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Preface

The series of workshops on Computing Semantics with Types, Frames and Related Structures
(CSTFRS) is intended as a forum for people interested in structured representations of linguis-
tic information, especially from a computational perspective. A first edition of the workshop
took place in Gothenburg as part of IWCS 2019. The second edition, whose proceedings are
presented here, was hosted by the 32nd European Summer School in Logic, Language and
Information (ESSLLI 2021).

Structured representations play a central role in the study of natural language semantics, espe-
cially in cognitively oriented approaches in the tradition of Fillmore, Jackendoff, and Langacker.
Formal semantics in the Montague-tradition, on the other hand, is less concerned with the struc-
ture of representations but with logical expressions, truth conditions, and model-theoretic inter-
pretations. In recent years, however, there has been a growing body of research which aims to
integrate structured entities into formal semantic accounts. Important developments in this field
are the uses of rich type systems and frame-based representations in lexical and compositional
semantics. A key feature of these approaches is that semantic representations can themselves
be used to compute semantic content and have yielded a way of combining compositional and
lexical semantics by providing a single representational system for different modalities.

The topics of this workshop cover both foundational issues (e.g. developments in rich type
theoretical semantics) and applications of theories that employ structured representations to
specific linguistic phenomena.

We would like to thank the organizers of ESSLLI 2021 for hosting our workshop online.

Stergios Chatzikyriakidis
Rainer Osswald
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So what’s all this structure good for?
Some uses of record types in TTR

Robin Cooper
Centre for Linguistic Theory and Studies in Probability

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg
cooper@ling.gu.se

Abstract

TTR, a type theory with records, makes use
of structured semantic objects such as record
types. In this paper we will first explore in what
sense this represents an increase in structure
over what we normally find in a classical Mon-
tague style semantics. We will then mention
some of the various uses of record types relat-
ing them to Σ-types in type theory, discourse
representation structures, frames, feature struc-
tures and various kinds of mental states.

Finally, we will consider how the introduction
of such structured semantic objects compares
with the kind of proof theoretic approaches
common in type theoretical approaches to lin-
guistic semantics on the one hand and on the
other hand linguistic theories which introduce
a level of logical form or discourse representa-
tion structure as a mediation between natural
language syntax and model theory. I will try
to argue that, in general terms, all these ap-
proaches introduce similar notions of structure
but that there are advantages to introducing the
structure in terms of semantic objects.

1 Structured objects in TTR

In this paper we will address and reflect on the
use of structured objects in TTR, a Type Theory
with Records (Cooper, 2012; Cooper and Ginzburg,
2015; Cooper, in prep). TTR is inspired by Martin-
Löf type theory (Martin-Löf, 1984; Nordström
et al., 1990) and is a rich type theory in the sense
that it does not contain just basic ontological types
as in simple type theory such as Montague’s e (“en-
tities”) and t (“truth-values”) and function types
defined on these but types of objects like Tree and
events like boy-hugs-dog. Central to such a type
theory is the notion of judging an object or situa-
tion/event, a, to be of a type, T . In symbols this is
expressed as (1).

(1) a : T

Types in TTR can be structured objects. One
example of this is ptypes, types where a predicate
is used to construct a type from appropriate argu-
ments to the predicate. Suppose that b is some
particular boy and that d is some particular dog.
We use (2) to represent the type of situations in
which b hugs d.

(2) hug(b,d)

The notation in (2) is thought of as representing
a labelled set (the graph of a function whose do-
main is a designated set of labels and whose range
is {hug, b, d}). Thus we encode it as the set of
ordered pairs in (3).

(3) {〈pred, hug〉, 〈arg1, b〉, 〈arg2, d〉}
Note that the labelled set in (3) is NOT the set of
witnesses of the type. Thus the structure of the type
is not given by the set of its witnesses and the type
is not identified by the set of its witnesses. If s is
a witness for the type ‘hug(b,d)’, that means that s
stands in the of-type relation to the set (3).

This gives types the ontological status of mathe-
matical objects (such as sets) whatever you think
that is. One view is that mathematical objects are
part of the basic furniture of the world. Another
view is that they are mental constructs imposed
on physical reality. We could also place them in
Frege’s (1918/1919) third realm. Yet another view,
akin to the relational view of meaning of Barwise
and Perry (1983) and more recently the relational
interpretation of quantum theory (Rovelli, 2021)
is that they are inherent in the relation between an
observer and the world. Whatever view we take,
they should be no more (and probably no less) mys-
terious than sets. It would probably be a mistake to
think of individuals or events as being less myste-
rious. The boy and the dog in our example do not
correspond to any unique collection of physical par-
ticles since the physical reality which we identify
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as these individuals is constantly changing. At best,
we can say that these individuals represent strings
of events that cohere in a certain way. But what
kind of coherence of events counts as identifying
an individual seems to depend on the nature of the
observer (cf. the discussion of schemes of individ-
uation by Barwise, 1989, Chapters 10 and 11 and,
for a recent view on how we construct reality from
the neuroscience perspective, Seth, 2021).

The type in (2) is the type of situations where
a particular boy, b, hugs a particular dog, d. We
use record types to represent a more general record
type, boy-hugs-dog, the type of situations were
some boy hugs some dog. Such a record type is
given in (4).

(4)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)




A record type is a finite set of fields, each consisting
of a label and a type (or a dependent type together
with a sequence of paths in the type, as we will
explain below). The witnesses of record types are
records. A record of the type (4) could be of the
form (5)

(5)




x = sam
cboy = s1
y = fido
cdog = s2
e = s3
. . .




where the conditions in (6) hold.

