quality but fail to probe the model creativ-
ity, i.e., its ability to generate novel but co-
herent text sequences not seen in the training
corpus. We present the GenX tool which is
designed to enable interactive exploration and
explanation of natural language generation out-
puts with a focus on the detection of memoriza-
tion. We demonstrate the tool on two domain-
conditioned generation use cases — phishing
emails and ACL abstracts.

1 Introduction

The capabilities of natural language generation
(NLG) models have grown rapidly in recent years,
with state-of-the-art models such as GPT-3 (Brown
et al., 2020) able to produce text that is often indis-
tinguishable from human-written text. Despite this
progress, there are many remaining challenges in
effectively evaluating the quality of machine text
generations. Most existing evaluation approaches
rely on human evaluation of the quality, fluency,
and realism of a sample of generated outputs in
combination with automated metrics that attempt
to replicate these human judgements. However, this
focus on text quality disregards several other key
evaluation dimensions such as the creativity of the
model and the degree of training set memorization.

An NLG model that simply reproduces long text
snippets from the training data is likely to achieve
high quality, but does not represent the ability of the
model to creatively generate novel text sequences.
This can contribute to an inappropriate belief in the

model’s sophistication if users are not aware the
generated text is copied wholesale from the training
data. Data scientists developing NLG models are
not likely to be familiar enough with a given train-
ing corpus to detect this problem from the NLG
model output without additional tool support.

A second related issue arises more generally
when text datasets collected from multiple sources
are used to train machine learning models. In this
case, identical text substrings can inadvertently end
up on both sides of a train-test split. This can lead
to artificially inflated model performance metrics,
especially in deep learning models, having suffi-
cient parameters to enable input memorization and
shortcut generalization. While detection of exact
duplicates is straightforward, detection of partial,
sub-document duplication is more challenging.

To address these issues, we present the GenX 1

tool which is designed to enable data scientists to
understand the provenance of the output of a text
generation model. Specifically, GenX lets users
understand which sentences or passages from a
generated text output are very similar to sentences
in the model’s training input. It compares sentences
in the output text to text that the model was trained
on and renders a marked up version of the text to
indicate what parts of the text may have been mem-
orized from the training data. The tool also lets the
user find interesting text based on pre-computed
statistics related to this potential memorization.

1Source: https://github.com/pnnl/genx

70

2 Related Work

Language generation metrics Many NLG tasks
are framed as supervised sequence-to-sequence
problems, such as in the case of machine transla-
tion. Metrics for such tasks evaluate the similarity
between a candidate sentence and a set of refer-
ence sentences. There are wide range of automated
metrics including BLEU (Papineni et al., 2002),
SARI (Xu et al., 2016), BLUERT (Sellam et al.,
2020), and GLEU (Wu et al., 2016). These metrics
have been shown to have mixed success in terms of
replicating the intuition of humans regarding text
quality (Novikova et al., 2017).

For open domain NLG models, datasets such
as Penn Tree Bank (Marcus et al., 1994) or LAM-
BADA (Paperno et al., 2016) are commonly used
for evaluation. However, these datasets cannot help
when models are meant to be constrained to a cer-
tain domain, and they do not consider long-form
text generation, only text completion tasks. An-
other common method is to leverage the trained
model for downstream tasks to assess the quality
of the language model (Radford et al., 2019). Work
by (Hashimoto et al., 2019) has proposed combin-
ing human and statistical evaluation to measure the
quality and diversity of generated text.

Domain-conditioned text generation NLG mod-
els can be evaluated by their perplexity calculated
on a held out data set. While perplexity is useful
for measuring model performance, it has limita-
tions in measuring quality (Theis et al., 2015) and
is typically is calculated at the model level, without
taking in to consideration differences in generated
text that result from different decoding strategies
that affect the quality of the output.

Evaluating memorization in language genera-
tion In comparison to work related to text qual-
ity measures, less work has been dedicated to the
evaluation of memorization in NLG models. In
addition to its direct bearing on model creativity,
memorization of training data in generation mod-
els has significant privacy implications, especially
in domains that include sensitive information such
as social media data or clinical notes. Previous
efforts to evaluate memorization have focused on
the leakage of sensitive information by adding “se-
cret” information to the training data and evaluating
the perplexity of the inserted secret during gener-
ation (Carlini et al., 2019). There as been little
previous work on looking for memorization more

generally in order to evaluate model creativity.

Evaluating test set contamination A number of
recent works have identified issues in natural lan-
guage processing datasets with text overlap and
near-duplication in training and testing sets leading
to artificially inflated performance metrics. Such
issues have been identified in question answering
datasets (Lewis et al., 2020) and large software and
code corpora (Allamanis, 2019). Language mod-
eling benchmarks have also been shown to exhibit
this issue. For instance, the Billion Word Bench-
mark has a 13% overlap between train and test 8
grams (Radford et al., 2019). Language models
trained on large datasets scraped from the web also
pose a risk for test set contamination. Brown et al.
(2020) evaluate the impact of test example presence
in the pre-training set on GPT-3 for some of their
benchmark test sets using 13-gram overlap. They
find a substantial amount of overlap between their
pretraining data and test data (>50% for a quarter of
the benchmarks), but noted that manual inspection
of the overlapping examples showed a significant
number of false positives.

Interactive/explanation tools Previous work
has largely focused on developing methods for auto-
mated quantitative evaluation of generation quality,
but fewer efforts have been applied to the devel-
opment of interactive tools to explain and under-
stand the generation of individual examples. The
compare-mt tool automates the comparison of mul-
tiple NLG models according to traditional BLEU-
type metrics as well as providing more detailed
breakdowns of accuracies by word or sentence
type (Neubig et al., 2019). The VizSeq tool pro-
vides an interactive interface to explore metric per-
formance on the full corpus, groups of instances,
and individual examples (Wang et al., 2019). The
existing tools are largely focused on text quality
evaluation rather than memorization evaluation and
are designed specifically for supervised generation
tasks such as translation rather than open-domain
or domain-conditioned generation tasks.

Anti-plagiarism software Anti-plagiarism tools
also aim at quantifying similarity between texts.
Many such tools are proprietary, reference against
an existing database of published work, and con-
sider each document on an individual basis. In
contrast, GenX allows for referencing against spe-
cific training text and is meant to assess a collection
of generated documents as a whole. Additionally,

71

in NLG not all “copying” is bad, and GenX charac-
terizes any matching text segments through metrics
that go beyond a binary classification.

3 GenX Tool & Implementation

GenX is implemented as a Jupyter Notebook2 wid-
get3, which allows for an interactive user experi-
ence that is tightly integrated with a popular compu-
tational environment for data science. The widget
is implemented in two parts: a Python side, which
performs preprocessing and integration with the
Jupyter environment, and a JavaScript side, which
handles rendering user interaction. The inputs to
GenX are Pandas4 DataFrames for the raw text
(each row in the data frame corresponds a sen-
tence), the corresponding sentence-level embed-
ding representation of that text, and an identifier
for which document the sentence belongs to. GenX
requires that the raw text and embeddings are also
split into train and test sets. The test set may either
be text generated from an NLG model or the test
split of the real data. Thus GenX inputs are train
text, train embedding, test text, and test embedding
DataFrames. By design, GenX does not assume
a particular embedding technique and requires the
user to compute the embeddings. This allows the
user to employ whatever method is appropriate for
their use-case (e.g. TF-IDF, neural network) and
does not preclude the adoption of new state-of-the-
art embeddings methods in the future. For our
demonstrations, we use Sentence BERT (Reimers
and Gurevych, 2019) to create the embeddings used
in the tool.

During preprocessing, i.e., after input but before
rendering, the Python half of GenX computes the
cosine distance between each sentence in the train
and test embeddings. The 10 nearest neighbors of
each sentence in the test split and their respective
distances are passed to the JavaScript half of the
widget along with the test sentence DataFrame.
The tool passes the rows of the train text DataFrame
that were among the neighbors of any sentence in
the test set. When a test sentence is rendered, its
nearest neighbor distances are visualized in a bar
graph following that sentence. The bars are sorted
by distance, with the first nearest neighbor placed
on the left, and the last nearest neighbor on the
right, so the bars always increase monotonically.

2https://jupyter.org
3https://github.com/jupyter-widgets/widget-cookiecutter
4https://pandas.pydata.org

They allow the user to get a better understanding of
the nearest neighbor distribution, e.g., whether the
first nearest neighbor is unique or there are other
semantically similar sentences in the train set.

Furthermore, the tool indicates which parts of
the sentences are copied verbatim, or nearly so
from the training data. To do so, we align each test
sentence against its nearest neighbor in the train
set using dynamic time warping (Sakoe and Chiba,
1978) at the token level. We use Levenshtein dis-
tance (Levenshtein, 1966) as the token-token dis-
tance function5. We highlight the tokens in the test
sentence that are exactly matched to tokens in their
nearest neighbor sentence with a strong underline.
Tokens that are partially matched, i.e. with a Leven-
shtein distance less than 5, have a weaker underline.
The remaining tokens are not underlined. The user
can mouse over a bar to compare the text of each
nearest neighbor against the test sentence.

When reading a document, the user may want to
get a sense of what documents the nearest neighbor
sentences are sourced from. For example, when
repeats occur, do they occur together in the same
source document? We include a step line chart visu-
alization above the text to illustrate this. The x-axis
is the sentence number of the generated sentence,
and the y-axis is the source document identifier of
the nearest neighbor of that sentence. The y-axis
is sorted by first occurrence, so that the chart will
increase monotonically unless a source document
is revisited, which is clearly visible as dip in the
chart. The line chart is also brushable allowing the
user find corresponding sentences in the text below.

The tool also contains an interactive scatter plot
to help the user focus on interesting or problematic
examples of generated text and avoid having to
page through every document. The axes of the
scatter plots are two novel document-level metrics
which we refer to as distinctiveness and diversity.

For a given document in the test data, Distinctive-
ness is the distance of the first nearest neighbor to
each test sentence in a document, averaged across
the generated sentences in the document. Low dis-
tinctiveness means that many sentences in that doc-
ument were semantically similar to sentences in
the training set, and indicate copying for specific
phrases and may be symptomatic of memorizing
repeated phrases. Low distinctiveness for the train-
ing set overall may be indicative of broader model

5We tried a simpler approach of using Dynamic Time
Warping at the character level, but this produced difficult to
interpret highlighting for sentences with low alignment.

72

Figure 1: GenX interface with the distinctiveness/diversity overview of the corpus (A), the document navigation
tool (B), and the individual document view containing the step line chart for diversity visualization (C) with an
interesting dip indicating revisiting of a training document (D) and the document text with train data overlap and
similarity annotations (E).

issues impacting creativity, potentially caused by
sub-optimal parameter settings.

Each sentence in the training data is found within
a particular source document. For a given docu-
ment in the test data, Diversity is the number of
unique corresponding source documents for the
nearest neighbor of each test sentence in the gener-
ated document divided by the number of test sen-
tences. Low diversity means the test document has
similarity to a single source document, and is in-
dicative of longer length copying from the training
set, while a maximum diversity value of 1.0 indi-
cates that the nearest neighbor of each generated
sentence is from a different document in the train-
ing set. Because of the limited prior work on model
memorization and lack of existing metrics, we in-
troduce these two new metrics to quantitatively cap-
ture the patterns of sentence-level (distinctiveness)
and document-level (diversity) memorization by
the models. We also average these metrics across
documents in the test corpus for corpus-level anal-
ysis (see Table 1).

4 Use Case: Phishing Email Generation

Phishing Emails We initially developed the
GenX tool when working with a composite dataset
of publicly available phishing datasets that con-
tained many duplicates and near-duplicates. This
dataset was initially comprised of the aggregation
of data made available by (Azunre, 2019), and
(Nazario, 2011) as well as phishing emails pro-
vided by industry partners. The initial dataset con-
tained a total of 60,705 emails, however after initial
de-duplication efforts using exact string matching
only 9,234 emails remained which was split into
a train set of 8,311 and a test set of 923. After
further de-duplication efforts, aided by GenX, the
final dataset consists of 5,634 emails in the training
set and held out validation and test sets of size 500
each. While we have been rigorous in our efforts
to remove emails that are duplicated, the formulaic
nature of phishing emails leads to many commonly
repeated phrases, sentences, or paragraphs.

Phishing Test/Train split While the GenX tool
was originally designed for the evaluation of mem-

73

Figure 2: Distinctiveness and diversity scores for
emails in the train and test sets of the phishing dataset
reveal that there is significant test set contamination

Figure 3: Example email from the phishing test set with
high overlap with an email from the training set, differ-
ing only in the name of the recipient.

orization in NLG models, its ability to explore text
overlap makes it well suited to the task of looking
for test set contamination. To test this use case,
we use GenX to look for text duplication across
the train/test split of our 9k email phishing data
set. Figure 2 shows the distinctiveness/diversity
scatter plot which reveals a large number of of
low-distinctiveness, low-diversity pairs between
the training and test set which is indicative of sig-
nificant levels of text duplication. Additionally,
the example shown in Figure 3 demonstrates how
GenX allows for qualitative analysis of the text in
question. We can see from the underlining that
almost all of the text in the example test set email
appeared verbatim in a training set email, with the
only difference being the name of the recipient.
We identified this as a common pattern within the
dataset because attackers duplicate popular phish-
ing emails, making minor edits for personalization.

Phishing generation To build a phishing
domain-conditioned generation model, we fine-
tuned a GPT-2 small model (Radford et al., 2019)
on the phishing training set using a learning rate
of 5 ∗ 10−5 and a batch size of 8. We chose two
models to illustrate the use of GenX for qualitative

(a) High memorization, highly coherent example

(b) Low memorization, incoherent example

Figure 4: Example generations from the phishing mod-
els showing the memorization/coherence trade-off

analysis of different models. Model 1 was trained
for 10 epochs, while Model 2 was trained for 20
epochs. For each model we generate 500 unique
emails, using a decoding temperature of 1.1.

We leverage GenX to perform qualitative evalu-
ation of the levels of memorization in generations
by these models. We find an overall high level of
training email memorization, with the generation
models producing emails that are nearly word-for-
word replications of emails from the training set.
In the distinctiveness-diversity plots (Figure 5), we
observe that while there are many generated emails
with high diversity, there still a significant popula-
tion of emails with low distinctiveness and diversity
scores. Using these plots to identify emails with
lower and higher levels of memorization and then
observing the corresponding email text in the in-
dividual document view, we are able to discover
the interesting pattern that lower levels of memo-
rization seem to be correlated with lower levels of
coherence as determined by the human. In other
words, the models are unable to creatively produce
novel phishing emails and must rely on rote copy-
ing from the training data for reasonable human-
evaluated performance. We can also use the tool
to perform relative comparisons between memo-
rization across different modeling choices. In this
case, we find that increasing the number of train-

74

Figure 5: Diversity vs. distinctiveness for the
two phishing NLG models. Both show training
data memorization, but Model 2 contains more low-
distinctiveness, lower-diversity examples).

ing epochs increases the level of memorization.
We show several examples of generated emails
from these models in Figure 4, which highlight
the memorization-coherence trade off.

5 Use Case: ACL Abstract Generation

ACL Abstract Data The second dataset is the
set of abstracts available from the ACL anthology 6,
chosen simply because we considered it a relevant
corpus for demonstration. We employed 17,903
abstracts as the training data for our generative
model and withheld 2,000 abstracts for validation
and 2,000 abstracts as the test set, whose NLG
model perplexity is reported in in Table 1.

