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Abstract

Current methods for evaluation of natural lan-
guage generation models focus on measuring
text quality but fail to probe the model creativ-
ity, i.e., its ability to generate novel but co-
herent text sequences not seen in the training
corpus. We present the GenX tool which is
designed to enable interactive exploration and
explanation of natural language generation out-
puts with a focus on the detection of memoriza-
tion. We demonstrate the tool on two domain-
conditioned generation use cases — phishing
emails and ACL abstracts.

1 Introduction

The capabilities of natural language generation
(NLG) models have grown rapidly in recent years,
with state-of-the-art models such as GPT-3 (Brown
et al., 2020) able to produce text that is often indis-
tinguishable from human-written text. Despite this
progress, there are many remaining challenges in
effectively evaluating the quality of machine text
generations. Most existing evaluation approaches
rely on human evaluation of the quality, fluency,
and realism of a sample of generated outputs in
combination with automated metrics that attempt
to replicate these human judgements. However, this
focus on text quality disregards several other key
evaluation dimensions such as the creativity of the
model and the degree of training set memorization.

An NLG model that simply reproduces long text
snippets from the training data is likely to achieve
high quality, but does not represent the ability of the
model to creatively generate novel text sequences.
This can contribute to an inappropriate belief in the

model’s sophistication if users are not aware the
generated text is copied wholesale from the training
data. Data scientists developing NLG models are
not likely to be familiar enough with a given train-
ing corpus to detect this problem from the NLG
model output without additional tool support.

A second related issue arises more generally
when text datasets collected from multiple sources
are used to train machine learning models. In this
case, identical text substrings can inadvertently end
up on both sides of a train-test split. This can lead
to artificially inflated model performance metrics,
especially in deep learning models, having suffi-
cient parameters to enable input memorization and
shortcut generalization. While detection of exact
duplicates is straightforward, detection of partial,
sub-document duplication is more challenging.

To address these issues, we present the GenX 1

tool which is designed to enable data scientists to
understand the provenance of the output of a text
generation model. Specifically, GenX lets users
understand which sentences or passages from a
generated text output are very similar to sentences
in the model’s training input. It compares sentences
in the output text to text that the model was trained
on and renders a marked up version of the text to
indicate what parts of the text may have been mem-
orized from the training data. The tool also lets the
user find interesting text based on pre-computed
statistics related to this potential memorization.

1Source: https://github.com/pnnl/genx

https://github.com/pnnl/genx
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2 Related Work

Language generation metrics Many NLG tasks
are framed as supervised sequence-to-sequence
problems, such as in the case of machine transla-
tion. Metrics for such tasks evaluate the similarity
between a candidate sentence and a set of refer-
ence sentences. There are wide range of automated
metrics including BLEU (Papineni et al., 2002),
SARI (Xu et al., 2016), BLUERT (Sellam et al.,
2020), and GLEU (Wu et al., 2016). These metrics
have been shown to have mixed success in terms of
replicating the intuition of humans regarding text
quality (Novikova et al., 2017).

For open domain NLG models, datasets such
as Penn Tree Bank (Marcus et al., 1994) or LAM-
BADA (Paperno et al., 2016) are commonly used
for evaluation. However, these datasets cannot help
when models are meant to be constrained to a cer-
tain domain, and they do not consider long-form
text generation, only text completion tasks. An-
other common method is to leverage the trained
model for downstream tasks to assess the quality
of the language model (Radford et al., 2019). Work
by (Hashimoto et al., 2019) has proposed combin-
ing human and statistical evaluation to measure the
quality and diversity of generated text.

Domain-conditioned text generation NLG mod-
els can be evaluated by their perplexity calculated
on a held out data set. While perplexity is useful
for measuring model performance, it has limita-
tions in measuring quality (Theis et al., 2015) and
is typically is calculated at the model level, without
taking in to consideration differences in generated
text that result from different decoding strategies
that affect the quality of the output.

Evaluating memorization in language genera-
tion In comparison to work related to text qual-
ity measures, less work has been dedicated to the
evaluation of memorization in NLG models. In
addition to its direct bearing on model creativity,
memorization of training data in generation mod-
els has significant privacy implications, especially
in domains that include sensitive information such
as social media data or clinical notes. Previous
efforts to evaluate memorization have focused on
the leakage of sensitive information by adding “se-
cret” information to the training data and evaluating
the perplexity of the inserted secret during gener-
ation (Carlini et al., 2019). There as been little
previous work on looking for memorization more

generally in order to evaluate model creativity.