(6) sam : Ind
s1 : boy(sam)
fido : Ind
s2 : dog(fido)
s3 : hug(sam, fido)

Records are also finite sets of fields. For a record,
r, to be a witness for a record type, T , for each
of the fields in T , there must be a field in r with
the same label where the value in the record field
is of the type in the field of the record type. Note
that this allows for there to be more fields in the
record with labels not occurring in the type. (This
is represented by the ‘. . . ’ in (5).)

In TTR, (4) is a convenient notation for (7)
where the dependent fields are spelt out as con-
taining a pair consisting of a dependent type (a

function which returns a type) and a sequence of
paths within the type (the paths where arguments
to the dependent type are to be found in the record
being tested against the type).

(7) 


x:Ind
cboy:〈λv:Ind . boy(v), 〈x〉〉
y:Ind
cdog:〈λv:Ind . dog(v), 〈x〉〉
e:〈λv1:Ind . λv2:Ind . hug(v1, v2), 〈x, y〉〉




Record types in TTR are labelled sets like ptypes,
though using a different stock of labels to ptypes.
This means that a record type whose graphical dis-
play is of the form (8a) is actually the set of ordered
pairs (8b).1

(8) a.




`1 : T1
`2 : T2
. . .
`n : Tn




b. {〈`1, T1〉, 〈`2, T2〉, . . . , 〈`n, Tn〉}

Record types are, then, another kind of structured
object in TTR.

Types play an important role in type theories not
only as types of objects or situations but also in that
they can be used to model propositions. See Wadler
(2015) for a discussion of the history of this idea
which has a number of sources. The “propositions
as types” dictum is of central importance in Martin-
Löf type theories. A type, T , as a proposition is
said to be “true” just in case there is something,
a, such that a : T , that is, T has a witness. As
propositions associated with linguistic interpreta-
tion are normally taken to be record types in TTR,
it follows that we treat propositions as structured
objects.

An unconsidered first reaction to this fact is that
this makes propositions in TTR very different from
the kind of unstructured propositions that one finds
in Montague semantics. However, this claim is not
true given that we have based our claim of structure
on the fact that record types are sets of ordered
pairs. For Montague, a proposition is a function
from world-time pairs to truth values. That is, a
proposition is a set of ordered pairs since functions
are modelled as sets of ordered pairs. For us, a
proposition can be a record type and, as we have
seen, a record type is a set of ordered pairs. So

1This is actually a slight simplification. See the discussion
of flavours in labelled sets in Cooper (in prep).
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what is it that makes us think that TTR’s record
types are structured objects whereas Montague’s
propositions are not?

TTR’s record types differ from Montague’s
propositions in two main respects. The first is size.
For Montague, the functions modelling proposi-
tions are infinite, defined on an uncountable do-
main, the set of world-time pairs. Record types,
on the other hand, are finite functions defined on
a (normally small) finite set of labels. The other
respect in which they differ is content. For Mon-
tague, the proposition a boy hugs a dog contains
nothing corresponding to boy, dog or hugs. These
are used, of course, in defining what function from
possible worlds and times to truth values is the
proposition but you cannot look at the resulting
function and determine what was used to define
it. Record types, on the other hand, contain all
the elements that were used to build them up in
their various fields, so, in a rather trivial sense, you
can look at the record type and determine what
was used to define it. For Montague, then, the pro-
cess of compositional interpretation involves loss
of information, a kind of “catastrophic forgetting”
to borrow a term for a rather different (but never-
theless not entirely unrelated) problem from the
literature on neural networks. It is precisely this
difference which leads us to think of Montague’s
propositions as unstructured and record types as
structured.

2 Some uses of structured types

In this section we will briefly review some of the
uses to which structured types have been put in
TTR.

2.1 Types as models of propositions
On p. 2, we introduced the “propositions as types”
dictum and explained its importance in type the-
oretic approaches to semantics. One opportunity
this offers, depending on how you define your type
theory, is a direct way of dealing with what is often
referred to as hyperintensionality in the possible
worlds approach to natural language semantics. In
TTR we allow distinct types to have the same wit-
nesses. Consider the ptypes represented in (9).

(9) a. buy(kim,syntactic structures,sam)
b. sell(sam,syntactic structures,kim)

(9a) represents the type of situations where Kim
buys Chomsky’s 1957 book Syntactic Structures

from Sam and (9b) represents the type of situations
where Sam sells Syntactic Structures to Kim. TTR
allows us to characterize type systems in which
(10) holds.

(10) s : buy(a, b, c)↔ s : sell(c, b, a)

(10) is a restriction on type systems in the same
way in which “meaning postulates” in Montague’s
semantics are restrictions on the possible worlds
to which we should direct our attention. In the
type theory version, however, we have two distinct
types (which can be used as propositions) which
have exactly the same witnesses.

This provides us with a good reason to think of
propositions as types rather than as sets of possi-
ble worlds (or in Montague’s version sets of world
time pairs). In a possible worlds theory the expres-
sion ‘buy(a,b,c)’ intuitively represents the set of
possible worlds in which a buys b from c. But we
have no independent way of characterizing which
worlds those are apart from saying that they are the
worlds in which ‘buy(a,b,c)’ is true. We cannot say
what it is that the worlds have in common which
makes them worlds in which the expression is true.
Types, on the other hand, provide a theory of what
situations (or possible worlds) might have in com-
mon and then expressions are related to the types.
From the perspective of possible world semantics,
types provide an “inside-out semantics” where you
start from the commonalities (the types) and reason
about what objects might be witnesses for the types,
rather than starting from a set of possible worlds
that have something in common but failing to pro-
vide a theory of what the commonality is (apart
from saying that a certain sentence is true in all the
worlds in the set). Possibly, if you have a theory of
situation types, you might try to recover a possible
worlds theory by looking at the sets of witnesses
of the types. But in order to do this you would
need to figure out a way of characterizing situation
sufficiently large to count as a world. Normally, in
a type theory (or a situation theory, for that matter)
there is nothing corresponding to a largest situa-
tion. For example, records are finite sets of fields
in TTR and can be used to model situations, but for
any record it is possible to create a new record by
adding an additional field.