ACL generation We fine-tuned a GPT-2 small
model (Radford et al., 2019) on the ACL training
set with a learning rate of 5 ∗ 10−5 and a batch size
of 8. For this comparison we used a model that had
been trained for 25 epochs, but created two sets
of generated examples using different decoding
temperatures, 0.8 for Set 1 and 1.1 for Set 2. Each
set contains 600 generated abstracts.

6https://www.aclweb.org/anthology/

(a) ACL Model 1: Low memorization, highly coherent
example

(b) ACL Model 2: Low memorization, highly coherent
example

Figure 6: Generated abstracts with low memorization
and high creativity of the generative models.

In contrast with the phishing data set, the explo-
ration of model outputs for the ACL data with the
GenX tool reveal that these models achieve low
levels of memorization and high levels of coher-
ence overall. We show several example abstracts
generated from the ACL models in Figure 6. We
can observe the low level of memorization in these
abstracts because the only words underlined in the
generated text are common words like “the” or “an”
indicating that the nearest neighbor sentences in
the training data only overlap in an insignificant
way with the generated text. Additionally, we ob-
serve the uniformly high distinctiveness values of
the nearest neighbor distance bar charts. We use
the distinctiveness/diversity scatter plots (Figure 7)
to explore generations with higher and lower metric
values. In contrast with the phishing models, our
qualitative examination reveals that even generated
abstracts with no indications of memorization have
high coherence, indicating that the models can gen-
erate creative and novel outputs without resorting
to copying from the training data. Comparison of
the two different decoding temperatures, reveals
that lower temperature does not result in increased
memorization but it does have slightly improved
coherence than the higher temperature model.

75

Figure 7: Diversity vs. distinctiveness for ACL
NLG models. Both sets show high levels of high-
diversity examples, with almost no low-diversity, low-
distinctiveness generations

6 Discussion & Limitations

GenX is a tool for incorporating human judgement
with the analysis of generated text, without placing
the full burden on human annotators to locate in-
stances where the model is copying from the train-
ing data. The distinctiveness and diversity scores
provide quantitative context to the qualitative inter-
pretation of the highlighted text. When used on a
model with high levels of duplication in the train-
ing set, the tool helped us establish a threshold of
acceptable memorization. When used on a model
with low levels of duplication the tool helped us
identify compelling examples of creatively gener-
ated text not copied from the training data.

A key contribution of this work is going beyond
the typical evaluation metrics such as perplexity.
Table 1 shows that perplexity alone does not reveal
the nuanced behavior of generative models. Look-
ing at perplexity scores on the held out data alone,
the ACL NLG model seems to perform worse than
the phishing NLG model when in reality the ACL
NLG model produces coherent examples with low
levels of memorization. Additionally, GenX high-
lights differences between models where the per-

Task Model Perplexity Average
Distinctiveness

Average
Diversity

Phishing
Train Vs Test

- - 0.08 0.80

Phishing Model 1 8.08 0.10 0.96
Generations Model 2 8.01 0.10 0.95

ACL Set 1 21.11 0.12 0.99
Generations Set 2 21.11 0.13 1.0

Table 1: The perplexity, average distinctiveness score,
and average diversity score for each set of texts. We re-
port the average scores here but in practice find that the
average values are not as useful for diagnosing mem-
orization and recommend using the interactive tool or
scatter plots to identify specific low-quality examples.

plexity is similar but there are qualitative differ-
ences in the generation, especially when the inter-
active components of the tool are used to under-
stand the distribution of the memorization levels of
individual emails and identify specific patterns and
examples of memorization.

GenX has challenges scaling to large datasets.
While we demonstrated utility on datasets with tens
of thousands of text examples, the nearest neighbor
approach used would become intractable on mas-
sive text corpora such as CommonCrawl 7. This
limits GenX to scenarios where training data is a
manageable size, but does not yet help address the
issue of test set contamination from large-scale web
scrapes. As future work, we plan to incorporate ap-
proximate neighbor techniques (Dong et al., 2011)
to mitigate this issue.

In the phishing use case, identical sentences were
found across many training documents, making
diversity measurements artificially high, due to the
arbitrary choice of nearest neighbors. We plan to
use a minimum set cover algorithm to improve
diversity score accuracy to break ties by selecting
the smallest number of training documents that
cover the nearest neighbors in the test document.

7 Conclusion

GenX provides a unique capability for interactive
evaluation and explanation of NLG model out-
put. The tool goes beyond typical aggregate per-
formance metrics and provides new insight into
domain-conditioned NLG model creativity and
memorization. Across two use cases, we showed
this helped distinguish models in situations where
aggregate evaluation metrics did not.

7https://commoncrawl.org/the-data/

76

Broader Impact and Ethical Statement

Natural language generation (NLG) models have
received much attention beyond their research com-
munity. However such attention can be harmful
when it inappropriately attributes human-level in-
telligence and creativity to clever statistical pro-
cesses. Increased transparency and explainability
of NLG models can help to prevent societal harm
that arises from over-estimating model ability. Fur-
thermore, the applicability of GenX to ensure more
distinct train/test splits also helps to create more
robust language models (by decreasing overesti-
mated F-scores) that have similar performance “in
the wild” and in the laboratory.

There are ethical considerations around condi-
tioning NLG models on phishing emails. These
emails are malicious by nature, and our models
could provide bad actors a means to cause greater
harm. However, the research described in this pa-
per is part of a broader effort to generate realistic
phishing emails for educational purposes to mit-
igate users susceptibility to phishing. Our work
can reduce the burden on analysts who currently
painstakingly craft these training emails by hand.
We are also encouraged by the positive results in
fake-news detection (Zellers et al., 2019) and be-
lieve that the insights from phishing generators can
inform more robust phishing detection models. We
do not plan to publicly release the phishing domain
conditioned models or source code used in this
specific use case.

References
Miltiadis Allamanis. 2019. The adverse effects of code

duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, On-
ward! 2019, page 143–153, New York, NY, USA.
Association for Computing Machinery.

Paul Azunre. 2019. Fraudulent email bodies.
https://www.kaggle.com/azunre/
fraudulent-email-bodies.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-

ral networks. In 28th USENIX Security Symposium
(USENIX Security 19), pages 267–284.

Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient
k-nearest neighbor graph construction for generic
similarity measures. In Proceedings of the 20th in-
ternational conference on World wide web, pages
577–586.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation
for natural language generation. arXiv preprint
arXiv:1904.02792.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2020. Question and answer test-train overlap in
open-domain question answering datasets. arXiv
preprint arXiv:2008.02637.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn
treebank: annotating predicate argument structure.
In HUMAN LANGUAGE TECHNOLOGY: Proceed-
ings of a Workshop held at Plainsboro, New Jersey,
March 8-11, 1994.

Jose Nazario. 2011. PhishingCorpus. https://
monkey.org/~jose/phishing/.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 35–41, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
cas Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for NLG. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2241–2252,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The lambada dataset:
Word prediction requiring a broad discourse context.
arXiv preprint arXiv:1606.06031.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

77

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic pro-
gramming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech,
and signal processing, 26(1):43–49.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. arXiv preprint arXiv:2004.04696.

Lucas Theis, Aäron van den Oord, and Matthias
Bethge. 2015. A note on the evaluation of genera-
tive models. arXiv preprint arXiv:1511.01844.

Changhan Wang, Anirudh Jain, Danlu Chen, and Jiatao
Gu. 2019. Vizseq: A visual analysis toolkit for text
generation tasks. In In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in neural information processing
systems, pages 9054–9065.

78

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 79–85
June 11, 2021. ©2021 Association for Computational Linguistics

CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation

Dustin Arendt∗ Zhuanyi Shaw∗

Prasha Shrestha† Ellyn Ayton† Maria Glenski† Svitlana Volkova∗
∗Visual Analytics Group, †Data Sciences and Analytics Group

Pacific Northwest National Laboratory
{first}.{last}@pnnl.gov

Abstract

Evaluation beyond aggregate performance
metrics, e.g. F1-score, is crucial to both es-
tablish an appropriate level of trust in ma-
chine learning models and identify avenues
for future model improvements. In this pa-
per we demonstrate CrossCheck, an interac-
tive capability for rapid cross-model compar-
ison and reproducible error analysis. We de-
scribe the tool, discuss design and implemen-
tation details, and present three NLP use cases
– named entity recognition, reading compre-
hension, and clickbait detection that show the
benefits of using the tool for model evaluation.
CrossCheck enables users to make informed
decisions when choosing between multiple
models, identify when the models are correct
and for which examples, investigate whether
the models are making the same mistakes as
humans, evaluate models’ generalizability and
highlight models’ limitations, strengths and
weaknesses. Furthermore, CrossCheck is im-
plemented as a Jupyter widget, which allows
for rapid and convenient integration into exist-
ing model development workflows.

1 Motivation

AI models are often imperfect, opaque, and brittle.
Gaining actionable insights about model strengths
and weaknesses is challenging because simple met-
rics like accuracy or F1-score are not sufficient to
capture the complex relationships between model
inputs and outputs. Many researchers agree that
ML models have to be optimized not only for ex-
pected task performance but for other important cri-
teria such as explainability, interpretability, reliabil-
ity, and fairness that are prerequisites for trust (Lip-
ton, 2016; Doshi-Velez and Kim, 2017; Poursabzi-
Sangdeh et al., 2018). Standard performance met-
rics can be augmented with exploratory model per-
formance analysis, where a user can interact with
inputs and outputs to find patterns or biases in the

way the model makes mistakes to answer the ques-
tions of when, how, and why the model fails.

To support ML model evaluation beyond stan-
dard performance metrics, we developed a novel
interactive tool CrossCheck1. Unlike several re-
cently developed tools for analyzing model er-
rors (Agarwal et al., 2014; Wu et al., 2019), under-
standing model outputs (Lee et al., 2019; Hohman
et al., 2019), and model interpretation and diag-
nostics (Kahng et al., 2017, 2016; Zhang et al.,
2018), CrossCheck is designed to allow rapid pro-
totyping and cross-model comparison iteratively
during model development to support comprehen-
sive experimental setup and gain interpretable and
informative insights into model performance.

Many visualization tools have been developed re-
cently, e.g., ConvNetJS2, TensorFlow Playground3,
that focus on structural interpretability (Kulesza
et al., 2013; Hoffman et al., 2018) and operate in the
neuron activation space to explain models’ internal
decision making processes (Kahng et al., 2017) or
focus on visualizing a model’s decision boundary
to increase user trust (Ribeiro et al., 2016). Instead,
CrossCheck targets functional interpretability and
operates in the model output space to diagnose and
contrast model performance.

Similar work to CrossCheck includes AllenNLP
Interpret (Wallace et al., 2019) and Errudite (Wu
et al., 2019). AllenNLP Interpret relies on saliency
map visualizations to uncover model biases, find
decision rules, and diagnose model errors. Errudite
implements a domain specific language for coun-
terfactual explanations. Errudite and AllenNLP
Interpret focus primarily on error analysis for a sin-
gle model, while our tool is specifically designed
for contrastive evaluation across multiple models
e.g., neural architectures with different parameters.

Manifold (Zhang et al., 2018) supports cross-

1https://github.com/pnnl/crosscheck
2https://github.com/karpathy/convnetjs
3https://playground.tensorflow.org/

79

Figure 1: CrossCheck embedded in a Jupyter Notebook cell: (a) code used to instantiate the widget (b) the
histogram heatmap shows the distribution of the third variable for each combination of the first two (c) the legend
for the third variable (d) normalization controls (e) histogram & filter for remaining variables (f) controls for notes
(g) button to transpose the rows and columns.

model evaluation, however the tool is narrowly fo-
cused on model confidence and errors via pairwise
model comparison with scatter plots which is quite
limited and does not satisfy the needs of complex
NLP tasks. CrossCheck enables users to investi-
gate “where” and “what” types of errors models
make and, most importantly, assists the user with
answering the question of “why" a model makes
that error by relying on a set of derived attributes
from the input like inter-annotator agreement, ques-
tion type, answer length, the input paragraph, etc.

We built CrossCheck to make our existing error
analysis workflow faster and reproducible, reduc-
ing human effort to replicate exploratory analyses
of new models. CrossCheck helps calibrate trust
by enabling users to:
• contrast multiple models,
• see when the model is right (or wrong), un-

derstand the relationship between correctness
and confidence, and examine those examples,
• investigate whether the model makes the same

mistakes as humans,
• highlight model limitations, and
• understand how models generalize across do-

mains, languages, and datasets – which has
pervasive demand across NLP.

2 CrossCheck

CrossCheck is embedded in a Jupyter4 notebook
and input is a single mixed-type table, i.e. a pandas
DataFrame5, allowing for tight integration with

4https://jupyter.org
5http://pandas.pydata.org

data scientists’ workflows (see Figure 1a). Below
we outline the features of CrossCheck in detail.

CrossCheck’s main view (see Figure 1b) extends
the confusion matrix visualization technique by re-
placing each cell in the matrix with a histogram —
we call this view the histogram heatmap. Each
cell shows the distribution of a third variable condi-
tioned on the values of the corresponding row and
column variables. Every bar represents a subset of
instances, i.e., rows in the input table, and encodes
the relative size of that group. This view also con-
tains a legend showing the bins or categories for
this third variable (see Figure 1c).

The histograms in each cell in CrossCheck are
drawn horizontally to encourage comparison across
cells in the vertical direction. CrossCheck sup-
ports three normalization schemes (see Figure 1d),
i.e., setting the limit of the x-axis in each cell: (1)
normalizing by the maximum count within the en-
tire matrix, (2) within each column, or (3) within
each cell. We hide certain axes and adjust the
padding between cells to emphasize the selected
normalization. Figure 2 illustrates how these differ-
ent normalization options appear in CrossCheck.
By design, there is no equivalent row normaliza-
tion option, but the matrix can be transposed (see
Figure 1g) for an equivalent effect.

Any variables not directly compared in the his-
togram heatmap are visualized on the left side of
the widget as histograms (see Figure 1e). These
histograms also allow the user to filter data when
it is rendered in the main view by clicking on the
bar(s) corresponding to the data they want to keep.

80

(a) by table (b) by column (c) by cell

Figure 2: CrossCheck supports three histogram normalization options that affect how axes and padding are
rendered to improve the readability and interpretation of the view (a) by table: minimal padding, the same x-axes
are shown on the bottom row (b) by column: extra padding between columns, different x-axes are shown on the
bottom row (c) by cell: extra padding between rows and columns, different x-axes are shown for each cell.

Users can click on any bar in the histogram
heatmap to view those instances in a sidebar where
they can annotate noteworthy findings. Enabling
“Notes Only” (see Figure 1f) shows only instances
that have been annotated in the histogram heatmap,
revealing what has been annotated in the context of
the current variable groupings.

3 Use Cases and Evaluation

In this section, we highlight how CrossCheck can
be used in core NLP tasks such as named en-
tity recognition (NER) and reading comprehension
(RC) or practical applications of NLP such as click-
bait detection (CB). We present an overview of the
datasets used for each task below:
• NER: CoNLL (Sang, 2003), ENES (Aguilar

et al., 2018), WNUT 17 Emerging Enti-
ties (Derczynski et al., 2017)6,
• MC: Stanford Question Answering Dataset

(SQuAD) (Rajpurkar et al., 2016)7,
• CB: Clickbait Challenge 2017 (Potthast et al.,

2018)8.