Evaluating test set contamination A number of
recent works have identified issues in natural lan-
guage processing datasets with text overlap and
near-duplication in training and testing sets leading
to artificially inflated performance metrics. Such
issues have been identified in question answering
datasets (Lewis et al., 2020) and large software and
code corpora (Allamanis, 2019). Language mod-
eling benchmarks have also been shown to exhibit
this issue. For instance, the Billion Word Bench-
mark has a 13% overlap between train and test 8
grams (Radford et al., 2019). Language models
trained on large datasets scraped from the web also
pose a risk for test set contamination. Brown et al.
(2020) evaluate the impact of test example presence
in the pre-training set on GPT-3 for some of their
benchmark test sets using 13-gram overlap. They
find a substantial amount of overlap between their
pretraining data and test data (>50% for a quarter of
the benchmarks), but noted that manual inspection
of the overlapping examples showed a significant
number of false positives.

Interactive/explanation tools Previous work
has largely focused on developing methods for auto-
mated quantitative evaluation of generation quality,
but fewer efforts have been applied to the devel-
opment of interactive tools to explain and under-
stand the generation of individual examples. The
compare-mt tool automates the comparison of mul-
tiple NLG models according to traditional BLEU-
type metrics as well as providing more detailed
breakdowns of accuracies by word or sentence
type (Neubig et al., 2019). The VizSeq tool pro-
vides an interactive interface to explore metric per-
formance on the full corpus, groups of instances,
and individual examples (Wang et al., 2019). The
existing tools are largely focused on text quality
evaluation rather than memorization evaluation and
are designed specifically for supervised generation
tasks such as translation rather than open-domain
or domain-conditioned generation tasks.

Anti-plagiarism software Anti-plagiarism tools
also aim at quantifying similarity between texts.
Many such tools are proprietary, reference against
an existing database of published work, and con-
sider each document on an individual basis. In
contrast, GenX allows for referencing against spe-
cific training text and is meant to assess a collection
of generated documents as a whole. Additionally,
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in NLG not all “copying” is bad, and GenX charac-
terizes any matching text segments through metrics
that go beyond a binary classification.

3 GenX Tool & Implementation

GenX is implemented as a Jupyter Notebook2 wid-
get3, which allows for an interactive user experi-
ence that is tightly integrated with a popular compu-
tational environment for data science. The widget
is implemented in two parts: a Python side, which
performs preprocessing and integration with the
Jupyter environment, and a JavaScript side, which
handles rendering user interaction. The inputs to
GenX are Pandas4 DataFrames for the raw text
(each row in the data frame corresponds a sen-
tence), the corresponding sentence-level embed-
ding representation of that text, and an identifier
for which document the sentence belongs to. GenX
requires that the raw text and embeddings are also
split into train and test sets. The test set may either
be text generated from an NLG model or the test
split of the real data. Thus GenX inputs are train
text, train embedding, test text, and test embedding
DataFrames. By design, GenX does not assume
a particular embedding technique and requires the
user to compute the embeddings. This allows the
user to employ whatever method is appropriate for
their use-case (e.g. TF-IDF, neural network) and
does not preclude the adoption of new state-of-the-
art embeddings methods in the future. For our
demonstrations, we use Sentence BERT (Reimers
and Gurevych, 2019) to create the embeddings used
in the tool.

During preprocessing, i.e., after input but before
rendering, the Python half of GenX computes the
cosine distance between each sentence in the train
and test embeddings. The 10 nearest neighbors of
each sentence in the test split and their respective
distances are passed to the JavaScript half of the
widget along with the test sentence DataFrame.
The tool passes the rows of the train text DataFrame
that were among the neighbors of any sentence in
the test set. When a test sentence is rendered, its
nearest neighbor distances are visualized in a bar
graph following that sentence. The bars are sorted
by distance, with the first nearest neighbor placed
on the left, and the last nearest neighbor on the
right, so the bars always increase monotonically.

2https://jupyter.org
3https://github.com/jupyter-widgets/widget-cookiecutter
4https://pandas.pydata.org

They allow the user to get a better understanding of
the nearest neighbor distribution, e.g., whether the
first nearest neighbor is unique or there are other
semantically similar sentences in the train set.