2.2 Subtyping
Using structured record types allows us to intro-
duce a lattice-like notion of subtyping which is
supervenient on this structure. For example, any
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situation in which a boy hugs a dog is a situation
in which there is a boy. This can be expressed as in
(11).

(11)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



v

[
x : Ind
cboy : boy(x)

]

Here the supertype contains a subset of the fields
in the subtype. Exactly which subsets of fields are
available as supertypes is regulated by the depen-
dencies among the fields. If we remove a field on
which another field depends we have to remove the
dependent field as well.

2.3 Σ-types
It is often said in type theory that record types are
really just a variant notation for Σ-types. Intuitively
Σ-types correspond to existential quantification. A
Σ-type (Σx : A)B((x)) (where we use the nota-
tion B((x)) to indicate that B depends on x) is
the type of ordered pairs 〈a, b〉 where a : A and
b : B((a)), corresponding to “There is anA, a, such
that B((a))”. For example, if A is Dog and B is
Bark, the Σ-type (Σa : Dog)Bark((a)) can be con-
strued as the type of situation in which some dog
barks.

We can illustrate the relationship between record
types and Σ-types by looking at our running exam-
ple of a record type corresponding to “some boy
hugs some dog” in (12).

(12)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



≈





(Σx : Ind)(Σcb :boy(x))(Σy : Ind)(Σcd :dog(y))hug(x, y)
(Σy : Ind)(Σcd :dog(y))(Σx : Ind)(Σcb :boy(x))hug(x, y)
. . .

Note that as TTR record types are sets of fields
there are several Σ-types which intuitively corre-
spond to a single record type. We have represented
just two of them in (12). Intuitively, all of these
Σ-types are equivalent since they all correspond
to “a boy hugs a dog”. Note, however, that this
equivalence is not directly derivable from the char-
acterization of Σ-types. These Σ-types do not have
a witness in common, for example. In TTR we use
record types in place of Σ-types.

2.4 Discourse representation structures
The labels in record types can play the same role
as discourse referents in discourse representation
structures (Kamp and Reyle, 1993) in that they
can be used to account for anaphora. In particu-
lar, the labels associated with situation types seem
intuitively related to the discourse referents in seg-
mented discourse representation theory (SDRT,
Asher and Lascarides, 2003). Here we will just
give an example in (13) of how our running exam-
ple of a record type can be seen as corresponding
to a discourse representation structure.

(13)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)



≈

x cb y cd e

cb :
boy(x)

cd :
dog(y)

e :
hug(x,y)

2.5 Dialogue gameboards/information states
Ginzburg (2012) used TTR record types to repre-
sent dialogue gameboards which keep track of the
current dialogue state (questions under discussion
among other things) according to a dialogue partic-
ipant. To illustrate this kind of use of record types
we present in (14) a preliminary version of the type
InfoState from Cooper (in prep, Chap. 2) based
on the characterization of dialogue gameboards as
information states in Larsson (2002).

(14)




private:
[
agenda:list(RecType)

]

shared:
[

latest-utterance:Sign∗

commitments:RecType

]



Here the information state is divided into two fields:
private and shared information, that is private to
the particular dialogue participant and shared with
the other dialogue participant(s). Among the pri-
vate information is an agenda, a list of record types,
corresponding to types that the dialogue participant
plans to realize in upcoming turns in the dialogue.
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Among the shared information is the latest utter-
ance, a string of signs in the sense of head driven
phrase structure grammar (see 2.6) and commit-
ments, a record type representing what has been
agreed on between the dialogue participants for the
sake of the dialogue so far.

2.6 Feature structures
Record types have also been used in the role of
feature structures as used in head-driven phrase
structure (HPSG, Sag et al., 2003). To illustrate
this, we give, in (15), a version of the basic type
Sign from Cooper (in prep, Chap. 3).

(15) σ : Sign iff σ :




s-event : SEvent
syn : Syn
cont : Cont




where Syn is the type in (16).

(16) σ : Sign iff σ :




s-event : SEvent
syn : Syn
cont : Cont




Here a sign consists of two fields correponding to
the two parts of a Saussurean sign (de Saussure,
1916), speech event and content, and an additional
field for syntax, providing a category and a string
of signs as daughters. Sign is defined as a basic
type whose witnesses are witnesses of the record
type given rather than directly as that record type.
This is because signs can contain other signs (the
daughters) and the witnesses of the type Sign need
to be defined inductively rather than have the type
itself be a non-well founded object.

2.7 Frames
Record types have also been used to represent
frames in the sense of FrameNet (Ruppenhofer
et al., 2006) and in the sense of Barsalou (1992))
and the more recent developments in frame the-
ory represented in Löbner et al. (2021). For a dis-
cussion of frames in TTR see Cooper (2016) and
Cooper (in prep, Chap. 5).

