
Proceedings of the 2nd Workshop on Data Science with Human in the Loop: Language Advances, pages 52–58
June 11, 2021. ©2021 Association for Computational Linguistics

52

Towards integrated, interactive, and extensible text data analytics with
LEAM

Peter Griggs∗

MIT

pgriggs@mit.edu

Çağatay Demiralp∗

Sigma Computing

cagatay@sigmacomputing.com

Sajjadur Rahman

Megagon Labs

sajjadur@megagon.ai

Abstract

From tweets to product reviews, text is ubiqui-

tous on the web and often contains valuable in-

formation for both enterprises and consumers.

However, the online text is generally noisy and

incomplete, requiring users to process and an-

alyze the data to extract insights. While there

are systems effective for different stages of

text analysis, users lack extensible platforms

to support interactive text analysis workflows

end-to-end. To facilitate integrated text an-

alytics, we introduce LEAM, which aims at

combining the strengths of spreadsheets, com-

putational notebooks, and interactive visual-

izations. LEAM supports interactive analy-

sis via GUI-based interactions and provides

a declarative specification language, imple-

mented based on a visual text algebra, to en-

able user-guided analysis. We evaluate LEAM

through two case studies using two popular

Kaggle text analytics workflows to understand

the strengths and weaknesses of the system.

1 Introduction

The growth of e-commerce has contributed to

the proliferation of digital text, particularly user-

generated text (reviews, Q&As, discussions),

which often contain useful information for improv-

ing the services and products on the web. Enter-

prises increasingly adopt text mining technologies

to extract, analyze, and summarize information

from such unstructured text data. However, online

text collections are incomplete, ambiguous, and

often sparse in informational content. Cleaning,

featurizing, modeling, visualizing, extracting infor-

mation from, and identifying topics in such text

collections can be daunting and time-consuming

without integrated systems that take the whole text

analytics pipeline into account.

DaSH-LA 2021, June 11, 2021, Virtual Conference.

The characteristics of online text make inter-

active workflows and visualizations essential for

rapid iterative analysis (Ittoo et al., 2016). There-

fore we focus on visual interactive text analysis

(VITA hereafter) and related systems. Few com-

mercial and open-source tools can support different

stages of VITA, e.g., spreadsheets, computational

notebooks, and visualization tools (Liu et al., 2018;

Smith et al., 2020). Customized visual text an-

alytics tools focus on specific use-cases like re-

view exploration (Zhang et al., 2020a), sentiment

analysis (Kucher et al., 2018), and text summa-

rization (Carenini et al., 2006). None of these

solutions accommodate the inherently cyclic, trial-

and-error-based nature of VITA pipelines end-to-

end (Drosos et al., 2020; Wu et al., 2020).

Designing and building VITA systems can be

difficult. The primary challenge is the number and

diversity of the tasks that need to be supported.

Programmatic tools such as computational note-

books can provide extensibility and expressivity

to incrementally build such support but they often

lack in interactivity and do not facilitate direct data

manipulation, impeding analysis.

In response, we propose LEAM , that provides

an integrated environment for VITA. LEAM com-

bines the advantages of spreadsheets, computa-

tional notebooks, and visualization tools by inte-

grating a Code Editor with interactive views of raw

(Data View) and transformed data (Chart View).

Figure 1 shows a snapshot of LEAM. A key compo-

nent in the design of LEAM is the instrumentation

of text analysis operations via VITAL, a python

API. These built-in operations can also be used

directly from the interactive Operations Menu. To

evaluate LEAM, we conduct two case studies using

two popular Kaggle text analytics workflows. The

*Work done while authors were at Megagon Labs.