3.1 Named Entity Recognition (NER)
To showcase CrossCheck, we trained and evalu-
ated the AllenNLP NER model (Peters et al., 2017)
across three benchmark datasets – CoNLL, WNUT,
and ENES, producing nine different evaluations.
The model output includes, on a per-token level,
the model prediction, the ground truth, the original
sentence (for context), and what the training and
testing datasets were as shown in Figure 3a.

This experiment was designed to let us under-
stand how models trained on different datasets gen-

6github.com/leondz/emerging_entities_

(a) Named Entity Recognition

(b) Reading Comprehension

Figure 3: Examples of model outputs in CrossCheck

for core NLP tasks – for the NER task (above), pre-
dicted named entities are highlighted, and for the RC
task (below), predicted answer span is highlighted.

eralize to the same test data (shown in columns) and
how models trained on the same training data trans-
fer to perform across different test datasets (shown
in rows). Figure 2 illustrates the CrossCheck grid
of train versus test datasets. The data has been fil-
tered so that only errors contribute to the bars so
we see a distribution of errors per train-test combi-
nation across the actual role. The CoNLL dataset
is much larger so we normalize within columns in
Figure 2b to find patterns within those sub-groups.

17
7rajpurkar.github.io/SQuAD-explorer/
8www.clickbait-challenge.org/#data

81

Figure 4: CrossCheck for evaluation of reading comprehension models to understand the relationship between
correctness, confidence and question types. This highlight models limitations and shows for what examples the
model answers correctly.

Table 1: Traditional evaluation: F1-scores for the NER
models trained and tested across domains.

Train \ Test CoNLL WNUT ENES
CoNLL 92.51 40.10 11.88
WNUT 55.75 44.73 33.33
ENES 50.78 57.48 64.00

For the same experimental setup, Table 1 sum-
marizes performance with F1-scores. Unlike the
F1-score table, CrossCheck reveals that models
trained on social media data misclassify ORG on
the news data, and the news models overpredict
named entities on social media data.

3.2 Reading Comprehension (RC)

Similar to NER, we trained an AllenNLP model
for reading comprehension (Seo et al., 2016) that
is designed to find the most relevant span for a
question and paragraph input pair. The model out-
put includes, on a question-paragraph level: the
model prediction span, ground truth span, model
confidence, question type and length, the number
of annotators per question, and what the train and
test datasets were, as shown in Figure 3b.9 Figure 4
contrasts model correctness and confidence across
question types. CrossCheck reveals that across all
types of questions when the model is correct it has
higher confidence (bottom row) and lower confi-
dence when incorrect (top row). It also reveals
that models have a higher variability in confidence
when predicting “why” questions.

9We evaluated RC on SQuAD and TriviaQA datasets, but
with space limitations only present results for SQuAD.

3.3 Clickbait Detection

Finally, we demonstrate CrossCheck for compar-
ison of regression models. We use a relevant ap-
plication of NLP in the domain of deception detec-
tion (clickbait detection) that was the focus of the
Clickbait Challenge 2017, a shared task focused on
identifying a score (from 0 to 1) of how “clickbait-
y” a social media post (i.e., tweet on Twitter) is,
given the content of the post (text and images) and
the linked article webpages. We use the validation
dataset that contains 19,538 posts (4,761 identified
as clickbait) and pre-trained models released on
GitHub after the challenge by two teams (blobfish
and striped-bass)10.

In Figure 5 we illustrate how CrossCheck can
be used to compare across multiple models and
across multiple classes of models.11 When filtered
to show only the striped-bass models (shown at
right), a strategy to predict coarse (0 or 1) click-
bait scores versus fine-grained clickbait scores is
clearly evident in the striped-bass model predic-
tions. Here, there is a complete lack of predictions
falling within the center three columns so even with
no filters selected (shown at left), CrossCheck in-
dicates that there is an inconsistency in the range
of outcomes between models (an explanation for
the disparity in F1-scores in Table 2). In cases

10Models and code were available via github.com/
clickbait-challenge/ repositories.

11Note, models could also be grouped by any number of
shared characteristics such as the algorithms or architectures
used (e.g., different neural architectures used in deep learning
models, or models that use deep learning versus those that
do not), hyper-parameter settings, granularity of prediction
outputs, ensembles versus single models, etc.

82

Figure 5: CrossCheck for cross-model comparison across two teams who competed in the Clickbait Challenge
2017 shared task, highlighting distinctions in the variety of prediction outputs with histograms normalized across
the full table that become particularly clear when team filters are selected.

Table 2: Traditional evaluation summary table contrast-
ing mean squared error (MSE) and mean absolute error
(MAE) of each model’s predictions.

Team Model MSE MAE

blobfish
FullNetPost 0.026 0.126
FullNet 0.027 0.130
LingNet 0.038 0.157

striped-bass
xgboost 0.171 0.326
randomforest 0.180 0.336

where there is a more nuanced or subtle dispar-
ity, shallow exploration with different filters within
CrossCheck can lead to efficient, effective identifi-
cation of these key differences in functional model
behavior.

4 Design and Implementation

We designed CrossCheck following a user-
centered design methodology. This is a contin-
uous, iterative process where we identify needs
and goals, implement prototypes, and solicit feed-
back from our users to incorporate in the tool.
Our users were data scientists, specifically NLP
researchers and practitioners, tasked with the afore-
mentioned model evaluation challenge. We iden-
tified CrossCheck’s goals as allowing the user to:
understand how instance attributes relate to model
errors; provide convenient access to raw instance
data; integrate into a data scientists workflow; and
reveal and understand disagreement across models,
and support core NLP tasks and applications.

4.1 Design Iterations

Round 1—Heatmaps (functional prototype)
Our first iteration extended the confusion matrix
visualization technique with a functional prototype
that grouped the data by one variable, and showed
a separate heatmap for each distinct value in that
group. User feedback: though heatmaps are famil-
iar, the grouping made the visualization misleading
and difficult to learn.

Round 2—Table & Heatmap (wireframes)
We wireframed a standalone tool with histogram
filters, a sortable table, and a more traditional
heatmap visualization with a rectangular brush
to reveal raw instance data. User feedback: the
sortable table and brushing would be useful, but
the heatmap has essentially the same limitations as
confusion matrices.

Round 3—Histogram Heatmap (wireframes)
We wireframed a modified heatmap where each
cell was replaced with a histogram showing the
distribution of a third variable conditioned on the
row and column variables. This modified heatmap
was repeated for each variable in the dataset except
for the row and column variables. User feedback:
Putting the histogram inside the heatmap seems
useful, but multiple copies would be overwhelming
and too small to read. We would prefer to work
with just one histogram heatmap.

Round 4—CrossCheck (functional prototype)
We implemented a single “histogram heatmap” in-

83

side a Jupyter widget, and made raw instance data
available to explore by clicking on any bar. Addi-
tionally we incorporated histogram filters from the
Round 2 design and allowed the user to change the
histogram normalization. User feedback: the tool
was very useful, but could use minor improvements
e.g., labeled axes and filtering, as well as ability to
add annotation on raw data.

Round 5—CrossCheck (polished prototype)
We added minor features like a legend, a matrix
transpose button, axis labels, dynamic padding
between rows and columns (based on normaliza-
tion), and the ability to annotate instances with
notes. User feedback: the tool works very well, but
screenshots aren’t suitable to use in publications.

4.2 Implementation Challenges

To overcome the rate limit between the
python kernel and the web browser (see the
NotebookApp.iopub_data_rate_limit Jupyter
argument) our implementation separates raw
instance data from tabular data to be visualized in
CrossCheck’s histogram heatmap. The tool groups
tabular data by each field in the table and passed as
a list of each unique field/value combinations and
the corresponding instances within that bin. This is
computed efficiently within the python kernel (via
a pandas groupby). This pre-grouping reduces the
size of the payload passed from the python kernel
to the web browser and allows for the widget to
behave more responsively because visualization
and filtering routines do not need to iterate over
every instance in the dataset. The tool stores raw
instance data as individual JSON files on disk in a
path visible to the Jupyter notebook environment.
When the user clicks to reveal raw instance data,
this data is retrieved asynchronously using the web
browser’s XMLHttpRequest (XHR). This allows
the web browser to only retrieve and render the few
detailed instances the user is viewing at a time.

5 Discussion

CrossCheck is designed to quickly and easily ex-
plore many combinations of characteristics of mod-
els (e.g., parameter settings, network architectures)
as well as datasets used for training or evaluation.
It also provides users the ability to efficiently com-
pare and explore model behavior in specific situa-
tions and generalizability of models across datasets
or domains. CrossCheck can also generalize to

support model comparison, e.g. when ground truth
is absent, by visualizing model agreement.

CrossCheck enables users to perform error anal-
ysis in an efficient, concise, and reproducible man-
ner due to its effective integration into data scien-
tists’ workflows. The tool can be used to evalu-
ate across models trained on image, video, tabular
data, or combinations of data types with interactive
exploration of specific instances on demand. A
limitation of the tool is that adding new use cases
might require end users to write custom JavaScript
code to visualize instances in the details sidebar be-
yond what is currently implemented. Future work
includes expanding to include additional generic
components to cover more core NLP or ML tasks.

6 Conclusions

We have presented CrossCheck, a new interactive
capability that enables rapid model evaluation and
error analysis. There are several key benefits to
performing evaluation and analyses using Cross-
Check, especially compared to i.e., adhoc or man-
ual approaches because CrossCheck is generaliz-
able across text, images, video, tabular, or combi-
nations of multiple data types, can be integrated di-
rectly into existing workflows for rapid and highly
reproducible error analysis during and after model
development, users can interactively explore er-
rors conditioning on different model/data features,
and users can view specific instances of inputs that
cause model errors or other interesting behavior
within the tool itself.

References
Apoorv Agarwal, Ankit Agarwal, and Deepak Mittal.

2014. An error analysis tool for natural language
processing and applied machine learning. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: System
Demonstrations, pages 1–5.

Gustavo Aguilar, Fahad AlGhamdi, Victor Soto, Mona
Diab, Julia Hirschberg, and Thamar Solorio. 2018.
Named entity recognition on code-switched data:
Overview of the calcs 2018 shared task. In Proceed-
ings of the Third Workshop on Computational Ap-
proaches to Linguistic Code-Switching, pages 138–
147.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147.

84

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Robert Hoffman, Tim Miller, Shane T Mueller, Gary
Klein, and William J Clancey. 2018. Explaining ex-
planation, part 4: a deep dive on deep nets. IEEE
Intelligent Systems, 33(3):87–95.

Fred Hohman, Andrew Head, Rich Caruana, Robert
DeLine, and Steven M Drucker. 2019. Gamut: A
design probe to understand how data scientists un-
derstand machine learning models. In Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems, page 579. ACM.

Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and
Duen Horng Polo Chau. 2017. ActiVis: Visual ex-
ploration of industry-scale deep neural network mod-
els. IEEE Transactions on Visualization and Com-
puter Graphics, 24(1):88–97.

Minsuk Kahng, Dezhi Fang, and Duen Horng Polo
Chau. 2016. Visual exploration of machine learn-
ing results using data cube analysis. In Proceedings
of the Workshop on Human-In-the-Loop Data Ana-
lytics, page 1. ACM.

Todd Kulesza, Simone Stumpf, Margaret Burnett,
Sherry Yang, Irwin Kwan, and Weng-Keen Wong.
2013. Too much, too little, or just right? ways expla-
nations impact end users’ mental models. In 2013
IEEE Symposium on Visual Languages and Human
Centric Computing, pages 3–10. IEEE.

Gyeongbok Lee, Sungdong Kim, and Seung-won
Hwang. 2019. Qadiver: Interactive framework for
diagnosing qa models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 9861–9862.

Zachary C Lipton. 2016. The mythos of model inter-
pretability. arXiv preprint arXiv:1606.03490.

Matthew E Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108.

Martin Potthast, Tim Gollub, Kristof Komlossy, Se-
bastian Schuster, Matti Wiegmann, Erika Patri-
cia Garces Fernandez, Matthias Hagen, and Benno
Stein. 2018. Crowdsourcing a large corpus of click-
bait on twitter. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1498–1507.

Forough Poursabzi-Sangdeh, Daniel G Goldstein,
Jake M Hofman, Jennifer Wortman Vaughan, and
Hanna Wallach. 2018. Manipulating and mea-
suring model interpretability. arXiv preprint
arXiv:1802.07810.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144. ACM.

Tjong Kim Sang. 2003. De meulder, 2003. tjong kim
sang, ef, & de meulder, f.(2003). introduction to
the conll-2003 shared task: language-independent
named entity recognition. In Proceedings of the
Conference on Computational Natural Language
Learning. Edmonton, Canada, pages 142–147.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay
Subramanian, Matt Gardner, and Sameer Singh.
2019. Allennlp interpret: A framework for ex-
plaining predictions of nlp models. arXiv preprint
arXiv:1909.09251.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of ma-
chine learning models. IEEE Transactions on Visu-
alization and Computer Graphics, 25(1):364–373.

85

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 86–101
June 11, 2021. ©2021 Association for Computational Linguistics

TopGuNN: Fast NLP Training Data Augmentation using Large Corpora

Rebecca Iglesias-Flores1 Megha Mishra1 Ajay Patel1 Akanksha Malhotra2

Reno Kriz1 Martha Palmer2 Chris Callison-Burch1

University of Pennsylvania1 University of Colorado at Boulder2

{irebecca, mmishra, ajayp, rekriz, ccb}@seas.upenn.edu
{akanksha.malhotra, martha.palmer}@colorado.edu

Abstract

Acquiring training data for natural language
processing systems can be expensive and time-
consuming. Given a few training examples
crafted by experts, large corpora can be mined
for thousands of semantically similar exam-
ples that provide useful variability to improve
model generalization. We present TopGuNN,
a fast contextualized k-NN retrieval system
that can efficiently index and search over con-
textual embeddings generated from large cor-
pora to easily retrieve new diverse training ex-
amples. TopGuNN is demonstrated for a se-
mantic role labeling training data augmenta-
tion use case over the Gigaword corpus. Using
approximate k-NN and an efficient architec-
ture, TopGuNN performs queries over an em-
bedding space of 4.63TB (approximately 1.5B
embeddings) in less than a day.

1 Introduction

To collect training data for natural language pro-
cessing (NLP) models, researchers have to rely on
manual labor-intensive methods like crowdsourc-
ing or hiring domain experts. Rather than relying
on such techniques, we present TopGuNN, a sys-
tem to make it quick and easy for researchers to
create a larger training set, starting with just a few
examples. Large-scale language models can be
effectively used to search for similar words or sen-
tences; however, attempting to extract the most
similar words from a large corpus can become in-
tractable and time consuming. Our system Top-
GuNN utilizes a fast contextualized k-NN retrieval
pipeline to quickly mine for a diverse set of training
examples from large corpora. The system first cre-
ates a contextual word-level index from a corpus.
Then, given a query word in a training example,
it finds new sentences with words used in similar
contexts to the query word. Figure 1 shows an
example of the results of querying for the word
“diagnosis” used in different contexts.

Figure 1: Retrieved results for two queries with differ-
ent senses of a polysemous word searching over 183
million sentences (or 1.5B embeddings) in the Giga-
word corpus with TopGuNN.