2.8 Types as models of concepts, memories
and beliefs

We have talked of types as models of propositions.
It is natural also to use types to model various kinds
of “mental objects”. If we think of concepts as
types, then we can say that the concept is instanti-
ated if there is a witness for the type. If we think of
a memory as a type, then that memory is correct if
there is (or was) a witness for the type. It is natural

to think of beliefs as propositions and therefore, in
our terms, types. A belief is true, then, if there is
a witness for the type. Such a view demands that
we think of how types could be represented in the
brain. Some preliminary suggestions are made by
Cooper (2019), arguing that we should consider
types as implemented in the brain by patterns of
neural activation (rather than as neural architec-
ture). Thinking of mental objects as types, gives
the types a dual nature. They can be used to clas-
sify the world as in the standard view of types but
now in addition they can be used to classify mental
states in terms of which types are represented in
the mental states.

Let us consider how this idea might look in a lit-
tle more detail. (For a fuller discussion see Cooper,
in prep, Chap. 6.) We treat long term memory (or
beliefs) as a type: a type of how the world would
be if your memory is correct. An agent’s, a, long
term memory, Tltm(a), might be characterized as in
(17).

(17) Tltm(a) =


id1 :
[

x:Ind
e:boy(x)

]

id2 :
[

x:Ind
e:dog(x)

]

id3 :
[
e:hug(⇑id1.x, ⇑id2.x)

]

. . .




Here we have only specified the first three fields
of what would probably be a very large type. The
‘⇑’s in the field labelled ‘id3’ are notational sugar
to indicate that the path being referred to is not
within the immediate record type in which the path
notation occurs but one record type higher up.

Thinking of memory as a record type in this way
is similar to thinking of memory as a large mental
file (Recanati, 2012) with many subfiles. On this
view, the basic intuition about belief, is that a be-
lieves T (a type functioning as a proposition), that
is, the type ‘believe(a, T )’ is witnessed (“true”),
just in case Tltm(a) v T . This says that a believes
T just in case any way the world could be that is
consistent with a’s memory would be of type T .

However, this basic intuition is not technically
quite sufficient to do the job that we need. Suppose
that T is our running example of a record type,
repeated in (18).
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(18)




x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)




Intuitively, we would want to say that a does be-
lieve T if T is (18) and a’s long term memory is
(17). But (17) is not a subtype of (18). In fact the
two types have no witnesses in common because
the labelling required by the two types is different.
However, if we relabel (18) as indicated in (19) the
appropriate subtype relation will hold.

(19) x ; id1.x, cboy ; id1.e, y ; id2.x, cdog ;
id2.e, e ; id3.e

The relabelling here replaces paths in a type with
new paths and thus is able to significantly alter the
way in which types are structured, as in this case.

Thus we refine our characterization of what it
means for a to believe T by saying that the type
‘believe(a,T )’ is witnessed just in case there is a re-
labelling, η, of T such that Tltm(a) v η(T ). An im-
portant consequence of this is that if ‘believe(a,T )’
is witnessed, so is ‘believe(a,T ′)’ where T ′ is a
relabelling of T . That is, labelling is irrelevant
for identifying beliefs, even though the labelling
is important for other purposes such as identifying
anaphora DRT-style.

3 Semantic objects vs languages

Let us remind ourselves of the central goal of Mon-
tague’s original semantic project. It was to show
that there is in principle no difference between nat-
ural languages and formal languages defined by
logicians in respect of the fact that it is possible
to provide a model theoretic semantics defined on
the syntax of natural languages (without first hav-
ing to translate them into a formal language and
characterize a model theoretic semantics for that).
This is made explicit in the paper ‘English as a
Formal Language’ (EFL) included in Montague
(1974). In ‘Universal Grammar’ (UG) (also in-
cluded in Montague, 1974) Montague present a
rigorous framework showing how we can use a for-
mal language to represent model theoretic objects
and guarantee that translating natural language into
this formal language induces a model theoretic se-
mantics defined on the natural language syntax. He
does this by composing a homomorphism from the
natural language syntactic algebra to the formal
language syntactic algebra with a homomorphism

from the formal language syntactic algebra to an
algebra of semantic objects. This composed homo-
morphism is from the NL syntactic algebra to the
algebra of semantic objects. ‘The Proper Treatment
of Quanitification in Ordinary English’ (PTQ) in
(Montague, 1974) is an instance of the framework
in UG. Translation into intensional logic is used
to induce a model theoretic semantics defined di-
rectly on the syntax of English. This makes the
presentation much easier to read than the explicit
direct interpretation of English syntax into model
theory in EFL. The direct interpretation of natural
language syntax into the model theory is essential
to Montague’s original claim that natural languages
are formal languages.

TTR introduces structured objects (in the sense
that we have discussed) into the realm of semantic
objects which play the role of Montague’s model
theoretic objects and eschews an intermediate lan-
guage between the natural language syntax and the
semantic objects. In this sense TTR adheres to
Montague’s original project as we have presented
it here. There is, however, something puzzling
about introducing structured semantic objects in
this way: they begin to take on the kind of structure
you might expect in syntactic expressions of a for-
mal language. An example, of this is ptypes such
as ‘hug(b,d)’ as discussed earlier. In TTR we also
have conjunctive types (T1 ∧ T2), disjunctive types
(T1 ∨ T2) and negative types (¬T ). While record
types do not have the kind of structure we normally
see in a standard logic they do nevertheless have
similar structures to those of feature matrices used
in syntactic and phonological description.

The construction and inference operations we
need to describe and relate structured objects like
this seem to take on the syntactic nature of corre-
sponding operations used in proof theory. TTR is
not alone in this. It always seems to happen when
structured objects are introduced into the seman-
tic domain. Examples from the past are situation
semantics (Barwise and Perry, 1983) and logical
atomism (Russell, 1918, 1924). Given the normal
assumption that model theory models aspects of
the world, many find it problematic that the world
takes on the structure of a language in this way
and for this reason, perhaps, think that a traditional
possible worlds semantics is more realistic — de-
spite the intractability of possible worlds and the
problems with intensionality.