53

A

CD

B

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

create UDF
col.project().lowercase()

col.project().remove_punctuat ion()

col.project().remove_stopwords()

new_col = col.mutate().t f_idf ()

col2 = data.get_column(new_col)

new_col = col2.project().pca()

col3 = data.get_column(new_col)

col3.project().indices([0,1])

col2.mutate().kmeans()

In[2]:

view barchart
col2.aggregate().word_scores("feature_labels")

col2.visualize("tw_barchart", "top_scores")

In[3]:

Figure 1: LEAM user interface. (A) Operations Menu enables users to perform visual interactive text analytics (VITA)
operations using drop-down menus, (B) Chart View holds a carousel of interactive visualizations created by users, (C) Data View
displays the data and its subsequent transformations, and (D) Code Editor allows users to compose and run VITA operations
using a declarative specification called VITAL.

study showed that participants preferred the inte-

grated analysis environment and the ability to spec-

ify various workflows both interactively (via Oper-

ations Menu) and declaratively (via VITAL). How-

ever, participants asked for enhanced workflow

transparency and consistency of operations. We

have released the source-code of LEAM at https:

//github.com/megagonlabs/leam.

2 Related Work

LEAM draws from prior work on interactive text

analysis, computational notebook, and declarative

specification of analysis workflows.

Interactive visual text analytics. Prior research

on visual text analytics have limitations in flexibil-

ity and extensibility due to their fixed choices of

models, visualizations, and interactions (Kucher

et al., 2018; Liu et al., 2018). LEAM adopts the

vision of a VITA system outlined in our prior

work (Rahman et al., 2020). In this paper, we

primarily focus on expressivity (e.g., declarative

workflow specification), resusability (e.g., reusing

operators and models), on-demand coordination

(e.g., linking visualizations and data), and trans-

parency (e.g., GUI interaction logging).

Computational notebooks. Computational note-

books such as Jupyter (Jupyter, 2020) allow pro-

grammers to interleave code with visualizations.

This linear layout often introduces a physical dis-

tance between related charts, limiting an analyst’s

ability to derives insights by visually comparing

different charts. Tools like B2 (Wu et al., 2020) and

LUX (Lee, 2020), provide a non-linear interface

where charts are placed in a separate visualization

pane. While LEAM shares the same principle, it

additionally features a Data View and enables co-

ordination between visualization and the data—a

desirable property of such interactive programming

environments (Chattopadhyay et al., 2020).

Declarative data analysis and visualization.

Prior work on data analysis workflow specifica-

tion focused on several different stages, from data

cleaning to exploration. To support data cleaning,

Wrangler (Kandel et al., 2011) combines a mixed-

initiative interface with a declarative transforma-

tion language. Text Extension python library (Co-

dait, 2021) enables users to operate on intermedi-

ate data, e.g., spans and tensors, in all phases of an

NLP workflow. Grammars of graphics like Vega-

Lite (Satyanarayan et al., 2016) and ggplot2 (Wick-

https://github.com/megagonlabs/leam
https://github.com/megagonlabs/leam

54

ham, 2016) support visualization specification via

abstractions, e.g., JSON. However, users cannot

dynamically add new interactions to the visual-

izations using these abstractions. LEAM enables

users to add new interactions to visualizations and

create coordination among data and visualizations

on-the-fly using declarative specifications devel-

oped based on grammar for visual text analysis

introduced in our prior work (Rahman et al., 2020).

3 Design Considerations

We now outline our design considerations for cre-

ating LEAM. Table 1 shows which of these de-

sign considerations are supported by existing tools

discussed in Section 2. These design consider-

ations were informed by prior work on identify-

ing challenges related to live programming inter-

faces (Chattopadhyay et al., 2020; Rule et al., 2018;

Kery et al., 2020), studies on exploratory data sci-

ence practices (Alspaugh et al., 2018; Kery et al.,

2018; Zhang et al., 2020b), and guidelines for mul-

tiple coordinated view design (Wang et al., 2000),

and refined through our experiences working with

user-generated text data at MEGAGON LABS:

Design Notebooks Visualization VITA

Crietria Jupyter LUX B2 Platforms (LEAM)

D1/D2. Code X X X x X

D1. Visualization X X X X X

D1. Data x x x x X

D3. On-demand

Coordination
x x x x x

D4. Reusability x x x x X

D5. Transparency x x X x x

Table 1: Unlike existing tools, LEAM supports all of the
design considerations (D1−D5) outlined in Section 3.