Furthermore, the tool indicates which parts of
the sentences are copied verbatim, or nearly so
from the training data. To do so, we align each test
sentence against its nearest neighbor in the train
set using dynamic time warping (Sakoe and Chiba,
1978) at the token level. We use Levenshtein dis-
tance (Levenshtein, 1966) as the token-token dis-
tance function5. We highlight the tokens in the test
sentence that are exactly matched to tokens in their
nearest neighbor sentence with a strong underline.
Tokens that are partially matched, i.e. with a Leven-
shtein distance less than 5, have a weaker underline.
The remaining tokens are not underlined. The user
can mouse over a bar to compare the text of each
nearest neighbor against the test sentence.

When reading a document, the user may want to
get a sense of what documents the nearest neighbor
sentences are sourced from. For example, when
repeats occur, do they occur together in the same
source document? We include a step line chart visu-
alization above the text to illustrate this. The x-axis
is the sentence number of the generated sentence,
and the y-axis is the source document identifier of
the nearest neighbor of that sentence. The y-axis
is sorted by first occurrence, so that the chart will
increase monotonically unless a source document
is revisited, which is clearly visible as dip in the
chart. The line chart is also brushable allowing the
user find corresponding sentences in the text below.

The tool also contains an interactive scatter plot
to help the user focus on interesting or problematic
examples of generated text and avoid having to
page through every document. The axes of the
scatter plots are two novel document-level metrics
which we refer to as distinctiveness and diversity.

For a given document in the test data, Distinctive-
ness is the distance of the first nearest neighbor to
each test sentence in a document, averaged across
the generated sentences in the document. Low dis-
tinctiveness means that many sentences in that doc-
ument were semantically similar to sentences in
the training set, and indicate copying for specific
phrases and may be symptomatic of memorizing
repeated phrases. Low distinctiveness for the train-
ing set overall may be indicative of broader model

5We tried a simpler approach of using Dynamic Time
Warping at the character level, but this produced difficult to
interpret highlighting for sentences with low alignment.
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Figure 1: GenX interface with the distinctiveness/diversity overview of the corpus (A), the document navigation
tool (B), and the individual document view containing the step line chart for diversity visualization (C) with an
interesting dip indicating revisiting of a training document (D) and the document text with train data overlap and
similarity annotations (E).

issues impacting creativity, potentially caused by
sub-optimal parameter settings.

Each sentence in the training data is found within
a particular source document. For a given docu-
ment in the test data, Diversity is the number of
unique corresponding source documents for the
nearest neighbor of each test sentence in the gener-
ated document divided by the number of test sen-
tences. Low diversity means the test document has
similarity to a single source document, and is in-
dicative of longer length copying from the training
set, while a maximum diversity value of 1.0 indi-
cates that the nearest neighbor of each generated
sentence is from a different document in the train-
ing set. Because of the limited prior work on model
memorization and lack of existing metrics, we in-
troduce these two new metrics to quantitatively cap-
ture the patterns of sentence-level (distinctiveness)
and document-level (diversity) memorization by
the models. We also average these metrics across
documents in the test corpus for corpus-level anal-
ysis (see Table 1).

4 Use Case: Phishing Email Generation

Phishing Emails We initially developed the
GenX tool when working with a composite dataset
of publicly available phishing datasets that con-
tained many duplicates and near-duplicates. This
dataset was initially comprised of the aggregation
of data made available by (Azunre, 2019), and
(Nazario, 2011) as well as phishing emails pro-
vided by industry partners. The initial dataset con-
tained a total of 60,705 emails, however after initial
de-duplication efforts using exact string matching
only 9,234 emails remained which was split into
a train set of 8,311 and a test set of 923. After
further de-duplication efforts, aided by GenX, the
final dataset consists of 5,634 emails in the training
set and held out validation and test sets of size 500
each. While we have been rigorous in our efforts
to remove emails that are duplicated, the formulaic
nature of phishing emails leads to many commonly
repeated phrases, sentences, or paragraphs.