There are alternatives to introducing structured
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objects among the objects in the semantic domain.
One of these is to take a radical proof theoretic ap-
proach to semantics. According to this we think of
semantic theory as providing a mapping from natu-
ral language to a proof theoretic language. There
may, or may not, be a model theory associated
with this language. If there is a model theory it
is more concerned with the metalogical study of
the proof theoretic language rather than a central
component of the semantic theory for natural lan-
guage. Semantics is seen as primarily involving a
correct account of inference rather than associating
natural language expressions with the right kind of
semantic objects. Perhaps most of the work on a
Martin-Löf style type theoretic approach to natu-
ral language semantics takes some version of this
approach. While inference is undeniably central
to semantics and lies at the heart of the motivation
for the semantic objects associated with natural lan-
guage expressions in a model theoretic approach,
such a purely proof theoretic approach to inference
appears to give up any hope of building a semantic
theory which is related to how we perceive and
interact with the world.

A second alternative is to introduce an interme-
diate semantic representation language between
natural language syntax and the model theory. An
example of this is the use of a discourse representa-
tion structure (DRS) language in the early versions
of Discourse Representation Theory (Kamp and
Reyle, 1993). The use of a Chomskyan logical
form together with a formal semantics is another
example of this strategy. The point of such theo-
ries is that the intermediate representation language
introduces structure which is not present in the nat-
ural language but which appears to be necessary
to facilitate semantic interpretation. Such an inter-
mediate language, therefore, does not follow the
discipline set out in Montague’s UG and is thus not
eliminable in the way that Montague’s intensional
logic is in PTQ. In effect the argument is that the
intermediate language is a necessary part of the
theory precisely because it does not meet the con-
ditions inlvolving homomorphisms which is set up
in UG. The claim that an intermediate language is
necessary is, of course, interesting and non-trivial,
but we should be clear that it is abandoning a cen-
tral tenet of Montague’s original project, namely
that there is no significant difference between nat-
ural languages and formal languages in that they
can both have a model theory defined recursively

on their syntactic structure. It seems like we can-
not give a semantics for natural language after all
— we first have to translate it to another language
which is suitable for model theoretic interpretation.

Here is a question for both of these alternatives:
if we have to translate natural language into a for-
mal language, L, in order to give a semantics for the
natural language, why is it that we have not evolved
to speak L rather than the natural language? Per-
haps we can see Montague’s insistance on giving
a semantics directly on the structure of the natural
language as marking him out as an early pioneer
of natural logic (van Benthem, 1986, Chapter 6)
albeit from a model theoretic rather than a proof
theoretic perspective.

Why is it, then, that if we incorporate the kind
of structured objects we need into our semantic
universe, then these objects appear to take on as-
pects of structure similar to that of a language? I
would like to turn this question around. Perhaps it
is not that the objects take on aspects of structure
of the language but rather that the language takes
on aspects of the structure in terms of which we
perceive the world. In TTR we think of the types
as providing structured relations between objects
in the world, independently of language. This view
seems not unrelated to the relational interpretation
of quantum theory (Rovelli, 2021) in which the
world is structured in terms of observable relations.
It seems attractive to say that our languages in cer-
tain respects reflect the structure of the world as we
perceive it.

This raises the question as to whether the dif-
ference between a proof theoretic approach and a
model theoretic approach with structured objects
is one of philosophical perspective rather than a
matter of empirical analysis. One might think that
the interesting questions lie not so much in whether
you choose a model theoretic or a proof theoretic
approach but rather in which kinds of structure you
need in order to achieve an adequate account of
inference in natural language. This seems to be a
reasonable claim.2 However, there are some rea-
sons which seem to make working with semantic
objects preferable to working with expressions in a
language.

One reason is the very general one that using
semantic objects helps us not lose sight of the fact
that the project involves accounting for interaction

2And one that I have made a number of times in an ongoing
conversation with Ruth Kempson over the past thirty years or
so.
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with the world, for example, that we need to be talk-
ing about the individuation of objects in the real
world in addition to making sure that certain ex-
pressions stand in appropriate inferential relations.
Another reason is that using semantic objects keeps
us honest about the exact nature of the structure we
are proposing. It can sometimes be easy to write
down expressions without being precise about the
nature of the structure they encode, for example,
whether variables are being used as variables over
objects or variables over variables or whether the
absence of parentheses is a notational abbreviation
or an indication that parentheses are not present in
the expression.

A more substantial reason perhaps is that using
semantic languages can impose unnecessary or un-
wanted linguistic structure without us realizing that
this is happening. We will take record types as an
example of this. Consider a record type as in (20).

(20)
[
`1 : T1
`2 : T2

]

In general in the type theory community this record
type would be notated as (21).

(21) {`1 : T1; `2 : T2}
As an object it is natural to think of this record type
as a set, (22), as we have done in this paper.

(22) {〈`1, T 〉, 〈`2, T2〉}
If the record type is a set of fields, then the order
of the fields does not matter. On the other hand, if
we think of the record type as an expression in a
language, then it is natural to think of the fields as
ordered. This means that there are two expression
record types corresponding the one object record
type as in (23).

(23) a. {`1 : T1; `2 : T2}
b. {`2 : T2; `1 : T1}

In general, then, thinking of the record types as
expressions leads us into a considerable (and pos-
sibly undesirable) multiplication in the number of
available record types. An argument for the order-
ing when thinking of record types as expressions
in a language is that if T2 depends on the field
`1 : T1 then the `2-field must be ordered after the
`1-field. This is a convention which is standardly
followed in proof-theoretically based approaches
to type theory. But it is just a convention on the
order in which things are written down. Consider
the two alternative conventions represented in (24).