D1. Enable integrated analytics. VITA systems

should provide a single platform where users can

directly manipulate (spreadsheets) and visualize

(visualization tools) data while writing codes (note-

books) without context switching between tools.

D2. Specify operations declaratively. VITA sys-

tems should provide an expressive specification

language to represent and communicate the entire

breadth of workflows within the domain.

D3. Facilitate on-demand coordination. Within

an integrated environment, VITA systems should

enable users to specify coordination between all

the available views on demand.

D4. Ensure reusability of operations. Users

should be able to craft their analysis pipeline and

share and reuse the workflow across use-cases.

D5. Ensure transparency of operations. VITA

systems should ensure transparency of interactions

on the interface—effect of direct manipulation and

programmatic interactions should be immediately

visible via visual cues or prompts.

4 LEAM User Interface

The four key components of the interface are a

Code Editor, an Operations Menu, a Data View,

and a Chart View. We discuss how these compo-

nents enable integrated visual text analysis (D1).

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

clean column content
col.project().strip_html()

col.project().remove_emoji()

col.project().lowercase()

col.project().correct_spellings()

In[2]:

ceate a new column with review t f - idf
new_col = col.mutate().t f_idf ()

col2 = data.get_column(new_col)

In[3]:

access metadata to visualize top words
col2.aggregate().word_scores("feature_labels")
col2.visualize("barchart", "top_scores")

In[4]:

(a) VITAL commands

(b) Cleaning operations

(c) Featurization operations

Clean

Featurize

Visualize

Figure 2: (a) Users writes scripts in Code Editor using the
VITAL API for cleaning, featurizing, and visualizing data.
Alternatively, users can also utilize the operators in Operations
Menu, e.g., cleaning (b) and featurization (c).

Code Editor and Operations Menu. While the

Code Editor design (see Figure 1C) is inspired by

computational notebooks, it only supports writ-

ing, editing, and executing scripts—visualizations

and data tables are displayed separately in Chart

View and Data View, respectively. The multi-

view representation is intended to help users relate

their workflows with the underlying data and their

visualizations—a benefit of multiple coordinated

views. Users can write scripts in the Code Editor

in Python. We also implement a Python-based

visual interactive text analysis library, VITAL,

for issuing various text analysis and visualization

operations in the Code Editor (discussed in Sec-

tion 5). These operations are derived from an alge-

bra for visual text analysis introduced in our prior

work (Rahman et al., 2020). Users can also utilize

the Operations Menu to execute built-in text analy-

sis and visualization operations. Figure 2a shows

an example workflow in the Code Editor consisting

of data cleaning, featurization, and visualization

operations. Users can also perform these opera-

tions from Operations Menu without writing any

scripts (see Figure 2b, and 2c).

Data View. Data View (see Figure 1C) shows a

tabular representation of the underlying data. The

55

underlying data structure in LEAM is a dataframe.

Data View is kept in sync with the dataframe—

any changes made to the dataframe is immediately

reflected in Data View (D3). For example, in Fig-

ure 3 when a user cleans the review column in

the dataframe, the corresponding cleaned data is

displayed in the Data View. In traditional script-

based systems like computation notebooks, users

are required to explicitly specify a print operation

to view and inspect data.

(a) Noisy text (b) Cleaned text

Figure 3: As (a) user performs various cleaning operations
on the “review” column as shown in Figure 2, (b) the cleaned
column data is immediately displayed in Data View (D3).

Chart View. LEAM enables users to generate vi-

sualizations either from the Code Editor or Oper-

ations Menu and displays those visualizations in

the Chart View (see Figure 1B). Unlike compu-

tation notebooks, where analyzing visualizations

in distant cells can be cumbersome, the side-by-

side presentation of charts in Chart View enables

users to compare and analyze related visualization

without scrolling. We create the visualizations by

extending Vega-Lite (Satyanarayan et al., 2016).