TopGuNN pre-computes BERT contextualized
word embeddings over the entire corpus, and then
efficiently searches through them when queried us-
ing approximate k-NN indexing algorithms. Our
system has been designed with efficiency and scala-
bility in mind. We demonstrate its use by indexing
the Gigaword corpus, a large corpus for which we
pre-computed 1.5B contextualized word embed-
dings (totaling 4.63TB), and using TopGuNN to
run search queries over it. A detailed description
of the system’s architecture is given in Section 3.

1.1 Human-in-the-Loop with TopGuNN

Our primary use case for TopGuNN was to re-
trieve more training data for an event extraction
and semantic role labeling task. We start with a
few example sentences of each event type, identify
query words within each example sentence (often
the event verb), and then query TopGuNN to find
new instances of similar sentences. These candi-
dates are quickly voted on by non-expert human
annotators who check the correctness of the se-
mantic type (described in Section 2). Using active
learning strategies, these filtered candidates can

86

then be used to better tune TopGuNN’s retrieval in
the future. We demonstrate how our system can
be used to mine for new diverse training data from
large corpora with an efficient human-in-the-loop
process given just a few samples to start with.

2 Use Case: KAIROS Event Primitives

Our primary use case stems from our work on
the DARPA KAIROS program.1 The DARPA
KAIROS program seeks to develop a schema-
based AI system that can identify complex events
in unstructured text and bring them to the atten-
tion of users like intelligence analysts. KAIROS
systems are based on an ontology of abstracted
event schemas which are complex event templates.
Complex event schemas are made up of a series of
simpler events, and specify information about par-
ticipant roles, temporal order, and causal relations
between the simpler events. The simplest level
event representations used in KAIROS are “event
primitives”. For each event primitive, a definition
of the primitive is given along with the event’s
semantic roles. An example of a KAIROS event
primitive is Attack:

Label Conflict.Attack

Description a violent physical act causing harm
or damage

Slot Role Slot Argument Constraints
Attacker per, org, gpe, sid
Target loc, gpe, fac, per, com, veh, wea, sid
Instr./Means com, veh, wea
Place fac, loc, gpe

Temporal
Start and End (times specific to event)
Duration 1 second to multiple years

Each event primitive contained 2-5 example sen-
tences. Prior to TopGuNN, example sentences
were selected by linguists who manually retrieved
them from a corpus by keyword search. With Top-
GuNN, we can find thousands of candidate sen-
tences automatically and then annotators can make
a quick pass to filter down to the final set.

Some work attempts to create event extraction
systems without extensive training data. For in-
stance, Chen et al. (2020) discusses how training
could be performed using a single "bleached state-
ment," or a definition of an event, without needing
a large set of labeled training examples. Rather

1https://www.darpa.mil/program/
knowledge-directed-artificial-intelligence-reasoning-over-schemas

than relying on such techniques, we design a sys-
tem to make it quick and easy for annotators to
create a larger training set .

2.1 Corpus
TopGuNN was used to index the Linguistic Data
Consortium’s English Gigaword Fifth Edition Cor-
pus (Parker et al., 2011). Gigaword consists of
approximately 12 gigabytes of news articles from
7 distinct international news agencies, spanning 16
years from 1994-2010, and contains a total of 183
million sentences and 4.3 billion tokens.2

2.2 Embedding Model
TopGuNN creates contextualized word embed-
dings for each content word in the corpus and for
each query word in the query sentences. We use
BERT (Devlin et al., 2019a) to create the embed-
dings because BERT produces contextually-aware
embeddings unlike word2vec and GloVe (Mikolov
et al., 2013; Pennington et al., 2014).3 FastBERT
or DistilBERT would also be appropriate choices,
but come with an accuracy trade-off for speed (Liu
et al., 2020; Sanh et al., 2019). We also inves-
tigated running TopGuNN at the sentence-level
using sentence embeddings from SBERT and com-
puting averaged sentence embeddings using BERT
(Reimers and Gurevych, 2019). Qualitatively, the
results from using BERT at the word-level gave
us diversity in the results that we desired (see Ap-
pendix B).

2.3 Retrieving Event Primitives
A total of 60 event primitives were annotated us-
ing TopGuNN. On average, we were given 2 seed
sentences per event and 1-2 viable query words
per sentence with which to run through TopGuNN.
The query word was typically a verb-form of the
event. Approximately 120 query sentences were
used to retrieve over 10,000 candidate sentences
that were later sent through 2 phases of annotation:
1) sentence classification and 2) span annotation.

After annotators confirm "yes/no" on the candi-
date sentences meeting the event primitive defini-
tion, the sentences classified as "yes" are sent to
semantic role labeling for span annotation using
a semantic role labeling tool called Datasaur (lee,
2019).4

2https://catalog.ldc.upenn.edu/LDC2011T07
3We use the "bert-base-uncased" model from the Trans-

formers Python package. (Wolf et al., 2020)
4https://datasaur.ai/

87

2.4 Examples of Retrieved Sentences

Our system works well in retrieving new, diverse
variations of a query word used in contextually
similar ways. Below, we display notable retrieved
results we found to best showcase the utility of Top-
GuNN running over the entire Gigaword corpus
for gathering both positive and abstract examples
for training data.

Positive Example
• Event: Disable
• Definition: Impeding the expected function-

ing of an ORG, a mechanical device, or soft-
ware, Ex., remove fuse from explosive

Query Word
The U.S. Army and Marine Corps also both fielded K-
9 units with explosive-sniffing dogs to locate IEDs on
the battlefield. Engineer Ordnance Disposal (EOD) ex-
perts disable or destroy IEDs through a variety of means,
including the use of robotic ground vehicles and explo-
sives.
Retrieved Sentence
Friday’s guidelines called for deploying more Patriot
interceptor missiles to shoot down ballistic missiles from
North Korea, which has been developing missiles and
nuclear weapons.
Cosine sim. of disable and shoot: 0.641

Table 1: Shooting down an explosive as a positive ex-
ample of Disable.

Abstract Example
• Event: Contaminate
• Definition: An animal (incl. people) is in-

fected with a pathogen.

Query Word
"We detected SARS-CoV-2 RNA on eight (36%) of 22
surfaces, as well as on the pillow cover, sheet, and du-
vet cover," demonstrating that presymptomatic patients
can easily contaminate environments, the authors said.
“Our data also reaffirm the potential role of surface con-
tamination in the transmission of SARS-CoV-2 and the
importance of strict surface hygiene practices, including
regarding linens of SARS-CoV-2 patients," they said.
Retrieved Sentence
Also keep in mind that infestations of adware/spyware
are the leading cause of a slow computer.
Cosine sim. of contaminate and infestations: 0.637

Table 2: Infestations of computer spyware as an ab-
stract example of Contaminate.

More notable results can be seen in Appendix C.

2.4.1 Influence of Corpora Size
To validate our system retrieves more relevant re-
sults as the size of the corpus it has access to grows

we ran a test comparing the results of TopGuNN
retrieval on a subset of Gigaword against full Giga-
word (see Appendix D). The cosine similarities of
retrieved results on the full Gigaword corpus were
significantly higher than those retrieved from the
subset. Qualitatively, the results appear to contain
more apt variations of the retrieved word used in a
similar contexts as the query word.

3 System Design

A diagram of TopGuNN is given in Figure 2. Top-
GuNN is engineered to run in multiple stages: 1)
Pre-processing, 2) Generating Embeddings, 3) In-
dexing, and 4) Running Queries.

3.1 Pre-Processing

During pre-processing we ingest a corpus and per-
form NLP analysis on each sentence. We use
spaCy5 to generate universal dependency labels
and part-of-speech (POS) tags. We use the spaCy
annotations to filter down the embeddings to a
smaller subset that will be stored and indexed (re-
sulting in a major reduction in the index size).

During pre-processing we also construct several
tables in a database to keep track of which sentence
and document each word occurs in and what its
POS and dependency labels are. This information
is stored in 6 lookup dictionaries in a SQLiteDict6

database seen in Appendix E.
For our use case, we parallelized our pre-

processing over each file in Gigaword. In a final
step, we amalgamate the 6 lookup dictionaries per
file into 6 lookup tables for the whole corpus. By
doing so, we were able to use multiple CPUs for
pre-processing.

3.2 Generating Embeddings

We partition the 183 million sentences in the Gi-
gaword corpus into 960 sets of approximately
200,000 sentences each. For each partition, we
pass batches of 175 sentences through BERT.
Each partition is run in parallel using 16 NVIDIA
GK210 GPUs on a p2.16xlarge machine with
732GB RAM on AWS, taking approximately 2
days to compute the BERT embeddings for all sen-
tences in Gigaword.

BERT tokenizes its input using the WordPiece
tokenization scheme (Devlin et al., 2019b). In
TopGuNN, we operate on word-level tokenization

5https://spacy.io/
6https://pypi.org/project/sqlitedict/

88

Gigaword Corpus
16x BERT on GPUs

Sentences
32.4GB

POS Tags
27.0GB

Dep Labels
33.9GB

Tokens
41.6GB

Trace
171.3GB

A B

C D E

1) Pre-Processing 2) Generating Embeddings 3) Indexing

4) Running Queries

spaCy

~183M sentences

A

Align BERT WordPiece tokens with

C

D E

Filter non-content words with

Embeddings
4.63TB

F
~1.5B embeddings

F

Annoy

Annoy Indexes
~11.4TB

960 Annoy Indexes

G

G

Query

ResultsA

B C

Figure 2: TopGuNN runs in four stages: Pre-Processing, Generating Embeddings, Indexing, and Querying

for indexing and queries, not on word pieces, so
we align BERT’s WordPiece tokenization scheme
to our word-level tokenization scheme. We aligned
the BERT-style model’s tokenization with spaCy’s
tokenization using the method described in a blog
post by Sterbak (ste, 2018).7 We then took the
mean of the WordPiece embeddings in a word to
represent the embedding for the full word.

In order to reduce the number of embeddings we
need to store on disk, only content words are kept
from each sentence. Content words consist of non-
proper nouns, verbs, adverbs, and adjectives only.
We use POS tags to identify content words and use
dependency labels in conjunction with POS tags
to further filter out auxiliary verbs. We store the
final filtered embeddings using NumPy’s memory
mapped format as our underlying data store. 8 We
discuss the savings in disk space in Section 4.1.

3.3 Indexing
All of the embeddings saved in the previous step
for each of the 960 partitions are added to an Annoy
index, to create 960 Annoy indexes that span our
entire corpus. We use Spotify’s Annoy indexing
system created by Bernhardsson (2018) for approx-
imate k-NN search, which has been shown to be
significantly faster than exact k-NN (Patel et al.,
2018). While, there are various competing imple-
mentations for approximate k-NN, we ultimately
used Annoy to power our similarity search for its

7https://www.depends-on-the-definition.com/
named-entity-recognition-with-bert/

8https://numpy.org/doc/stable/reference/generated/
numpy.memmap.html

ability to build and query on-disk indexes and re-
duce the amount of RAM required for search.9

3.4 Running Queries

TopGuNN allows you to query either a single query
word or multiple query words batched together in a
search query for performance. The input is a query
matrix, which is a matrix of BERT embeddings for
all query words in the batch.

Each query word is queried against the 960 An-
noy indexes. In order to retrieve the overall top-N
results, we query each Annoy index for its top-N
results, and we then combine and sort the results
from all the Annoy indexes to return the final com-
piled top-N results. We use our look-up dictionar-
ies to return the document, the sentence, and the
word of each result. Search results from each of
the query words over the Annoy indexes are com-
bined at the end and exported to a .tsv for human
annotation and active learning.

3.4.1 Enhancing Query Performance
Sequentially searching each query word against
the 960 Annoy indexes before moving on to the
next query word is slow. To perform searches more
efficiently, we sequentially query each of the 960
Annoy indexes with all query words. This lever-
ages the operating system page cache in such a way
that allows for the system to scale better to larger
batches of queries. By querying in this manner, we
only need to load each of the 960 Annoy index files
(each index is ~6GB) into memory once, instead

9https://github.com/spotify/annoy

89

of once per query word. This is a constant time
fixed cost that we must pay for a single query, but
subsequent queries will benefit from not having
to load the Annoy index again. This fixed cost of
loading the Annoy indexes can be amortized over
all queries in a batch (see Table 4).10 Using this
method we get performance gains in speed, but we
trade it off for higher-memory usage as now we
have to hold the intermediate results in memory
for all query words in the batch until all Annoy
indexes are queried. This means that our memory
usage grows linearly with the number of queries in
each batch. In practice, we found this trade-off to
be tolerable. For a batch of 189 queries, we had a
peak memory usage of ~70GB.

3.4.2 Iterative Requery Method
Since this could possibly yield no results if the
top-N is sufficiently small and all results are fil-
tered out, we add a parameter that is the number
of unique results desired for each query. However,
setting top-N to be a very large would hinder the
performance of the search queries.

To strike a balance, we employ an iterative re-
query method that begins with a low top-N and
incrementally requeries, increasing N by k (a con-
figurable parameter) while the number of desired
unique results retrieved is not met. A current search
is halted once the number of desired unique results
is met or terminated if the max top-N threshold
is reached without meeting the number of desired
unique results. This allows us to search the min-
imum possible amount of nearest neighbors re-
quired to reach the best unique results for maximal
performance.

4 Performance Details

4.1 Index Size
The size of the Annoy index relies heavily on two
parameters set at build time during post-processing:
the number of trees (num_trees) and the number
of nodes to inspect during searching (search_k).
We also greatly reduce the size of the Annoy index
by deciding to exclude non-content words from our
index during the Section 3.2 stage.

We use the following heuristic following Pa-
tel et al. (2018) to maintain similar search perfor-

10For example, after searching a query word "identify" on
a particular Annoy index all subsequent queried words like
“hired” or “launched” on that same Annoy index will leverage
the operating system page cache of the Annoy index file and
perform faster

mance across our indexes:

1 num_trees =
2 max(50,int((num_vecs/3000000.0) * 50.0))
3 search_k = top_n * num_trees

Algorithm 1: Heuristic for Annoy parameters

Excluding Non-content Words We computed
the number of words in the entire Gigaword corpus
to be 4.3B words. We made the decision to exclude
non-content words (defined in Section 3.2) which
helped us save resources by a factor of 2.8X while
maintaining a high search speed. Using content
words only for the Gigaword corpus resulted in a
total file size of 16TB (see F and G in Figure 2).

4.2 Sample Running Times

To give an idea of the TopGuNN system’s perfor-
mance on a corpus as large as Gigaword, we re-
port times for building an index for Gigaword and
querying it. Our system design is deconstructed
into 4 different stages (as previously described in
Section 3) separating out the CPU from the GPU
processes in order to streamline the workflow and
save on costs. For each stage, we utilized a ma-
chine with the best RAM and CPU configuration
profile for each particular task and only used a ma-
chine with GPUs for Stage 2. For pre-processing,
we used a total of 384 cores on a CPU cluster. For
our "Generating Embeddings" stage, we utilized
a machine with 732GB RAM and 16 GPUs. For
post-processing, we used a 16 core machine with
128GB of RAM.

Build Times The times for running the different
stages of TopGuNN on the entire Gigaword corpus
can be seen in Table 3.