(24) a. “Let n be a natural number. Consider
succ(n). . . ”

b. “Consider succ(n), where n is a natural
number. . . ”

When we think of the type as a set it becomes
clear that the relevant order involves the order in
which the fields are added to the set in constructing
it. We can only add a dependent field to a record
type which already contains the field on which it
depends. This is made clear in the definition of
dependent record types given in Cooper (2012, in
prep). This does not require us to think of the
record type itself as an ordered set.

This might seem like a rather abstract discus-
sion which does not seem to have significant con-
sequences for actual semantic analysis. But note
that this discussion points to the difference between
record types and Σ-types discussed in 2.3, where
it did have consequences for the inferences we can
make.

4 Conclusion

In this paper we have discussed what it means to be
a structured semantic object and the uses to which
structured semantic objects can be put in TTR. In
the previous section we discussed the relationship
between using structured semantic objects and ex-
pressions in a language and suggested that we are
presented with a three-way choice in building a
semantic theory:

• importing proof theoretic techniques into the
model theory

• going entirely proof theoretic

• have an intermediate language between nat-
ural language syntax and model theory (and
thereby giving up on Montague’s project of
providing a semantics directly for natural lan-
guages)

I have indicated my preference for the first option.
Whatever your choice, it does seem that some kind
of structured objects or representations are neces-
sary in order to be able to give an adequate seman-
tics for natural languages.

Acknowledgments

The research reported in this paper was supported
by a grant from the Swedish Research Council (VR
project 2014-39) for the establishment of the Centre

10



for Linguistic Theory and Studies in Probability
(CLASP) at the University of Gothenburg.

References
Nicholas Asher and Alex Lascarides. 2003. Logics of

conversation. Cambridge University Press.

Lawrence W. Barsalou. 1992. Frames, concepts, and
conceptual fields. In A. Lehrer and E. F. Kittay,
editors, Frames, fields, and contrasts: New essays
in semantic and lexical organization, pages 21–74.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Jon Barwise. 1989. The Situation in Logic. CSLI Publi-
cations, Stanford.

Jon Barwise and John Perry. 1983. Situations and At-
titudes. Bradford Books. MIT Press, Cambridge,
Mass.

Johan van Benthem. 1986. Essays in Logical Semantics.
Springer Netherlands.

Robin Cooper. 2012. Type Theory and Semantics in
Flux. In Ruth Kempson, Nicholas Asher, and Tim
Fernando, editors, Handbook of the Philosophy of Sci-
ence, volume 14: Philosophy of Linguistics, pages
271–323. Elsevier BV. General editors: Dov M. Gab-
bay, Paul Thagard and John Woods.

Robin Cooper. 2016. Frames as Records. In Annie
Foret, Glyn Morrill, Reinhard Muskens, Rainer Oss-
wald, and Sylvain Pogodalla, editors, Formal Gram-
mar: 20th and 21st International Conferences FG
2015, Barcelona, Spain, August 2015, Revised Se-
lected Papers FG 2016, Bozen, Italy, August 2016,
Proceedings, number 9804 in LNCS, pages 3–18.
Springer.

Robin Cooper. 2019. Representing Types as Neural
Events. Journal of Logic, Language and Information,
28(2):131–155.

Robin Cooper. in prep. From perception to commu-
nication: An analysis of meaning and action using
a theory of types with records (TTR). Draft avail-
able from https://sites.google.com/site/
typetheorywithrecords/drafts.

Robin Cooper and Jonathan Ginzburg. 2015. Type the-
ory with records for natural language semantics. In
Shalom Lappin and Chris Fox, editors, The Hand-
book of Contemporary Semantic Theory, second edi-
tion, pages 375–407. Wiley-Blackwell.

Gottlob Frege. 1918/1919. Der Gedanke. Eine logi-
sche Untersuchung. Beiträge zur Philosophie des
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Abstract
In order to mediate the debate on whether
common nouns are better interpreted as types
or as predicates in type-theoretical seman-
tic frameworks, the present paper shows that
type theories whose models in category the-
ory are toposes have access to a property draw-
ing a one-to-one correspondence between first-
order predicates and base types, thus enabling
more flexibility for common noun interpreta-
tion. Using this flexibility and linguistic argu-
ments based on negative predications, a subse-
quent proposal is made to interpret nouns as
predicates with refined argument types.

1 Introduction

Any formal semantic framework can be charac-
terised by its underlying type theory. One of
the smallest possible theories for this purpose is
Church’s simple theory of types, built on two base
types e and t for entities and truth values and an
arrow constructor to create function types, which is
characteristic of the grammar of Montague (1973).
Yet the integration of lexical semantics into for-
mal frameworks, motivated by the recognition of
complex phenomena such as polysemy, selection
restrictions and transfers of meaning (see e.g. Nun-
berg, 1979, 1995; Cruse, 1986), resulted in the
use of richer type theories whose typical organisa-
tion consists in a subdivision of the type e into a
hierarchy of subtypes, ordered by a subtyping re-
lation, which intuitively enables the categorisation
of entities according to some of their properties. In
practice however, no consensus has been reached
on what types should inhabit such a hierarchy. As
listed by Retoré (2014), the collections proposed
over the years vary from a set of around ten base
types to a large system of one type for each com-
mon noun in the language.