These visualizations can be generated from Oper-

ations Menu or using VITAL commands and can

be dynamically updated to add new interactions

(discussed in Section 5).

5 Visual Text Analysis Using LEAM

The text analysis operations in LEAM are devel-

oped based on a visual text algebra, VTA (Rahman

et al., 2020). LEAM provides a Python API called

visual interactive text analysis library, VITAL, that

enables users to write VTA commands in Code

Editor. We now briefly introduce VTA and then

demonstrate the corresponding specification library

VITAL that we have developed.

5.1 VTA Operators and VITAL

VTA supports various operators for selecting a

subset of the data (selection), transforming se-

lected data into various representations for analysis

(transformation), coordinating different views

within the interface (coordination), and creat-

ing new operators by combining existing ones

(composition). The JSON-style specification for-

mat of VTA is quite different from scripting lan-

guages widely used by analysts, such as R and

Python. Composing operations in VTA can be

cumbersome as users are required to specify multi-

ple nested objects. Therefore, we have developed

VITAL for declaratively specifying VTA com-

mands in Code Editor of LEAM (D2). The VITAL

commands are compiled and executed by the back-

end Python runtime of LEAM. We show several

examples of VITAL commands that implement

the VTA operators as well as newly introduced

features next.

(c) Single bar selection(b) UDF creation

data.get_vis(0).select ion("funny")

col2.visualize("barchart ", "top_scores")

(b) Chart creation

Load dataset and select the "review" column
data = VTA("reviews.csv", started=True)

col = data.get_column("review")

In[1]:

create UDF
def get_ngrams(corpus, top_k, n):

vec = CountVectorizer(ngram_range=(n, n)).f it (corpus)

bow = vec.t ransform(corpus)

sum_words = bow.sum(axis=0)

words_f req = [(word, int(sum_words[0, idx]))

for word, idx in vec.vocabulary_.items()]

words_f req = sorted(words_f req,

 key = lambda x: x[1], reverse =True)

return dict(words_f req[:top_k])

In[2]:

add and then apply UDF
data.udf ().add(get_ngrams)

col.udf ().apply("get_ngrams", 10, 2, md_tag="ngrams")

In[3]:

Create UDF

Apply UDF

Figure 4: Declarative specification (D2): (a) using VITAL
user creates and applies a UDF to compute top-K n-grams of
reviews. Transparency (D5): (b) user generates a barchart of
top words from Operation Menu which is logged as a VITAL
script in Code Editor. Coordination (D3): (c) a user selected
bar is highlighted on-demand.

5.2 Towards Integrated Text Analysis

We now explain how users can perform text analy-

sis in LEAM.

5.2.1 User-guided Analysis

In Figure 2, we show how a user can analyze a text

reviews dataset using various VITAL commands

or menu operations like project (data cleaning)

and mutate (featurization). Moreover, users can

also combine multiple existing operators to declar-

atively specify user-defined operators (D2). For

example, as shown in Figure 4, a user creates a

new function to generate top n-grams in a given

text corpus and then uses VITAL to load and then

apply the UDF. Users can use the visualize com-

mand to create visualizations of the underlying

data (see Figure 4b) and interactions (Figure 4c).

5.2.2 Programmatic Coordination

A key feature of LEAM is the ability to dynami-

cally add coordination to existing visualizations

56

using VITAL (D3). Existing libraries like Vega-

Lite only allow users to predefine the visualization

and corresponding interactions without supporting

any dynamic coordination specification.

barchart .bi_link("table")
barchart .select("gif t ")

Figure 5: To relate a word in the chart with reviews both in
Data View and the scatterplot (D3), the user issues a VITAL
command in Code Editor (see inset). Clicking a bar in the
barchart filters reviews in Data View and highlights relevant
reviews in the scatterplot.