Build Time
Pre-Processing 76.7 hours

Generating Embeddings 48.8 hours

Post-Processing 23.7 hours

Table 3: Build times for TopGuNN on Gigaword

Query Times The times for querying TopGuNN
on the entire Gigaword corpus can be seen in Ta-
ble 4. The first query word in the batch of queries
takes longer as it must load each Annoy index into
memory from disk. For subsequent queries in the
batch, the Annoy index is already loaded into mem-
ory. (see Section 3.4.1)

90

Query Time
Query Batch (n = 189) 21.4 hours

First Query (1) 19.4 hours

Subsequent Queries (2-189) 0.63 minutes

Table 4: Query times for TopGuNN on Gigaword

Because the Annoy indexes are partitioned, the
first step could be parallelized to further reduce
the 19.4 hours. Keeping cost management in mind,
we ran this step serially to highlight its relevant
use case even with limited budget (our budget was
approximately $2,000).

5 Other NLP Applications

5.1 Sentence- and Document-Level Retrieval

For a sentence-level application, TopGuNN could
be useful for training data in story generation. In
Ippolito et al. (2020), the author predicts the likely
embedding of the next sentence. To facilitate the
diversity and speed of candidate sentences used
to generate the next sentence in the story, Top-
GuNN could be employed with sentence embed-
dings to retrieve sentences from large corpora. For
document-retrieval training data, Kriz et al. (2020)
recasts text-simplification as a document-retrieval
task. The author generates document-level embed-
dings from the Newsela corpus using BERT and
SBERT and similarly adds them to an Annoy index
to find documents with similar complexity levels
as the query document.

5.2 Multilingual Information Retrieval

DAPRA KAIROS’ events are similar to the events
found in the IARPA BETTER multilingual infor-
mation retrieval project.11 A future application of
TopGuNN could be querying in English and re-
trieving training examples in another language (or
vice versa) by substituting BERT for GigaBERT
(Lan et al., 2020) in TopGuNN. With this modifica-
tion, TopGuNN could help facilitate multilingual
retrieval of training examples.

6 Related Work

Previous work that parallels our work to search
and index large corpora includes projects like Lin
et al. (2010), which created an index of n-gram
counts over a web-scale sized corpus. Similarly,

11https://www.iarpa.gov/index.php/research-programs/
better

as an extension to work completed by Lin et al.
(1997) and Gao et al. (2002), Moore and Lewis
(2010) propose a method for gathering domain-
specific training data for languages models for use
in tasks such as Machine Translation. By utiliz-
ing contextual word embeddings from a modern
language model like BERT instead of techniques
like n-grams or perplexity analysis as seen in previ-
ous approaches, TopGuNN aims to achieve higher
quality results.

Our work directly builds upon prior research on
approximate k-NN algorithms for cosine similarity
search. We chose to use the Annoy package for
indexing our embeddings in TopGuNN for its par-
ticular ability to build on-disk indexes, however,
another package could be used instead. Aumüller
et al. (2018) discusses various approximate k-NN
algorithms that could alternatively be utilized for
TopGuNN with alternate trade-offs in speed, mem-
ory, and other hardware requirements. By utilizing
on-disk indexes on SSDs, which have fast random-
access reads and high-throughput, we are able to
use significantly cheaper machines than would be
required to hold terabytes of indexes in RAM.

7 Getting started with TopGuNN

You can get started with TopGuNN on GitHub:
https://github.com/Penn-TopGuNN/TopGuNN

8 Conclusion

We have presented a system for fast training data
augmentation from a large corpus. To the best
of our knowledge, existing search approaches do
not make use of contextual word embeddings to
produce the high quality diverse results needed in
training examples for tasks like our event extrac-
tion use case. We have open sourced our efficient,
scalable system that makes the most efficient use of
human-in-the-loop annotation. We also highlight
several other NLP tasks where our system could
facilitate training data augmentation in Section 5.

Future work may include enabling TopGuNN to
query for multi-word expressions (i.e. "put a name
to"), hyphenated expressions (i.e. "pre-existing
conditions"), or in the form of natural language
questions as seen in (Yu et al., 2019). Finally,
identifying antonymy as studied in (Rajana et al.,
2017) would be a valuable extension for more fine-
grained search results as synonyms and antonyms
often occupy the same embedding space.

91

Acknowledgements

We would like to thank Erik Bernhardsson for the
useful feedback on integrating Annoy indexing.

Special thanks to Ashley Nobi for spearheading
the annotation effort and Katie Conger at Univer-
sity of Colorado at Boulder for the training ses-
sions on semantic role labeling she gave for the
span annotation effort.

We would like to thank the Fall 2020 semester
students of CIS 421/521 - Artificial Intelligence and
Leila Pearlman at the University of Pennsylvania,
and the University of Colorado at Boulder’s Team
of Linguists for annotating TopGuNN results.

We would like to thank Ivan Lee, CEO of
Datasaur Inc., Hartono Sulaiman and Nadya
Nurhafidzah of Datasaur, for providing a seamless
annotation tool for us to use and with around-the-
clock customer service in navigating the system.

I would like to thank my post-doc Dr. Moham-
mad Sadegh Rasooli and my PhD labmate Aditya
Kashyap for their invaluable input and constant
availability to us throughout the project.

Special thanks to my senior PhD labmate Reno
Kriz for his mentorship during this project.

The first author was funded by NSF for the Uni-
versity of Pennsylvania under grant number DGE-
1845298 (the Graduate Research Fellowships Pro-
gram). This research is also supported in part by
the DARPA KAIROS Program (contract FA8750-
19-2-1004), the DARPA LwLL Program (contract
FA8750-19-2-0201), and the IARPA BETTER Pro-
gram (contract 2019-19051600004). Approved for
Public Release, Distribution Unlimited. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of DARPA, IARPA, or the U.S. Gov-
ernment.

The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes.
The views and conclusions contained in this pub-
lication are those of the authors and should not
be interpreted as representing official policies or
endorsements of NSF, DARPA, and the U.S. Gov-
ernment.

And to the timeless 1986 American cult-classic
"Top Gun," thanks for the inspiration on naming
our retrieval system... I feel the need for speed!

References
2018. Named entity recognition with Bert. Tobias Ster-

bak Consulting, Akazienstraße 3A, 10823 Berlin,
Germany.

2019. Ivan Lee, CEO., Datasaur. Datasaur, Inc., Sun-
nyvale, California, United States.

Martin Aumüller, Erik Bernhardsson, and Alexander
Faithfull. 2018. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms.

Erik Bernhardsson. 2018. Annoy: Approximate Near-
est Neighbors in C++/Python. Python package ver-
sion 1.13.0.

Yunmo Chen, Tongfei Chen, Seth Ebner, Aaron Steven
White, and Benjamin Van Durme. 2020. Reading
the manual: Event extraction as definition compre-
hension.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019a. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019b. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-
Fu Lee. 2002. Toward a unified approach to statis-
tical language modeling for chinese. ACM Trans-
actions on Asian Language Information Processing,
1(1):3–33.

Daphne Ippolito, David Grangier, Douglas Eck, and
Chris Callison-Burch. 2020. Toward better story-
lines with sentence-level language models.

Reno Kriz, Eleni Miltsakaki, Jaime Rojas, Rebecca
Iglesias-Flores, Megha Mishra, Marianna Apidi-
anaki, and Chris Callison-Burch. 2020. Recasting
text simplification as a document retrieval task. In
Submission.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W
Black, and Yulia Tsvetkov. 2019. Measuring bias
in contextualized word representations.

Wuwei Lan, Yang Chen, Wei Xu, and Alan Ritter.
2020. An empirical study of pre-trained transform-
ers for arabic information extraction.

92

Dekang Lin, Kenneth Ward Church, Heng Ji, Satoshi
Sekine, David Yarowsky, Shane Bergsma, Kailash
Patil, Emily Pitler, Rachel Lathbury, Vikram Rao,
et al. 2010. New tools for web-scale n-grams. In
LREC.

Sung-Chien Lin, Chi-Lung Tsai, Lee-Feng Chien, Keh-
Jiann Chen, and Lin-Shan Lee. 1997. Chinese lan-
guage model adaptation based on document classifi-
cation and multiple domain-specific language mod-
els. In EUROSPEECH. ISCA.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time.

Tomas Mikolov, Kai Chen, G. S. Corrado, and J. Dean.
2013. Efficient estimation of word representations
in vector space. In ICLR.

Robert C. Moore and William Lewis. 2010. Intelligent
selection of language model training data. In Pro-
ceedings of the ACL 2010 Conference Short Papers,
pages 220–224, Uppsala, Sweden. Association for
Computational Linguistics.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword Fifth Edi-
tion LDC2011T07. Web Download.

Ajay Patel, Alexander Sands, Chris Callison-Burch,
and Marianna Apidianaki. 2018. Magnitude: A fast,
efficient universal vector embedding utility package.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 120–126, Brussels, Belgium.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Yusu Qian, Urwa Muaz, Ben Zhang, and Jae Won
Hyun. 2019. Reducing gender bias in word-level
language models with a gender-equalizing loss func-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Stu-
dent Research Workshop, pages 223–228, Florence,
Italy. Association for Computational Linguistics.

Sneha Rajana, Chris Callison-Burch, Marianna Apid-
ianaki, and Vered Shwartz. 2017. Learning
antonyms with paraphrases and a morphology-
aware neural network. In Proceedings of the 6th
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2017), pages 12–21, Vancouver,
Canada. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. As-
sociation for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Huggingface’s transformers: State-of-the-art natural
language processing.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2019. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task.

93

A Ethical Considerations/Discussion

Our work utilizes BERT and therefore it contains the inherent biases that exist in language models trained
on large amounts of unsupervised data collected from the internet. Kurita et al. (2019) analyzes the
various biases that exist specifically in BERT.

In our own tests, we directly observed some of these biases when querying for the DARPA KAIROS
DETONATE:EXPLODE event over a subset of Gigaword. Querying the word bombing in the sentence
"Rabee’a owned a drill rig, and his friend had heard stories from elsewhere in Yemen about jets bombing
well sites." yielded the word Muslim as the top result from the sentence "Amid the tension, Muslim
leaders say their communities are doing more than ever to help in investigations – a point they say is
overlooked by many Americans." with a cosine similarity of 0.602. Moreover, 9 out of the 20 top results
were the words "muslim" or "mosque".

When using TopGuNN to help bootstrap training data for event extraction models or running search
queries, care must be taken to ensure these biases do not leak into a downstream applications by a
thorough manual review to prevent unintentional harm. Debiasing language models is an active area of
research and techniques like Qian et al. (2019) could be utilized to attempt to debias language models at
train time that could then replace BERT in TopGuNN.

B Testing Various Embedding Models with TopGuNN

We explored 3 different embedding models for the TopGuNN system:

1. SBERT automatically has its own sentence representation to retrieve sentences.

2. AVG-BERT uses the mean of the word embeddings as the sentence representation to retrieve
sentences.

3. BERT returns results for a single query word and retrieves sentences with words that were used in a
similar context as the query word in the query sentence.
Note: To show diversity of results for BERT, the Top-10 unique nearest neighbors are shown and not
necessarily the first Top-10 as seen in SBERT and AVG-BERT.

Table 5: Results comparing SBERT, AVG-BERT, and BERT

Method Cosine
Sim

Retrieved Result

Query Sentence: "President Barack Obama’s hopes of winning Senate approval for a new arms
control treaty with Russia by the end of the year were encouraged Tuesday by two Republican
senators, including John McCain."

0.908 WASHINGTON -The US Senate, in a key test vote, moved Tuesday
toward final passage of a nuclear arms pact with Russia, setting up a likely
foreign policy victory for President Obama and a hard-won achievement
for Senator John F. Kerry of Massachusetts, who shepherded the treaty
through fierce GOP opposition.

0.888 Fresh from winning Senate approval for a new strategic arms treaty,
President Barack Obama plans to return to the negotiating table with
Russia next year in hopes of securing the first legal limits imposed on the
smaller, battlefield nuclear weapons viewed as most vulnerable to theft or
diversion.

Continued on next page

94

Table 5 – continued from previous page
Method Cosine

Sim
Retrieved Result

0.882 McCain, one of his party’s leading voices on national security, said
he thought that Republican concerns over missile defense and nuclear
modernization could be resolved in time to vote on the so-called New
Start treaty during the lame-duck session of Congress this month, as
Obama has sought.

0.878 To press their point, Republicans pushed through a side resolution calling
on Obama to open talks with Russia on such weapons within a year.

0.872 The Senate moved closer Monday to approving a new arms control treaty
with Russia over the opposition of Republican leaders as lawmakers
worked on a side deal to assure skeptics that the arms pact would not
inhibit U.S. plans to build missile defense systems.

SBERT

0.872 Beyond his behind-the-scenes role in negotiating the tax deal with Repub-
licans – a path that Biden and Obama decided on in a recent conversation
at the White House, aides say – the vice president has also been trying to
win Republican votes in the Senate for ratification of the START nuclear
arms treaty with Russia.

0.856 On Tuesday, Sen. John McCain – who is inexplicably playing second
fiddle to Kyl – told ABC: "I believe that we could move forward with the
START treaty and satisfy Senator Kyl’s concerns and mine about missile
defense and others, and I hope that we can do that."

0.848 White House officials, meanwhile, expressed hope of sealing a deal
swiftly, perhaps by midweek, and clearing the congressional calendar for
a long list of other priorities they aim to accomplish by the end of the year,
including ratification of the New START arms treaty with Russia and the
repeal of the "don’t ask, don’t tell" policy for gay service members as part
of a wider Pentagon policy bill.

0.832 While President Barack Obama presses the Senate to embrace a new arms
control treaty with Russia, another nuclear pact with Moscow secured
final approval after more than four years on Thursday with virtually no
notice but potentially significant impact.

0.828 In the interview, Putin also warned that Russia would develop and deploy
new nuclear weapons if the United States did not accept its proposals on
integrating Russian and European missile defense forces – amplifying
a comment made by Medvedev in his annual state of the nation address
Tuesday.

0.920 WASHINGTON - Senator John F. Kerry and other top Democrats said
Tuesday they have secured enough bipartisan backing to ratify the START
nuclear arms treaty with Russia, a vote that would be a substantial foreign
policy victory for President Obama.

0.911 Immediately after the tax vote Wednesday, Senate Democrats began
angling for passage of a new U.S.-Russian nuclear arms treaty, a priority
of President Barack Obama that has been on the agenda for months.

0.904 McCain, one of his party’s leading voices on national security, said
he thought that Republican concerns over missile defense and nuclear
modernization could be resolved in time to vote on the so-called New
Start treaty during the lame-duck session of Congress this month, as
Obama has sought.

Continued on next page

95

Table 5 – continued from previous page
Method Cosine

Sim
Retrieved Result

0.896 Sen. John McCain of Arizona had previously said he hoped to vote for
the treaty as long as concerns over missile defense were addressed, and it
was not clear whether he was signaling a shift or using the opportunity to
vent his longstanding frustration with Russian behavior.

AVG-BERT

0.894 A Republican senator announced that he would vote for the treaty and
two others said they were leaning toward it, and at the same time, Sen.
John McCain, R-Ariz., produced separate legislation that could reassure
fellow Republicans worried about the treaty’s impact on missile defense.

0.893 Obama brought up the treaty Tuesday during a White House meeting with
congressional leaders, pressing them to vote this month to strengthen the
relationship with Russia.