This last position, initially introduced by Ranta
(1994), have been more recently updated and de-

fended in the works of Luo and Chatzikyriakidis
(Luo, 2012a; Chatzikyriakidis and Luo, 2017), who
argue that this so-called CNs-as-types approach pro-
vides a straightforward and efficient interpretation
of common nouns (CNs). Under this view, the pred-
ication of a noun, e.g. man, on some entity x is rep-
resented as the typing judgement x : man. It is thus
opposed to the more traditional and dominant CNs-
as-predicates approach, which is directly inherited
from Montague grammars and consists in interpret-
ing man as a predicate man : e→ t, in such a way
that the same predication as above is interpreted as
the logical formula man(x). Those alternative pos-
sibilities are actually parts of a larger conceptual
shift from classical predicate calculus to systems
based on Modern Type Theories (MTTs), among
which appear Martin-Löf’s type theory (Martin-
Löf, 1984) and Luo’s unified theory of dependent
types (UTT) (Luo, 1994; Luo et al., 2013)1.

Representing CNs as types rather than predicates
follows the idea of distinguishing between nouns
on the one side, and adjectives and verbs on the
other. Types are thus interpreted as collections of
entities, which then represents ranges of signifi-
ance for propositional functions in a Russellian
sense (see sect. 2.12 of Ranta, 1994). But what if
such types could be defined as ranges of other func-
tions? As suggested by Retoré (2014), some theo-
ries may indeed allow a dual interpretation, that is,
a correspondence between types jugdements such
as x : man and truth on some predicate man(x).
If Retoré is right, it could give access to a large
amount of intermediate positions between CNs-as-
types and CNs-as-predicates. This opens the debate
on which way of interpreting CNs is the best-suited
for natural language semantics, if any one is. An-
swering this question will have consequences on

1The various features that distinguish MTTs from Mon-
tague semantics will not be discussed here, see (Ranta, 1994)
and (Luo, 2012a) for details.
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the composition of the type hierarchy, as it varies in
size and expressiveness depending on the choosen
interpretation for CNs.

The present paper aims at mediating the debate
between types and predicates by showing that, un-
der the right settings, Retoré’s suggestion—call it
CNs-as-both—is an unavoidable property of some
type theories, including UTT in its extension with
coercive subtyping (Luo et al., 2013). As a result,
the way of interpreting CNs and the type hierarchy
are not constrained by the type theory itself, but
would be a matter of lexicon design. We start de-
fending this idea in Sect. 2 by highlighting the fact
that the CNs-as-predicate approach stays relevant
even in presence of subtyping, therefore nuancing
Luo’s position in (Luo, 2012b; Chatzikyriakidis
and Luo, 2017). Then, in Sect. 3 we discuss the
properties of UTT in light of its model in category
theory, and establish that it has access to the CNs-
as-both property. Finally, linguistic arguments to
support an intermediate position between CNs-as-
types and CNs-as-predicates, through the analysis
of negation in sentences, is provided in Sect. 4.

2 Accomodating Predicates with
Subtyping

In order to show that intermediate positions be-
tween types and predicates for CN interpretation
are suitable, it is first necessary to examine the
suitability of the CNs-as-predicate approach in the
kind of type theories we are interested in. Recall
that the type theories considered here are assumed
to use a type hierarchy ordered by a subtyping re-
lation. We will further assume the existence of a
type constructor • to account for inherent polysemy
(Pustejovsky, 1995), such that if a and b are base
types, then the dot type a • b is considered a sub-
type of both a and b2. Hence, a predicate-based
approach must be usable in presence of subtyping
and dot types.

Yet its bad interaction with subtyping is one
of the main criticisms addressed against the CNs-
as-predicates approach, as demonstrated by Luo
(2012b): consider the two types phys and info and
the two words book and heavy, whose semantic
interpretations would be a predicate JbookK =
book : phys • info → t and a second-order predi-
cate JheavyK : (phys → t) → (phys → t). Then,
the application of heavy on book shall raise on the

2Note that this type constructor is definable in UTT with
coercive subtyping as explained in (Luo, 2010).

semantic side the condition that phys must be a
subtype of phys • info, which is the converse of
the natural subtyping relation. Thus a simple ap-
plication of an adjective to a CN in such a setting
seems to be a rather complex task indeed. Luo
concludes therefore that Montagovian grammars
with their traditional CNs-as-predicates approach
are unusable to deal with subtyping.

If the conclusion is right for Montagovian gram-
mars, it has however to be nuanced when consid-
ering other frameworks of Montagovian inspira-
tion, such as the Type Composition Logic (TCL) of
Asher (2011) or the Montagovian Generative Lexi-
con (MGL) proposed by Retoré and his colleagues
(Bassac et al., 2010; Retoré, 2014), as they often
include additional strategies to overcome this sub-
typing problem in compositionality. In particular,
we shall state that the demonstration above relies
upon two hidden assumptions: (i) that direct appli-
cation with subtyping is the only available opera-
tion for term composition, and (ii) that adjectives
are necessarily interpreted as second-order predi-
cates. The next paragraphs illustrate how new com-
positional strategies challenge these assumptions
and enable the construction of subtyping-compliant
frameworks.

Let us start with the functorial strategy proposed
by Asher (2011) for TCL in cases where a dot type
is involved, for instance when applying heavy to
book as above. The intended meaning of the dot
type phys• info is to represent two different aspects
of book: one where the book is seen as a physical
instance with a cover and pages, and another one
involving only its informational contents. When
combining book with heavy, we intend the latter
to select only the physical aspect of the former,
which licenses in a semantic framework a transfor-
mation of either JbookK or JheavyK—depending
on the presuppositions to account for. TCL in-
tegrates these transformations as functors F and
G which override subtyping constraints at appli-
cation time by sending JheavyK to F (JheavyK) :
(phys • info → t) → (phys • info → t) and book
to G(book) : phys→ t respectively, thus enabling
a more flexible account of term composition which
still respects subtyping since the functors are re-
stricted for use with dot types only3.