As shown in Figure 4c, users can update the

selection type of the barchart in Figure 4b to en-

able single bar selection. Moreover, using VITAL,

users can also dynamically specify external coordi-

nations (a) among charts in the Chart View and (b)

between Data View and charts. Vega-Lite does not

provide a formal interaction grammar for such ex-

ternal coordination. For example, Figure 5 shows

how users can enable coordination between the

barchart, scatterplots, and data. Such dynamicity

allows users to augment the visualizations instead

of recreating charts and connect different views on

demand to investigate data relationships. LEAM

maintains a coordination graph to keep track of the

linked views, which we discuss in Section 4.

5.2.3 Reusability and Transparency

Both VITAL and Operation Menu enable users

to issue both analysis and coordination operations

across different projects and workflows. More-

over, users can add their UDFs as new operators

to VITAL and menu operations using the add_UDF

command (see Figure 4a), thus ensuring reusabil-

ity (D4). Users can also upload pre-trained models

(e.g., classification, regression) from Operations

Menu and then access and reuse the models using

the get_model and predict commands. To en-

sure transparency of the user interactions (D5) on

the Operation Menu, LEAM logs the corresponding

VITAL command in a new cell in Code Editor (see

Figure 4b). The logging feature enables users to

track their interactions, debug the logs if required,

and re-execute those interactions.

6 LEAM Architecture

LEAM is developed as a web application and is

implemented using ReactJS and Flask framework.

We depict the architecture in Figure 6. LEAM client

is responsible for capturing user input, and for

rendering the views based on results returned by

the back-end. Given any user interaction on the

front end, the LEAM Request Processor issues a

request to the backend LEAM Controller. This

controller manages the uploaded data and sessions

while propagating user interactions to the session

manager.

CLIENT

System-X Controller VITAL Compiler

SERVER

Frontend
Request

Processor

Session Manager

DataFrame

Task Queue
Session Var iables

VITAL Scr ipts
Visual Interact ions
Menu Operat ions

Data Operat ions

Metadata

View Cache

data = VTA("xyz")

c1 = data.get_col()

c1.project().clean()

c1.mutate().t f_idf()

VITAL Executor

Coordination Graph

Figure 6: LEAM architecture. The front-end is a web ap-
plication. The back-end features various components such as
task queue, coordination graph, VITAL compiler, and execu-
tor to handle and execute user requests.

The session manager interprets the user

interaction—any interactions on the Operations

Menu is sent to a lightweight VTA Compiler while

the VITAL commands on the Code Editor are

pushed in a task queue. The VTA compiler trans-

lates the user-selected operator to a VITAL com-

mand which is then executed by the VTA Execu-

tor. LEAM backend employs a Task Queue to

keep track of the VITAL commands in Code Edi-

tor. LEAM session manager also employs a View

Cache to track the states of the front end views.

LEAM employs a Coordination Graph to manage

coordination among linked views—for any inter-

action on a view, all the views in its adjacency list

are updated. For example, selecting a bar in the

barchart in Figure 5 updates the scatterplot and

Data View in its adjacency list.

7 Case Studies

To assess the impact of LEAM in performing vi-

sual text analysis and collect early feedback, we

evaluated it through two case studies.

57

7.1 Study Design and Tasks

Design. The study consisted of three phases: (a)

an introductory phase to help participants familiar-

ize themselves with LEAM, (b) a workflow execu-

tion phase where the participants used LEAM to

implement a text analysis workflow, and (c) a semi-

structured interview to collect qualitative feedback

regarding LEAM.

Participants. We recruited two participants within

our professional network. Participant Pa was a re-

searcher in natural language processing with exten-

sive experience in review analysis and designing

personal assistants and conversational bots. Partic-

ipant Pb was a software engineer with experience

in NLP pipelines and text analysis.