0.892 President Barack Obama on Tuesday strongly defended his tax cut deal
with congressional Republicans against intense criticism from his own
party, insisting it was "a good deal for the American people."

0.887 Sen. Harry Reid of Nevada, the majority leader and crucial proponent
of the repeal, noted that some Republicans had indicated they may try to
block Senate approval of a nuclear arms treaty with Russia due to their
pique over the Senate action on the ban on gays in the military.

0.887 Obama has insisted that the Senate approve it before the end of the month
rather than wait until a new Senate with more Republicans takes office,
and a number of Republican senators have signaled tentative support.

0.885 Obama, in his brief remarks Wednesday during a meeting with the pres-
ident of Poland, suggested that Republicans for the next two years will
still be defending the Bush tax rates while he is looking forward to a new,
better code.

Query Word: "President Barack Obama’s hopes of winning Senate approval for a new arms
control treaty with Russia by the end of the year were encouraged Tuesday by two Republican
senators, including John McCain."

0.953 TWO REPUBLICANS HINT AT HOPE FOR ARMS PACT WITH RUS-
SIA President Barack Obama’s hopes of winning Senate approval for a
new arms control treaty with Russia by the end of the year were encour-
aged Tuesday by two Republican senators, including John McCain.

0.825 Obama’s failure to win passage of comprehensive immigration reform
was a disappointment to many Latinos, he conceded.

0.802 Aides to Reid said they had mapped out a path to securing votes on all of
the legislation, which would mean staying in session until next Thursday,
two days before Christmas, and potentially returning the week before
New Year’s Day.

0.793 While he has a fair chance of securing the votes of the two other
Democrats, he faces a potential fight with one of those commission-
ers, Michael J. Copps, who has been public in his support for stricter
regulation of broadband Internet service.

BERT

0.756 With a week before Election Day, Perry, who is thought to have the best
chance of gaining a seat for Republicans in the state, is struggling to fend
off accusations that he witnessed and covered up the illegal strip search of
a teenage girl in 1991, when he was a police sergeant in Wareham, Mass.

Continued on next page

96

Table 5 – continued from previous page
Method Cosine

Sim
Retrieved Result

0.755 The White House is negotiating with Sen. Jon Kyl, R-Ariz., whose
support is crucial to getting other Republican votes, to meet his price:
more money to modernize the nuclear arsenal.

0.744 Republican confidence about capturing control of the House remained
high, though even Republicans considered the Senate more of a question
mark, given the number of excruciatingly close races across the country.

0.731 Obama bested the chamber in the first two years of his term, passing
health care legislation and an overhaul of financial regulations over the
group’s heated opposition.

0.731 Like most of her 18 opponents nearing the Nov. 28 election, Manigat’s
campaign trail stretches northward from Port-au-Prince to Miami, New
York, Boston and Montreal in hopes of garnering money and influence
from the large Haitian diaspora.

0.730 Still, with Republicans challenging every element of the new law, the
Obama administration is likely to be handcuffed in its efforts to expand
the revamping of the health care system.

C Notable Results

Positive Example
• Event: Defeat
• Definition: Defeat in a conflict or an election (but not a game-style competition)

Query Word
Most democratic activists and lawmakers rejected the deal as a sham and it was eventually
defeated in the city’s legislatures after a botched walkout by pro-government legislatures.
Retrieved Sentence
The White House and Senate Democrats considered the amendment a treaty killer because
any change to the text would require both countries to go back to the negotiating table.
Cosine sim. of rejected and considered: 0.745

Table 6: Treaty killer as a positive example of Defeat.

Positive Example
• Event: Disable
• Definition: Impeding the expected functioning of an ORG, a mechanical device, or software, Ex.,

remove fuse from explosive

Query Word
Soldiers and personnel have to be trained to be aware of the enemy’s behaviors, to look for
indicators of IEDs in their patrol areas and to use technology to dispose or disable them.
Retrieved Sentence
And he assured his audience that he had made clear to senior Pakistani military officials my
strong desire to see more action taken against these places and to root out the terrorists.
Cosine sim. of disable and root: 0.616

Table 7: Rooting out terrorist organizations as a positive example of Disable.

97

Positive Example
• Event: Block Passage
• Definition: Preventing entry or exit from a location

Query Word
...archipelagic defense would have the holders of islands adjoining straits and other narrow
seas fortify those islands with mobile anti-ship and anti-air missiles while deploying surface,
subsurface, and aerial assets to block passage through these seaways. In effect these forces
string a barricade between geographic features—interdicting shipping and overflight while
bringing economic and military pressure on adversaries.
Retrieved Sentence
Assad Ismail, a local council president in Sadiya, a village along the disputed territories
northeast of Baghdad, said that only the Americans were able to settle a recent dispute that
flared when Iraqi soldiers trying to restrict the movement of insurgents closed off local
farmers’ access to their date palms, tomatoes and peanuts.
Cosine sim. of block and restrict: 0.637

Table 8: Restricting movement as a positive example of Block Passage.

Positive Example
• Event: Destroy
• Definition: Damage property, organization or natural resource

Query Word
"These actions challenge national sovereignty, threaten one country, two systems, and will
destroy the city’s prosperity and stability," she said, referring to slogans of "Liberate Hong
Kong, revolution of our times" and the act of throwing a Chinese flag in the sea.
Retrieved Sentence
"Letting it expire would threaten jobs, harm the environment, weaken our renewable fuel
industries, and increase our dependence on foreign oil," they wrote.
Cosine sim. of destroy and weaken: 0.732

Table 9: Weaken renewable fuel as a positive example of Destroy.

Abstract Example
• Event: Destroy
• Definition: Damage property, organization or natural resource

Query Word
"These actions challenge national sovereignty, threaten one country, two systems, and will
destroy the city’s prosperity and stability," she said, referring to slogans of “Liberate Hong
Kong, revolution of our times" and the act of throwing a Chinese flag in the sea.
Retrieved Sentence
Adopting an orthodox view, he said in 1976 that a projected budget deficit estimated at 60
billion was "very scary" and would "wreck" the economy.
Cosine sim. of destroy and wreck: 0.752

Table 10: Wrecked the economy as an abstract example of Destroy.

98

Abstract Example
• Event: Block Passage
• Definition: (Physically) preventing entry or exit from a location

Query Word
...archipelagic defense would have the holders of islands adjoining straits and other narrow
seas fortify those islands with mobile anti-ship and anti-air missiles while deploying surface,
subsurface, and aerial assets to block passage through these seaways. In effect these forces
string a barricade between geographic features—interdicting shipping and overflight while
bringing economic and military pressure on adversaries.
Retrieved Sentence
Even as Pakistan’s army vows to take on militants spreading chaos and mayhem inside
Pakistan, the intelligence service still sees the Afghan Taliban as a way to ensure influence
on the other side of the border and keep India’s influence at bay.
Cosine sim. of block and keep: 0.649

Table 11: Keeping influence at bay as an abstract example of Block Passage.

D TopGuNN Results Using Different Sized Corpora

We compared the top 10 unique results from a small subset of the Gigaword corpus (400,000 sentences)
compared to results ran on the full Gigaword corpus (183 million sentences) for the event primitive
Sentence (as in the judicial meaning).

Current findings have shown us some interesting, but unexpected results. The cosine similarities of
retrieved results for full Gigaword are significantly higher, but TopGuNN still works extremely well on a
small subset in terms of quality and diversity of results. Other researchers who need to prioritize high-
speed in retrieving positive or abstract examples for their training data could retrieve similar sentences
even faster on a smaller subset of a uniform corpus like Gigaword without having to sacrifice much in
terms of quality.

Table 12: Top-10 unique results querying the event primitive ’Sentence’ (as in the judicial meaning)
over a subset of Gigaword (400K sentences) vs. full Gigaword (183M sentences).

Method Cosine
Sim

Retrieved Result

Query Sentence: "The judge sentenced him to death."
0.742 When she explained to the court that she could not afford to pay,

Nowlin was sent to prison.
0.701 "It matters little if they condemn me, even to the heaviest sentence.
0.695 True, the court could have gone further and actually jailed the two

defendants.
0.693 He received a life sentence.

Gigaword Subset
(400K sentences)

0.680 A federal judge spared him prison time but ordered him to leave
the country within 90 days or be deported.

0.676 The jury came within two votes of convicting Megahed.
0.670 Bush commuted the sentences, and the men are now free.
0.666 At 6:28 p.m., she found him hanged.
0.664 He eventually pleaded guilty to manslaughter and spent 15 years in

prison.
Continued on next page

99

Table 12 – continued from previous page
Method Cosine

Sim
Retrieved Result

0.659 That convinced a jury to find him guilty of aggravated sexual assault
and send him to prison for 75 years.

0.881 A jury didn’t believe him, and a judge sentenced him to eight years
in prison.

0.863 Seven years later, a Paris court condemned him in absentia to life
in jail for the murders.

0.847 The jury decided unanimously to sentence him to death.
0.845 The jury convicted him to life in prison, where he will spend the

rest of his life.
Full Gigaword

(183M sentences)
0.841 "There are some things you just can’t run from, this being one of

those," Rolling told Circuit Judge Stan R. Morris, who accepted the
pleas and found him guilty and later sentenced him to death.

0.833 The presiding judge agreed, sentencing the two young men to life
imprisonment.

0.830 The judge sent them to prison.
0.828 It wasn’t until last October – a decade later – that courts sentenced

34 men to 26 years each for the killings.
0.814 They unanimously acquitted him on all counts.
0.812 But the U.N. court decided he was not directly involved and pun-

ished him with a light two years in prison.

E Lookup Dictionaries

1. Sentences (32.4GB):
sent_id → (sentence)

2. Document Traceability (15.0GB):
sent_id → (doc_id)

3. Tokens (41.6GB):
sent_id → (sentence tokens)

4. Parts-of-Speech Tags (27.0GB):
sent_id → (sentence pos_tags)

5. Dependency Labels (33.9GB):
sent_id → (sentence dep_labels)

6. Words Trace (156.3 GB):
word_id → (word_id, word, (doc_id, sent_id))

F Querying Polysemous Words

We demonstrate TopGuNN’s ability to perform contextual similarity search of a query word in its
corresponding sentence using polysemous words, which have two distinct sentences. Figure 3 and
Figure 4 are further examples of querying two distinct sentences with different senses of the same word
to retrieve sentences that capture both polysemies.

100

Figure 3: TopGuNN results on the the polysemous word change.

Figure 4: TopGuNN results on the the polysemous word acquit.

101

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 102–104
June 11, 2021. ©2021 Association for Computational Linguistics

Everyday Living Artificial Intelligence Hub

Raymond Finzel1, Esha Singh2, Martin Michalowski3, Serguei Pakhomov1, Maria Gini2
1Department of Pharmaceutical Care and Health Systems, College of Pharmacy,

2CSE Department, College of Science and Engineering,
3Population Health and Systems Cooperative, School of Nursing,

University of Minnesota, Twin Cities, Minnesota, United States of America.
{finze006,sing0640,martinm,pakh0002,gini}@umn.edu

Abstract

We present the Everyday Living Artificial In-
telligence (AI) Hub, a novel proof-of-concept
framework for enhancing human health and
wellbeing via a combination of tailored wear-
able and Conversational Agent (CA) solutions
for non-invasive monitoring of physiological
signals, assessment of behaviors through unob-
trusive wearable devices, and the provision of
personalized interventions to reduce stress and
anxiety. We utilize recent advancements and
industry standards in Internet of Things (IoT)
and AI technologies to develop this proof-of-
concept framework.

1 Introduction

The significance of stress in disease development
and progression has been established for multi-
ple therapeutic areas including cardiovascular dis-
ease (Kivimäki and Steptoe, 2018), type 2 dia-
betes (Hackett and Steptoe, 2017), obesity (Sinha
and Jastreboff, 2013), sleep disorders (Han et al.,
2012) , depression (Madsen et al., 2017), stroke
(O’Donnell et al., 2016) drug addiction (includ-
ing opioid, tobacco, cannabis, and cocaine use)
(Airagnes et al., 2018; Preston et al., 2017) , and
Alzheimer’s disease (Justice, 2018). As demon-
strated for cardiovascular disease, stressors asso-
ciated with increased risk of events include those
commonly encountered in life such as work stres-
sors, anger episodes and even the viewing of stress-
ful sporting events (Smyth et al., 2016). Exposure
to stressful events is therefore a major risk factor
for morbidity and mortality rates especially for con-
ditions that have a great impact on public health.

As the commercial IoT sector continues to grow,
our homes and bodies are increasingly instru-
mented. We now have digital personal assistants
that listen and respond to voice commands and
wearable devices equipped with multiple sensors.
The availability and maturity of this technology
affords an unprecedented opportunity to develop

holistic systems to advance the health and well-
being of many groups including one of the most
vulnerable sectors of our population: elders aging
in-place. To provide personalized and effective
interventions, such a system must be capable of
sensing, integrating, responding to physical, emo-
tional, and cognitive status in an accessible way.

Towards this vision, we have developed a proof-
of-concept framework for individually tailored de-
tection and management of mental stress and anx-
iety in everyday life. We target the development
and deployment of a novel personalized technol-
ogy that integrates conversational voice assistants
with wearable sensors and smart-textile clothing
technology to provide real-time, in-home, unob-
trusive sensing and on-body stimulation solutions
(e.g., pressure, heat, etc.). The proposed proof-
of-concept framework integrates three major com-
ponents: 1) natural language interaction with the
user via a conversational voice assistant; 2) physio-
logical signal sensing of activity, heart rate, body
temperature, and electrical conductivity of skin;
and 3) garment-based delivery of heat and com-
pression interventions to reduce stress and anxiety
detected via voice and wearable sensors.

2 Methodology

The Everyday Living AI Hub is a holistic frame-
work that orchestrates the 3 components discussed
in section 1, coordinating multiple streams of bio-
metric data and physical interventions (Figure 1).
The Hub framework allows for the analysis of self-
supplied information (such as information about a
user’s schedule, habits, and preferences) alongside
biometric data collected from OTC wearable de-
vices with the goal of providing interventions into
the user’s life to help them self-regulate. These
interventions are in the form of notifications (re-
minders to breathe, reminders that a meeting or
other scheduled time is coming up), or bindings
with devices that operate "In Real Life (IRL)" such

102

Figure 1: Architecture for Everyday Living AI Hub and end-point user interaction flow.

as the SmartHugs Garment (Pettys-Baker et al.,
2018), a wearable shirt designed to perform com-
pression on dysregulated individuals. Detected
stress events are confirmed with the user via the
Hub Conversational Agent (Hub CA), which can
ask questions about the severity and timing of the
stressful event, and confirm whether an interven-
tion is necessary or desirable.

Earlier stress measures were mainly question-
naires such as Demand–Control–Support model
(Johnson and Hall, 1988, Pozo-Antúnez et al., 2018,
Karasek and Theorell, 1990). Lu et al. proposed a
framework for real-time stress measurement, moni-
toring and intervention. Like our proposed system,
they used physiological indicators to detect stress
level using a wearable smart bracelet. Our contribu-
tion adds human-in-the-loop voice control and the
ability to incorporate interventions via IoT devices
to the milieu of this prior work.