Phishing Test/Train split While the GenX tool
was originally designed for the evaluation of mem-
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Figure 2: Distinctiveness and diversity scores for
emails in the train and test sets of the phishing dataset
reveal that there is significant test set contamination

Figure 3: Example email from the phishing test set with
high overlap with an email from the training set, differ-
ing only in the name of the recipient.

orization in NLG models, its ability to explore text
overlap makes it well suited to the task of looking
for test set contamination. To test this use case,
we use GenX to look for text duplication across
the train/test split of our 9k email phishing data
set. Figure 2 shows the distinctiveness/diversity
scatter plot which reveals a large number of of
low-distinctiveness, low-diversity pairs between
the training and test set which is indicative of sig-
nificant levels of text duplication. Additionally,
the example shown in Figure 3 demonstrates how
GenX allows for qualitative analysis of the text in
question. We can see from the underlining that
almost all of the text in the example test set email
appeared verbatim in a training set email, with the
only difference being the name of the recipient.
We identified this as a common pattern within the
dataset because attackers duplicate popular phish-
ing emails, making minor edits for personalization.

Phishing generation To build a phishing
domain-conditioned generation model, we fine-
tuned a GPT-2 small model (Radford et al., 2019)
on the phishing training set using a learning rate
of 5 ∗ 10−5 and a batch size of 8. We chose two
models to illustrate the use of GenX for qualitative

(a) High memorization, highly coherent example

(b) Low memorization, incoherent example

Figure 4: Example generations from the phishing mod-
els showing the memorization/coherence trade-off

analysis of different models. Model 1 was trained
for 10 epochs, while Model 2 was trained for 20
epochs. For each model we generate 500 unique
emails, using a decoding temperature of 1.1.

We leverage GenX to perform qualitative evalu-
ation of the levels of memorization in generations
by these models. We find an overall high level of
training email memorization, with the generation
models producing emails that are nearly word-for-
word replications of emails from the training set.
In the distinctiveness-diversity plots (Figure 5), we
observe that while there are many generated emails
with high diversity, there still a significant popula-
tion of emails with low distinctiveness and diversity
scores. Using these plots to identify emails with
lower and higher levels of memorization and then
observing the corresponding email text in the in-
dividual document view, we are able to discover
the interesting pattern that lower levels of memo-
rization seem to be correlated with lower levels of
coherence as determined by the human. In other
words, the models are unable to creatively produce
novel phishing emails and must rely on rote copy-
ing from the training data for reasonable human-
evaluated performance. We can also use the tool
to perform relative comparisons between memo-
rization across different modeling choices. In this
case, we find that increasing the number of train-
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Figure 5: Diversity vs. distinctiveness for the
two phishing NLG models. Both show training
data memorization, but Model 2 contains more low-
distinctiveness, lower-diversity examples).

ing epochs increases the level of memorization.
We show several examples of generated emails
from these models in Figure 4, which highlight
the memorization-coherence trade off.

5 Use Case: ACL Abstract Generation

ACL Abstract Data The second dataset is the
set of abstracts available from the ACL anthology 6,
chosen simply because we considered it a relevant
corpus for demonstration. We employed 17,903
abstracts as the training data for our generative
model and withheld 2,000 abstracts for validation
and 2,000 abstracts as the test set, whose NLG
model perplexity is reported in in Table 1.

ACL generation We fine-tuned a GPT-2 small
model (Radford et al., 2019) on the ACL training
set with a learning rate of 5 ∗ 10−5 and a batch size
of 8. For this comparison we used a model that had
been trained for 25 epochs, but created two sets
of generated examples using different decoding
temperatures, 0.8 for Set 1 and 1.1 for Set 2. Each
set contains 600 generated abstracts.

6https://www.aclweb.org/anthology/

(a) ACL Model 1: Low memorization, highly coherent
example

(b) ACL Model 2: Low memorization, highly coherent
example

Figure 6: Generated abstracts with low memorization
and high creativity of the generative models.

In contrast with the phishing data set, the explo-
ration of model outputs for the ACL data with the
GenX tool reveal that these models achieve low
levels of memorization and high levels of coher-
ence overall. We show several example abstracts
generated from the ACL models in Figure 6. We
can observe the low level of memorization in these
abstracts because the only words underlined in the
generated text are common words like “the” or “an”
indicating that the nearest neighbor sentences in
the training data only overlap in an insignificant
way with the generated text. Additionally, we ob-
serve the uniformly high distinctiveness values of
the nearest neighbor distance bar charts. We use
the distinctiveness/diversity scatter plots (Figure 7)
to explore generations with higher and lower metric
values. In contrast with the phishing models, our
qualitative examination reveals that even generated
abstracts with no indications of memorization have
high coherence, indicating that the models can gen-
erate creative and novel outputs without resorting
to copying from the training data. Comparison of
the two different decoding temperatures, reveals
that lower temperature does not result in increased
memorization but it does have slightly improved
coherence than the higher temperature model.
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Figure 7: Diversity vs. distinctiveness for ACL
NLG models. Both sets show high levels of high-
diversity examples, with almost no low-diversity, low-
distinctiveness generations