Tasks. We selected a spam detection work-

flow (Kaggle, 2021b) and a tweet analysis work-

flow (Kaggle, 2021a) from Kaggle, that are related

to analyzing user-generated text as the respective

tasks of our use cases. We chose the workflows

based on their popularity and relevance to every-

day text data analytics workflows in practice. For

both the workflows, participants were provided pre-

trained models. They were asked first to explore

and preprocess a separate test dataset and then clas-

sify the data using the respective pre-trained model.

For the preprocessing tasks, participants had to cre-

ate a UDF. Participants were free to use any feature

of LEAM or write code in Code Editor.

7.2 Observations

Both participants were able to complete their tasks

with varying degrees of help from the experi-

menters. Participants appreciated the ability to per-

form the analysis both using Operations Menu (in-

teractive) and Code Editor (declarative). They also

found the user interface of LEAM more structured,

commenting on the “messiness” of analysis using

computational notebooks, also highlighted in prior

work (Alspaugh et al., 2018). Moreover, partici-

pants found having visualizations within their eye-

sight without the need for scrolling up and down

useful, a benefit of integrating multiple views (Rah-

man et al., 2021). They appreciated the ability to

specify interactive coordination between visual-

izations and Data View using VITAL. Pa appreci-

ated the ability to reuse operations from Operations

Menu for bootstrapping the analysis.

Figure 7: Bigram visualizations on Tweets dataset (Kaggle,
2021a) cleaned with a UDF. Users can immediately see the
impact of the cleaning operation: (a) before and (b) after
applying the UDF.

Participants also appreciated the ability to vi-

sualize the impact of their operations. Figure 7a

displays a bi-gram visualization of the unprocessed

tweets. After applying the cleaning operator on the

tweets, the visualization was automatically updated

(see Figure 7b). Such dynamic coordination high-

lights the importance of supporting context switch-

ing between stages in the data science pipeline,

such as cleaning and visualization.

Participants also provided feedback for improve-

ment. The most frequently raised issue was the

need for improved communication of errors and

the support for debugging, a requirement identi-

fied in earlier work (Chattopadhyay et al., 2020).

Moreover, participants were occasionally confused

about the effects of their operations, suggesting

the need for visual guidance and better cues. Re-

cent work explores such error detection methods

for computational notebooks (Macke et al., 2021).

Participants also pointed out a few syntactic incon-

sistencies of VITAL commands and suggested a

more consistent design for ease of learning.

8 Conclusion and Future Work

This paper presents LEAM, a tool that enables users

to perform interactive text analysis in-situ. Our

declarative specification API VITAL provides sup-

port for a suite of operators to author diverse VITA

workflows on-demand and enable different modes

of interactive coordination among views. Prelim-

inary evaluation of LEAM highlights the benefits

of integrating multiple views, supporting both in-

teractive and declarative specification of tasks, en-

abling reusability of operations, and ensuring trans-

parency of interactions. While the initial results

are promising, there is room for improvement in

adding more transparency and providing wider op-

erations coverage. LEAM can further benefit from

addressing challenges related to scalability, work-

flow optimization, and version control that related

work also explores.

58

References

Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin,
and Marti A Hearst. 2018. Futzing and moseying:
Interviews with professional data analysts on explo-
ration practices. IEEE transactions on visualization
and computer graphics, 25(1):22–31.

Carenini et al. 2006. Interactive multimedia sum-
maries of evaluative text. In IUI, pages 124–131.

Souti Chattopadhyay, Ishita Prasad, Austin Z Henley,
Anita Sarma, and Titus Barik. 2020. What’s wrong
with computational notebooks? pain points, needs,
and design opportunities. In Proceedings of the
2020 CHI Conference on Human Factors in Com-
puting Systems, pages 1–12.

Codait. 2021. Text extensions for pandas.

Ian Drosos, Titus Barik, Philip J Guo, Robert De-
Line, and Sumit Gulwani. 2020. Wrex: A unified
programming-by-example interaction for synthesiz-
ing readable code for data scientists. In ACM Hu-
man Factors in Computing Systems (CHI), pages 1–
12.