2.1 Architecture

By utilizing many industry-standard IoT protocols,
the framework is designed to be flexible. User
accounts and profiles are maintained via a web
service based on Responder (Reitz, 2018), a free
Python framework for microservice development.
Monitoring devices collect data and send it through
Bluetooth to a cell-phone companion app, or send
it directly to the Hub Server’s AI collection point
via a lightweight publish/subscribe protocol called
MQTT (Figure 1). Everyday interactions with the
framework are performed either by interacting with
a web-service Application Programming Interface
(API) via mobile application, website, or by us-
ing natural language to converse with the voice
assistant, which passes speech data through an Au-

tomatic Speech Recognition (ASR) service to the
Hub CA which is based on MindMeld (Raghuvan-
shi et al., 2018), a framework for conversational
agent development. The Hub CA then performs
actions on behalf of the user by interacting with
the API, and speaks to the user using the integrated
Text-To-Speech (TTS) service.

2.2 Project Status
Completed modules include system architecture
components such as MQTT services, web APIs
for data collection and intervention applications, a
phone app for the management of Bluetooth con-
nected devices, ASR and TTS modules, and a pro-
totype stress management garment. Active devel-
opment is underway for AI signal analysis, in-the-
loop conversational device setup, and intervention
management in the Hub CA.

3 Challenges

The Everyday Living AI Hub requires many prac-
tical and theoretical advances. While preliminary
studies have shown that commercial IoT wearables
can detect changes in heart-rate that correspond
to stress in a naturalistic environment (Pakhomov
et al., 2020), existing machine-learning models are
not equipped to reliably predict stressful events in
real-time. Collection of data and the creation of an
adequate model are ongoing work. The Hub CA is
based on established chatbot paradigms, but mod-
els and dialog flows are still under development for
the new domain of stress management.

Acknowledgements

UMN Grand Challenges Research Initiative.

103

References
Guillaume Airagnes, Cédric Lemogne, Marcel Gold-

berg, Nicolas Hoertel, Yves Roquelaure, Frédéric
Limosin, and Marie Zins. 2018. Job exposure to the
public in relation with alcohol, tobacco and cannabis
use: Findings from the constances cohort study.
PLOS ONE, 13:e0196330.

Ruth Hackett and Andrew Steptoe. 2017. Type 2 di-
abetes mellitus and psychological stress - a modifi-
able risk factor. Nature reviews. Endocrinology, 13.

Kuem Han, Lin Kim, and Insop Shim. 2012. Stress and
sleep disorder. Experimental neurobiology, 21:141–
50.

Jeffrey Johnson and E.M. Hall. 1988. Job strain, work
place social support, and cardiovascular disease: A
cross-sectional study of a random sample of the
swedish working population. American journal of
public health, 78:1336–42.

Nicholas J. Justice. 2018. The relationship between
stress and alzheimer’s disease. Neurobiology of
Stress, 8:127–133.

Robert Karasek and Töres Theorell. 1990. Healthy
Work: Stress, Productivity, and The Reconstruction
Of Working Life.

M. Kivimäki and A. Steptoe. 2018. Effects of stress on
the development and progression of cardiovascular
disease. Nature Reviews Cardiology, 15:215–229.

Peixian Lu, Wei Zhang, Liang Ma, and Qichao Zhao.
2020. A Framework of Real-Time Stress Monitoring
and Intervention System, pages 166–175.

Ida E. H. Madsen, S. Nyberg, Linda Magnusson Han-
son, Jane Ferrie, Kirsi Ahola, Lars Alfredsson,
G. Batty, Jakob Bjorner, Marianne Borritz, Her-
mann Burr, J.-F Chastang, Ron Graaf, Nico
Dragano, Mark Hamer, M. Jokela, Anders Knutsson,
M. Koskenvuo, Aki Koskinen, Constanze Leinewe-
ber, and Minna Kivimäki. 2017. Job strain as a risk
factor for clinical depression: systematic review and
meta-analysis with additional individual participant
data. Psychological Medicine, 47:1–15.

Martin O’Donnell, Siu Chin, Sumathy Rangarajan, De-
nis Xavier, Lixin Liu, Hongye Zhang, Purnima Rao-
Melacini, Xiaohe Zhang, Prem Pais, Steven Agapay,
Patricio Lopez-Jaramillo, Albertino Damasceno, Pe-
ter Langhorne, Matthew McQueen, Annika Rosen-
gren, Mahshid Dehghan, Graeme Hankey, Anto-
nio Dans, Ahmed Elsayed, and Yan Duarte. 2016.
Global and regional effects of potentially modifiable
risk factors associated with acute stroke in 32 coun-
tries (interstroke): A case-control study. The Lancet,
388.

Serguei Pakhomov, Paul Thuras, Raymond Finzel,
Jerika Eppel, and Michael Kotlyar. 2020. Using
consumer-wearable technology for remote assess-
ment of physiological response to stress in the nat-
uralistic environment. PLOS ONE, 15:e0229942.

Robert Pettys-Baker, Nicholas Schleif, J. Walter
Lee, Sophia Utset-Ward, Mary Ellen Berglund,
Lucy E. Dunne, Brad Holschuh, Christopher John-
son, Kevin Kelly, Bruce Johnson, and Michael
Joyner. 2018. Tension-Controlled Active Compres-
sion Garment for Treatment of Orthostatic Intoler-
ance. 2018 Design of Medical Devices Conference.
V001T10A005.

José Pozo-Antúnez, Antonio Ariza-Montes, Francisco
Fernández-Navarro, and Horacio Molina. 2018. Ef-
fect of a job demand-control-social support model
on accounting professionals’ health perception. In-
ternational Journal of Environmental Research and
Public Health, 15.

Jonathan Preston, Megan Leece, Kerry McNamara, and
Edwin Maas. 2017. Variable practice to enhance
speech learning in ultrasound biofeedback treatment
for childhood apraxia of speech: A single case
experimental study. American Journal of Speech-
Language Pathology, 26:1.

Arushi Raghuvanshi, Lucien Carroll, and Karthik
Raghunathan. 2018. Developing production-level
conversational interfaces with shallow semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 157–162.

Kenneth Reitz. 2018. A familiar http service frame-
work.

R. Sinha and A. Jastreboff. 2013. Stress as a common
risk factor for obesity and addiction. Biological Psy-
chiatry, 73:827–835.

Elizabeth Smyth, Matteo Fassan, David Cunningham,
William Allum, Alicia Okines, Andrea Lampis, Jens
Hahne, Massimo Rugge, Clare Peckitt, Matthew
Nankivell, Ruth Langley, Michele Ghidini, Chiara
Braconi, Andrew Wotherspoon, Heike Grabsch, and
Nicola Valeri. 2016. Effect of pathologic tumor
response and nodal status on survival in the med-
ical research council adjuvant gastric infusional
chemotherapy trial. Journal of Clinical Oncology,
34.

104

Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 105–111
June 11, 2021. ©2021 Association for Computational Linguistics

A Computational Model for Interactive Transcription

William Lane, Mat Bettinson, Steven Bird
Northern Institute, Charles Darwin University

Abstract

Transcribing low resource languages can be
challenging in the absence of a comprehen-
sive lexicon and proficient transcribers. Ac-
cordingly, we seek a way to enable interac-
tive transcription, whereby the machine ampli-
fies human efforts. This paper presents a com-
putational model for interactive transcription,
supporting multiple modes of interactivity and
increasing the likelihood of finding tasks that
stimulate local participation. The approach
also supports other applications which are use-
ful in low resource contexts, including spoken
document retrieval and language learning.

1 Introduction

Understanding the “transcription challenge” is a
prerequisite to designing effective solutions, mini-
mizing bottlenecks (Himmelmann, 2018). We must
face realities such as the lack of a good lexicon, the
short supply of transcribers, and the difficulty of
engaging people in arduous work. Sparse tran-
scription is an approach to transcribing speech in
these low-resource situations, an approach which is
well suited to places where there is limited capac-
ity for transcription. Sparse transcription admits
multi-user workflows built around shared data, for
human-in-the-loop transcriptional practices, or “in-
teractive transcription” (Bird, 2020b; Le Ferrand
et al., 2020).

Sparse transcription is ‘sparse’ because we do
not produce contiguous transcriptions up front. In-
stead, we transcribe what we can, and lean on com-
putational support to amplify those efforts across
the corpus. This is not suggested as an alternative
to contiguous transcription, but as a more efficient
way to produce it, especially in those situations
where linguists and speakers are “learning to tran-
scribe” (Bird, 2020b, page 716). Sparse transcrip-
tion relies on word spotting. Wordforms that occur
frequently in the transcribed portion of a corpus
are used to spot forms in the untranscribed portion.

These are presented for manual verification, speed-
ing up the contiguous transcription work while in-
dexing the entire corpus.

Sparse transcription accepts the realities of early
transcription: we lack a good lexicon; we need to
grow the lexicon as we go; and we do not have a
ready workforce of transcribers. Moreover, in the
context of language documentation, transcription
is iterative and interactive. Linguists and speakers
leverage complementary skills to accomplish the
task (Crowley, 2007; Austin, 2007; Rice, 2009).

Sparse transcription leverages the kind of work
speakers are motivated to do. For example, when it
comes to recordings, speakers tend to engage with
the content more than the particular form of expres-
sion (Maddieson, 2001, page 215). Identifying key
words and clarifying their meanings is often more
engaging than puzzling over the transcription of
unclear passages (Bird, 2020b). An indexed corpus
can be searched to identify additional high-value
recordings for transcription.

We report on a computational model for inter-
active transcription in low-resource situations. We
discuss the kinds of interactivity which the sparse
transcription model enables, and propose an ex-
tension which provides real-time word discovery
in a sparse transcription system. For concreteness
we also present a user interface which provides
real-time suggestions as the user enters words.

We work with speakers of Kunwinjku (ISO gup),
a polysynthetic Indigenous language of northern
Australia. Members of this community have ex-
pressed interest using technology to support their
own language goals. Through this work we hope
to support language learning and corpus indexing,
and produce locally meaningful results that help
to decolonize the practice of language technology
(Bird, 2020a).

This paper is organized as follows. Section 2
gives an overview of the sparse transcription model.
Section 3 describes a particular use case of sparse

105

transcription: interactive transcription. In Section 4
we describe the system architecture and the de-
sign decisions which enable an interactive human-
computer workflow. Section 5 describes the user
interface and shows screenshots of the implemen-
tation. We conclude with a summary in Section 6.

2 The Sparse Transcription Model

Following Bird (2020b), we understand transcrip-
tion to be the task of identifying meaningful units
in connected speech. These units belong to a grow-
ing inventory (the glossary, or lexicon); their or-
thographic representation is generally not settled.
We add each new meaningful unit to the glossary
as it is encountered, initializing the entry with a
form and a gloss. Thus, a transcriptional token is a
pairing of a locus in the speech stream with a glos-
sary entry. We are agnostic about the size of this
unit; it could be a morpheme, word, or multi-word
expression.

Transcription begins with a lexicon. There is
always a word list, since this is what is used for es-
tablishing the distinct identity of a language. There
may also be some historical transcriptions, and
these words can be included in the initial lexicon.
From this point on, transcription involves growing
the lexicon.

The speech stream is broken up into ‘breath
groups’ which we use as manageable chunks for
transcription. In the course of transcription, it is a
natural thing for a non-speaker linguist to attempt
to repeat any new word and have a speaker say it
correctly and give a meaning. Thus, the process
is interactive in the interpersonal sense. We hear
and confirm the word in context, and record it in
the lexicon with a lexical identifier and a pointer to
where it occurs in the media. In the background,
a sparse transcription system uses this confirmed
glossary entry to spot more instances.

Word spotting is an automatic task which discov-
ers putative tokens of glossary entries. Glossary
entries are already stored with pointers to occur-
rences in particular breath groups. Discovering
new instances through word spotting then becomes
a retrieval task, where each breath group is seen
as a mini-document. Breath groups which are de-
termined to contain the exemplar lexical entry are
queued for speaker confirmation. Confirmed spot-
tings are updated with pointers to their respective
breath groups.

Word spotting proceeds iteratively and interac-

tively, continually expanding the lexicon while tran-
scribing more speech. As we focus on completing
the contiguous transcription of a particular text,
we grow the lexicon and the system attempts to
discover other instances across the wider corpus.
As the system calls our attention to untranscribed
regions, which may be difficult to complete for
a variety of reasons, we effectively marshall the
whole corpus to help us.

A sparse transcription system is a form of com-
puter supported collaborative work, in that it al-
leviates productivity bottlenecks via automation
and asynchronous workflows (Greif, 1988; Hanke,
2017). The sparse transcription model—organized
around a growing glossary of entries with pointers
to instances in speech—can underlie a variety of
special-purpose apps which support various tasks
in the transcription workflow. For example, Le Fer-
rand et al. (2020) demonstrate the use of a word
confirmation app based on word-spotted data for
the purpose of confirming automatically-generated
hypotheses.

We have prototyped a system which implements
the core functionalities described in this section,
and which includes a user interface which supports
interactive transcription. Figure 2 gives a schematic
view of the sparse transcription model.1

3 Learning to Transcribe

A linguist, learning to transcribe, is capable of lis-
tening to audio and quickly transcribing the lex-
emes they recognize. As lexemes are recorded,
they are added to the transcriber’s personal glossary.
Entries in this glossary may be morphs, words, or
other longer units such as multi-word expressions.
The record-keeping of the glossary helps manage
the linguist’s uncertainty in an accountable way, as
they give the task their best first-pass. As is the
standard behavior in sparse transcription, a glos-
sary is updated with links from glossary entries to
the segment of audio in which they were found.

Speakers of the language can access a view of
the linguist’s glossary entries, and confirm entry
tokens for admission to the global glossary. The
design decision to maintain personal glossaries for
individual users and postpone adjudication with a
shared, canonical glossary is an extension of the
concept defined in the sparse transcription model.

1The system prototype and a reference implementation of
the sparse transcription model can both be found at https:
//cdu-tell.gitlab.io/tech-resources/.

106

Figure 1: Word spotting in the sparse transcription model begins when the user confirms the existence of a glossary
entry in the audio. A token is created for that instance of the glossary entry, and can be used to spot similar instances
in other breath groups across the corpus.

Figure 2: The Sparse Transcription Model: Audio is
segmented into breath groups, each one a mini spo-
ken document where words may be spotted (with given
probability); interpretations span one or more breath
groups (Bird, 2020b).

Multiple transcribers can contribute to the shared
glossary, initializing their own project with the cur-
rent state of the global lexicon.

Confirmed glossary entries can be used to spot
similar entries across the whole corpus, maximiz-
ing the efforts of the learner, and providing more
pointers from a glossary entry to breath groups
where it occurs. Over time, this process leads to
more contiguous transcriptions as the transcriber
revisits and revises their lexicon in the course of
their transcription work.

However, there is an opportunity here to get
more immediate feedback from the system. A
sparsely transcribed breath group (whether sys-
tem or human transcribed) provides signal about
the breath group as a whole. Combined with the
fact that the human is currently engaged in enter-
ing their hypotheses, we can provide system sug-
gestions conditioned on sparsely transcribed data
which are updated interactively as the user types.
Anchored at the locus of a known lexeme, and
conditioned on additional available signal i.e., a
predicted phone sequence, the system posits sug-
gestions for untranscribed regions. We can refer to
this as ‘local word discovery’ (Fig. 3).