6 Discussion & Limitations

GenX is a tool for incorporating human judgement
with the analysis of generated text, without placing
the full burden on human annotators to locate in-
stances where the model is copying from the train-
ing data. The distinctiveness and diversity scores
provide quantitative context to the qualitative inter-
pretation of the highlighted text. When used on a
model with high levels of duplication in the train-
ing set, the tool helped us establish a threshold of
acceptable memorization. When used on a model
with low levels of duplication the tool helped us
identify compelling examples of creatively gener-
ated text not copied from the training data.

A key contribution of this work is going beyond
the typical evaluation metrics such as perplexity.
Table 1 shows that perplexity alone does not reveal
the nuanced behavior of generative models. Look-
ing at perplexity scores on the held out data alone,
the ACL NLG model seems to perform worse than
the phishing NLG model when in reality the ACL
NLG model produces coherent examples with low
levels of memorization. Additionally, GenX high-
lights differences between models where the per-

Task Model Perplexity Average
Distinctiveness

Average
Diversity

Phishing
Train Vs Test

- - 0.08 0.80

Phishing Model 1 8.08 0.10 0.96
Generations Model 2 8.01 0.10 0.95

ACL Set 1 21.11 0.12 0.99
Generations Set 2 21.11 0.13 1.0

Table 1: The perplexity, average distinctiveness score,
and average diversity score for each set of texts. We re-
port the average scores here but in practice find that the
average values are not as useful for diagnosing mem-
orization and recommend using the interactive tool or
scatter plots to identify specific low-quality examples.

plexity is similar but there are qualitative differ-
ences in the generation, especially when the inter-
active components of the tool are used to under-
stand the distribution of the memorization levels of
individual emails and identify specific patterns and
examples of memorization.

GenX has challenges scaling to large datasets.
While we demonstrated utility on datasets with tens
of thousands of text examples, the nearest neighbor
approach used would become intractable on mas-
sive text corpora such as CommonCrawl 7. This
limits GenX to scenarios where training data is a
manageable size, but does not yet help address the
issue of test set contamination from large-scale web
scrapes. As future work, we plan to incorporate ap-
proximate neighbor techniques (Dong et al., 2011)
to mitigate this issue.

In the phishing use case, identical sentences were
found across many training documents, making
diversity measurements artificially high, due to the
arbitrary choice of nearest neighbors. We plan to
use a minimum set cover algorithm to improve
diversity score accuracy to break ties by selecting
the smallest number of training documents that
cover the nearest neighbors in the test document.

7 Conclusion

GenX provides a unique capability for interactive
evaluation and explanation of NLG model out-
put. The tool goes beyond typical aggregate per-
formance metrics and provides new insight into
domain-conditioned NLG model creativity and
memorization. Across two use cases, we showed
this helped distinguish models in situations where
aggregate evaluation metrics did not.

7https://commoncrawl.org/the-data/
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Broader Impact and Ethical Statement

Natural language generation (NLG) models have
received much attention beyond their research com-
munity. However such attention can be harmful
when it inappropriately attributes human-level in-
telligence and creativity to clever statistical pro-
cesses. Increased transparency and explainability
of NLG models can help to prevent societal harm
that arises from over-estimating model ability. Fur-
thermore, the applicability of GenX to ensure more
distinct train/test splits also helps to create more
robust language models (by decreasing overesti-
mated F-scores) that have similar performance “in
the wild” and in the laboratory.

There are ethical considerations around condi-
tioning NLG models on phishing emails. These
emails are malicious by nature, and our models
could provide bad actors a means to cause greater
harm. However, the research described in this pa-
per is part of a broader effort to generate realistic
phishing emails for educational purposes to mit-
igate users susceptibility to phishing. Our work
can reduce the burden on analysts who currently
painstakingly craft these training emails by hand.
We are also encouraged by the positive results in
fake-news detection (Zellers et al., 2019) and be-
lieve that the insights from phishing generators can
inform more robust phishing detection models. We
do not plan to publicly release the phishing domain
conditioned models or source code used in this
specific use case.
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