Ashwin Ittoo, Antal van den Bosch, et al. 2016. Text
analytics in industry: Challenges, desiderata and
trends. Computers in Industry.

Project Jupyter. 2020. Project jupyter.

Kaggle. 2021a. Basic eda, cleaning and glove.

Kaggle. 2021b. Simple eda with data cleaning &
glove.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein,
and Jeffrey Heer. 2011. Wrangler: Interactive vi-
sual specification of data transformation scripts. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 3363–3372.

Mary Beth Kery, Marissa Radensky, Mahima Arya,
Bonnie E John, and Brad A Myers. 2018. The story
in the notebook: Exploratory data science using a lit-
erate programming tool. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, pages 1–11.

Mary Beth Kery, Donghao Ren, Kanit Wongsupha-
sawat, Fred Hohman, and Kayur Patel. 2020. The
future of notebook programming is fluid. In Ex-
tended Abstracts of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, pages 1–8.

Kucher et al. 2018. The state of the art in sentiment
visualization. In Computer Graphics Forum, vol-
ume 37, pages 71–96. Wiley Online Library.

Doris Lee. 2020. Lux: A python api for intelligent
visual discovery.

Liu et al. 2018. Bridging text visualization and mining:
A task-driven survey. IEEE TVCG, 25(7):2482–
2504.

Stephen Macke, Hongpu Gong, Doris Lee, Andrew
Head, Doris Xin, and Aditya Parameswaran. 2021.
Fine-grained lineage for safer notebook interactions.
Proceedings of the VLDB Endowment, 14(6):1093–
1101.

Sajjadur Rahman, Mangesh Bendre, Yuyang Liu,
Shichu Zhu, Zhaoyuan Su, Karrie Karahalios, and
Aditya Parameswaran. 2021. Noah: Interactive
spreadsheet exploration with dynamic hierarchical
overviews. Proceedings of the VLDB Endowment,
14(6):970–983.

Sajjadur Rahman, Peter Griggs, and Çağatay Demiralp.
2020. Leam: An interactive system for in-situ visual
text analysis. In Conference on Innovative Data Sys-
tems Research.

Adam Rule, Aurélien Tabard, and James D Hollan.
2018. Exploration and explanation in computational
notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–12.

Satyanarayan et al. 2016. Vega-lite: A grammar of
interactive graphics. IEEE TVCG, 23(1):341–350.

Smith et al. 2020. The machine learning bazaar: Har-
nessing the ml ecosystem for effective system devel-
opment. In ACM SIGMOD, pages 785–800.

Wang et al. 2000. Guidelines for using multiple views
in information visualization. In Proceedings of the
working conference on Advanced visual interfaces,
pages 110–119. ACM.

Hadley Wickham. 2016. ggplot2: elegant graphics for
data analysis. springer.

Yifan Wu, Joe Hellerstein, and Arvind Satyanarayan.
2020. B2: Bridging code and interactive visualiza-
tion in computational notebooks. In ACM UIST.

Zhang et al. 2020a. Teddy: A system for interactive
review analysis. In SIGCHI, pages 1–13.

Ge Zhang, Mike A Merrill, Yang Liu, Jeffrey Heer,
and Tim Althoff. 2020b. Coral: Code represen-
tation learning with weakly-supervised transform-
ers for analyzing data analysis. arXiv preprint
arXiv:2008.12828.

https://codait.github.io/text-extensions-for-pandas/
http://jupyter.org/
https://www.kaggle.com/shahules/basic-eda-cleaning-and-glove/
https://www.kaggle.com/madz2000/simple-eda-with-data-cleaning-glove-98-accuracy/
https://www.kaggle.com/madz2000/simple-eda-with-data-cleaning-glove-98-accuracy/
https://github.com/lux-org/lux
https://github.com/lux-org/lux