Working together with the system, a linguist’s
hypotheses can be queued for confirmation in the
same way that word spotting queues hypotheses
for speaker confirmation. Simultaneously, the tran-

scriber leverages a model to get immediate feed-
back on the connections between what they hear
and what a model encodes about the language, po-
tentially aiding language learning (Hermes and En-
gman, 2017).

Up to this point, we have established the inter-
active nature of transcription on three levels. First,
it is interpersonally interactive, as a linguist works
with speakers to associate forms with meanings.
Second, sparse transcription is interactive in the
sense that it attempts to amplify the effort of tran-
scribers by propagating lexical entries across the
whole corpus via word spotting.

Finally, the implementation of local word dis-
covery is interactive in the context of the “learn-
ing to transcribe” use case. It occupies a distinct
niche with a smaller feedback loop than word spot-
ting: transcription hints are polled from the model
and filtered with every keystroke (Figs. 6-8). It
is improved by word spotting because contiguous
transcriptions reduce uncertainty in the input to the
local word discovery model. It allows a linguist
to prepare and prioritize work for the interperson-
ally interactive task of confirming entries with a
speaker.

Figure 3: Sparsely transcribed input can be leveraged
for local word discovery methods which are comple-
mentary to word spotting.

4 System Architecture

The interactive transcription use case calls for a
variety of computational agents. Some agents ser-

107

Figure 4: The system architecture

vice computationally-expensive batch tasks, while
others are coupled with user events down to the
level of keystrokes.

Agents are implemented as containerized ser-
vices, some corresponding to long-running tasks,
e.g. media processing, while others are integral to
the user interface, e.g. phone alignment. The im-
plementation supports RESTful endpoints, and a
real-time websocket-based API.

The API layer responds to events in the client,
and endpoints support the methods in the data
model. There are three main kinds of operation;
simple CRUD operations like uploading media,
data model operations such as adding a token to a
glossary, and real-time queries such as word discov-
ery. Data validation is distributed across the client
and the server, for performance reasons and to mit-
igate the effects of network dropouts. The client
replicates a subset of the server data model, storing
this in the browser’s database and synchronizing it
with the server opportunistically.

We utilise a continuous web socket session to re-
lay user input to the server, fetching and displaying
results in real time. Commonly seen in web search,
this is a form of distributed user interface where
computational resources are distributed across plat-
forms and architectures (Elmqvist, 2011). This is
achieved via asynchronous programming with ob-
servable streams, via implementations of the Reac-
tive X pattern for JavaScript (rxjs) on the client and
Python (rxpy) on the server. Input events from the
browser are filtered, debounced and piped through
a websocket transport to a session handler on the
back end. Similarly, components of the client sub-

scribe to session event streams coming from the
back end, such as aligning user input to a phone
stream, and presenting a series of word comple-
tions.

The system makes use of several agents whose
implementation may vary across contexts or evolve
over time. We have implemented the following
agents:

Audio pre-processing. When a user adds an au-
dio file to a transcription project, the audio is pre-
processed and we store metadata and alternative
representations which are useful for downstream
tasks. For example, the pipeline includes voice
activity detection (VAD), which identifies breath
groups. Next, we calculate peaks–acoustic am-
plitude values–which we use to visualize speech
activity over time. Finally, the audio is resampled
and sent to the phone recognition agent, and the
results are displayed beneath the waveform as extra
information to support transcription.

Phone recognition. Allosaurus is a universal
phone recognizer trained on over 2,000 languages
(Li et al., 2020). The model can be used as-is to
provide phones from a universal set, or it can be
fine-tuned with language specific phonemic tran-
scriptions. The model currently we currently de-
ploy is fine-tuned on 68 minutes of Kunwinjku
speech across 5 speakers. We calculated a 25.6%
phone error rate on 10 minutes of speech from a
hold-out speaker.

Word spotting. Word spotting traditionally is au-
dio exemplar matching against spans of raw audio

108

(Myers et al., 1980). It has been shown to be fea-
sible in low resource scenarios using neural ap-
proaches (Menon et al., 2018b,a). Le Ferrand et al.
(2020) describes several plausible speech represen-
tations suited for low-resource word spotting.

Local word discovery. This is distinct from
word spotting, which locates more tokens of exist-
ing glossary entries. Local word discovery attempts
to fill in untranscribed regions between existing to-
kens. This agent provides transcription hints via a
smaller feedback loop, the third kind of interactiv-
ity discussed in Section 3. The system retrieves the
potentially large set of suggested words, and filters
it down interactively as the transcriber types. The
model is free to favor recall, because the raw sug-
gestions do not need to be immediately revealed.

We implement local word discovery using a fi-
nite state analyzer for Kunwinjku (Lane and Bird,
2019), modified to recognize possible word-forms
given a stream of phones and the offsets of known
lexemes. We use PanPhon to estimate articula-
tory distances between lexemes and phone subse-
quences to obtain rough alignments (Mortensen
et al., 2016).

5 User Interface

The user interface (Fig. 5) is inspired by minimal-
ist design, motivated by the need for an inclusive
agenda in language work (cf. Hatton, 2013). In
the left column is a waveform which has been au-
tomatically segmented into breath groups. Below
the waveform is a map of waveform peaks, to fa-
cilitate navigation across long audio files. Useful
context is also displayed, including the transcript
of the preceding breath group, followed by the se-
quence of phones produced from the audio, with
user transcriptions aligned roughly to the phone se-
quence. Below this is the input box, scoped to the
current breath group, where users enter lexemes,
with occasional suggestions offered by the local
word discovery module, and which filter interac-
tively per keystroke (Figs. 6-8).

In the right column, there is a running transcript
of the audio file, with the text of the transcript for
the current breath group shown in bold.

The user interface is designed to be navigable en-
tirely through the keyboard, to support ergonomic
transcription (cf. Luz et al., 2008).

6 Conclusion

Transcription is especially challenging when we
lack a good lexicon and trained transcribers. Con-
sequently, we seek to bring all available resources
to bear, including the knowledge of speakers, lin-
guists, and a system, all of whom are “learning to
transcribe.”

We presented a use case for interactive transcrip-
tion and showed how this can be supported within
the sparse transcription model. In designing and
implementing a sparse transcription system for a
specific use case, we elaborated on some concepts
presented in (Bird, 2020b). We examined various
kinds of interactivity in low-resource language tran-
scription, and we proposed local word discovery as
a grammatically-informed approach to word spot-
ting. This allows individual users to manage their
local lexicon independently of the task of curating a
canonical lexicon, enabling multi-user workflows.

Finally, we reported on the architecture and im-
plementation of an interactive transcription system.
It enables a transcriber to take care of much of the
arduous transcription task up front, and to allocate
more meaningful work for speakers. The product
of interaction with the system is an expanded lex-
icon, which can be used to index the corpus for
information retrieval, thus supporting the commu-
nity goal of access to knowledge locked up in many
hours of recorded audio. Additionally, we antici-
pate that support for growing personal lexicons will
be a valuable resource for the language learning
that takes place alongside transcription. In short,
the system is designed to produce the content that
language communities care about, in a way that
leverages the kind of language work that people are
willing to do.

Operationalizing the sparse transcription model
makes it possible to streamline field-based tran-
scriptional practices, and is expected to lead to
further implementations of special purpose inter-
faces that support transcription of low-resource lan-
guages.

Acknowledgments

We are grateful for the support of the Warddeken
Rangers of West Arnhem. This work was covered
by a research permit from the Northern Land Coun-
cil, and was sponsored by the Australian govern-
ment through a PhD scholarship, and grants from
the Australian Research Council and the Indige-
nous Language and Arts Program.

109

Figure 5: The transcription user interface connects to the data model, which facilitates word spotting and local
word discovery agents.

Figure 6: Local word discovery predicts possible words in the audio, conditioned on known lexemes and a flexible
interpretation of the surrounding sounds.

Figure 7: As the user continues typing, the list of suggestions is filtered down to those which remain compatible.

Figure 8: Thus, the user is guided to grammatically valid transcriptions which can be added to their lexicon.

References
Peter Austin. 2007. Training for language documen-

tation: Experiences at the School of Oriental and
African Studies. In Victoria Rau and Margaret Flo-
rey, editors, Documenting and Revitalizing Austrone-
sian Languages, number 1 in Language Documenta-
tion and Conservation Special Issue, pages 25–41.
University of Hawai‘i Press.

Steven Bird. 2020a. Decolonising speech and lan-
guage technology. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
page 3504–19, Barcelona, Spain.

Steven Bird. 2020b. Sparse transcription. Computa-
tional Linguistics, 46:713–744.

Terry Crowley. 2007. Field Linguistics: A Beginner’s
Guide. Oxford University Press.

Niklas Elmqvist. 2011. Distributed user interfaces:
State of the art. In Distributed User Interfaces,
pages 1–12. Springer.

Irene Greif. 1988. Computer-Supported Cooperative
Work: A Book of Readings. Morgan Kaufmann.

Florian Hanke. 2017. Computer-Supported Coopera-
tive Language Documentation. Ph.D. thesis, Univer-
sity of Melbourne.

John Hatton. 2013. SayMore: Language documenta-
tion productivity. Presentation at International Con-
ference Language Documentation and Conservation.

Mary Hermes and Mel Engman. 2017. Resounding the
clarion call: Indigenous language learners and doc-
umentation. Language Documentation and Descrip-
tion, 14:59–87.

110

Nikolaus P Himmelmann. 2018. Meeting the transcrip-
tion challenge. In Reflections on Language Doc-
umentation 20 Years after Himmelmann 1998, vol-
ume 15 of Language Documentation and Conserva-
tion Special Publication, pages 33–40. University of
Hawai’i Press.

William Lane and Steven Bird. 2019. Towards a ro-
bust morphological analyzer for Kunwinjku. In Pro-
ceedings of the 17th Annual Workshop of the Aus-
tralasian Language Technology Association, pages
1–9.

Éric Le Ferrand, Steven Bird, and Laurent Besacier.
2020. Enabling interactive transcription in an In-
digenous community. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 3422–28. International Committee on
Computational Linguistics.

Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew
Lee, Patrick Littell, Jiali Yao, Antonios Anasta-
sopoulos, David R Mortensen, Graham Neubig,
Alan Black, and Florian Metze. 2020. Universal
phone recognition with a multilingual allophone sys-
tem. In Proceedings of the International Conference
on Acoustics, Speech and Signal Processing, pages
8249–53. IEEE.

Saturnino Luz, Masood Masoodian, Bill Rogers, and
Chris Deering. 2008. Interface design strategies
for computer-assisted speech transcription. In Pro-
ceedings of the 20th Australasian Conference on
Computer-Human Interaction: Designing for Habi-
tus and Habitat, pages 203–10.

Ian Maddieson. 2001. Phonetic fieldwork. In Paul
Newman and Martha Ratcliff, editors, Linguistic
Fieldwork, pages 211–229. Cambridge University
Press.

Raghav Menon, Herman Kamper, John Quinn, and
Thomas Niesler. 2018a. Fast ASR-free and al-
most zero-resource keyword spotting using DTW
and CNNs for humanitarian monitoring. In Inter-
speech, pages 3475–79.

Raghav Menon, Herman Kamper, Emre Yilmaz, John
Quinn, and Thomas Niesler. 2018b. ASR-free
CNN-DTW keyword spotting using multilingual
bottleneck features for almost zero-resource lan-
guages. In Proceedings of the 6th International
Workshop on Spoken Language Technologies for
Under-Resourced Languages, pages 182–186.

David R. Mortensen, Patrick Littell, Akash Bharadwaj,
Kartik Goyal, Chris Dyer, and Lori Levin. 2016.
Panphon: A resource for mapping IPA segments
to articulatory feature vectors. In Proceedings of
the 26th International Conference on Computational
Linguistics, pages 3475–84. Association for Compu-
tational Linguistics.

Cory Myers, Lawrence Rabiner, and Andrew Rosen-
berg. 1980. An investigation of the use of dy-
namic time warping for word spotting and connected

speech recognition. In Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, volume 5, pages 173–177. IEEE.

Keren Rice. 2009. Must there be two solitudes? Lan-
guage activists and linguists working together. In
Jon Reyhner and Louise Lockhard, editors, Indige-
nous language revitalization: Encouragement, guid-
ance, and lessons learned, pages 37–59. Northern
Arizona University.

111

Author Index

Arendt, Dustin, 70, 79
Ayton, Ellyn, 79

Balch, Tucker, 16
Bettinson, Mat, 105
Bird, Steven, 105
Bradford, Melanie, 8

Callison-Burch, Chris, 86
Cutler, Bryan, 59

Demiralp, Cagatay, 52
Duskin, Kayla, 70

Eckart de Castilho, Richard, 41
Eichenberger, Zachary, 59
Enayati, Saman, 24

Finzel, Raymond, 102

Gini, Maria, 102
Glenski, Maria, 79
Griggs, Peter, 52
Gurevych, Iryna, 41

Hakim, Nagib, 31

Iglesias-Flores, Rebecca, 86

Klie, Jan-Christoph, 41
Kriz, Reno, 86
Kulkarni, Vinay, 1

Lane, William, 105
Lippincott, Thomas, 47
Lu, Benjamin, 24

Malhotra, Akanksha, 86
Marini, Francesca, 62
Mayhew, Stephen, 62
Michalowski, Martin, 102
Mishra, Megha, 86
Muthuraman, Karthik, 59

Nachman, Lama, 31

Okur, Eda, 31

Pakhomov, Serguei, 102
Palmer, Martha, 86
Park, Soya, 44
Patel, Ajay, 86
Patil, Ashwini, 1
Piovano, Enrico, 8

Rahman, Sajjadur, 52
Raman, Natraj, 16
Reiss, Frederick, 59
Roth, Dan, 62

Sahay, Saurav, 31
Saldanha, Emily, 70
Saxena, Krati, 1
Shah, Sameena, 16
Sharma, Shivam, 70
Shaw, Zhuanyi, 79
Shrestha, Prasha, 79
Singh, Esha, 102
Singh, Tushita, 1
Sunkle, Sagar, 1

Tsygankova, Tatiana, 62

Van Durme, Ben, 47
Veloso, Manuela, 16
Volkova, Svitlana, 79
Vucetic, Slobodan, 24

Weber, Verena, 8

Xu, Hong, 59

Yang, Ziyu, 24
Yun, Ji Young, 70

113

	Program
	Leveraging Wikipedia Navigational Templates for Curating Domain-Specific Fuzzy Conceptual Bases
	It is better to Verify: Semi-Supervised Learning with a human in the loop for large-scale NLU models
	ViziTex: Interactive Visual Sense-Making of Text Corpora
	A Visualization Approach for Rapid Labeling of Clinical Notes for Smoking Status Extraction
	Semi-supervised Interactive Intent Labeling
	Human-In-The-LoopEntity Linking for Low Resource Domains
	Bridging Multi-disciplinary Collaboration Challenges in ML Development via Domain Knowledge Elicitation
	Active learning and negative evidence for language identification
	Towards integrated, interactive, and extensible text data analytics with Leam
	Data Cleaning Tools for Token Classification Tasks
	Building Low-Resource NER Models Using Non-Speaker Annotations
	Evaluating and Explaining Natural Language Generation with GenX
	CrossCheck: Rapid, Reproducible, and Interpretable Model Evaluation
	TopGuNN: Fast NLP Training Data Augmentation using Large Corpora
	Everyday Living Artificial Intelligence Hub
	A Computational Model for Interactive Transcription