3Actually, dot types are treated differently than subtyping
in Asher’s framework because the projections from the dot
type to its aspects are not necessarily assimilable to subtyping
relations from a theoretical point of view, see chap. 5 of (Asher,
2011) for discussion.
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The implementation of such a strategy clearly
rules out assumption (i), as it provides an alterna-
tive way of dealing with compositionality in partic-
ular cases. Another kind of compositional strategy,
to be found e.g. in MGL, uses type polymorphism
to get similar flexibility. We shall go further on this
path by examining how polymorphism enables us
to dismiss assumption (ii) as well. This assumption
arises from the Montagovian tradition of seeing
adjectives as noun modifiers, whence the second-
order predicate interpretation given above. The
semantic interpretation of heavy, for instance, is
then obtained by a term of the following shape:

JheavyK = λP x.heavy(x) ∧ P (x) (1)

It involves a predicate heavy : phys → t, which
has the same type structure than the noun argu-
ment, and is embedded in a higher-order term with
a logical conjunction to get the noun-modifier be-
haviour. Compared to other syntactical categories
such as nouns or verbs, this interpretation of ad-
jectives is singularly complex, not forgetting the
difficulties it raises when interacting with subtyp-
ing. The semantic separation between nouns and
adjectives is motivated by linguistic evidence that
only nouns seem to bring support for quantifica-
tion and counting, and the CNs-as-types approach
as introduced by Ranta (1994) follows this idea.
However, many grammarians and linguists have
also pointed out the similitudes between these syn-
tactical categories, thus supporting the possibility
of treating nouns (or more accurately substantives)
and adjectives as a continuum, where they would
ultimately be distinguished by their predispositions
with regard to linguistic functions and meaning
specialisation (Jespersen, 1924; Guillaume, 1973;
Gardelle, 2007).

If this continuum view is correct, it challenges
the modern perception of adjectives as noun mod-
ifiers, not directly at the syntactic level where it
stays relevant, but at the semantic one. Under the
CNs-as-predicate approach, nouns are predicated
of entities, and so could be adjectives. As a conse-
quence, we could imagine a framework where the
semantic interpretations of nouns and adjectives are
of the same type shape. In the case of heavy, this
means moving from the interpretation given in (1)
above to its predicate component heavy : phys→ t
as the new term for JheavyK. Composition would
then be performed thanks to another polymorphic
term, for instance in MGL or in the framework pro-
posed by Babonnaud and de Groote (2020), which

extends Montagovian grammars with records for
modeling dot types, bounded polymorphism for
composition, and a coercion-inference algorithm to
account for subtyping. Assuming the integration of
the latter framework in a syntax-semantic interface,
the application of heavy to book would require to
treat the deep syntactic relation between the ad-
jective and the noun as the bounded polymorphic
operator given in (2):

Λα.λP Qx.P (x) ∧Q(x) :

∀α < e.(α→ t)→ (α→ t)→ (α→ t) (2)

The application of this operator to both JheavyK
and JbookK would trigger the inference algorithm,
which would obtain a solution to the type con-
straints by unifying α with phys • info and intro-
ducing the coercion c : phys • info < phys to acco-
modate the variable to the predicate heavy. Thus,
the resulting term would be λx.heavy(c(x)) ∧
book(x) : phys • info→ t.4 Here again, the frame-
work seems to be able to deal with subtyping while
applying the CNs-as-predicates approach.

It should be noticed from the discussion in the
two previous paragraphs that dismissing the as-
sumption (ii) necessarily entails dismissing (i) as
well, because traditional Montagovian grammars
cannot support directly the combination of adjec-
tives and nouns if they have the same type shape.
Yet, the examples discussed above show that the
addition of properties and features in frameworks
of Montagovian inspiration enables them to accom-
modate the use of subtyping relation and dot types
with the use of predicates. As a matter of fact,
there is enough theoretical support to cope with
the difficulties between subtyping and the CNs-
as-predicates approach, which means that those
difficulties cannot be an argument to definitively
rule out the predicate view.

3 Theoretical Support to the Duality of
Types and Predicates

3.1 On the Necessity of CNs-as-both
We now turn to the central question of this paper:
is there any theoretical reason to choose one way

4It may be surprising in this approach that the resulting
type is phys • info→ t and not phys→ t, since the former is
not a subtype of the latter. This is not a problem for composi-
tion if we assume that other higher-order predicates also work
with bounded polymorphic operators, as done by Babonnaud
and de Groote (2020). Moreover, we may see such a type
as coherent with the idea that heavy book still provides the
possibility of copredication constructions.
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of interpreting CNs rather than the other? Both
CNs-as-types and CNs-as-predicates approaches
have practical drawbacks—difficulties for model-
ing negation for the former, complex interaction
with subtyping for the latter—and none of them
is characteristic of a particular type theory: the
Dependent Type Semantics of Bekki (2014) is an
example of framework based on a MTT but inter-
preting CNs as predicates, and conversely it is not
hard to conceive a Montagovian-style framework
using types for CNs. The possibilities offered by
the CNs-as-both property may enable the reconcil-
iation of these views under a unified setting. In
this section, we shall highlight that there actually
are theoretical considerations supporting such a
property in many frameworks.

Recall that having the CNs-as-both property
means that for any entity x, we have for instance
the typing judgement x : man if and only if man(x)
is true. Yet Chatzikyriakidis and Luo (2017) point
out that such a definition in some settings (includ-
ing simple type theory) may threaten the decid-
ability of type checking. The reason lies in the
“if” part of the equivalence: if one assert that the
composition man(x) is well-typed, it results in
x : e, and proving x : man requires to prove
the truth of the predications; but the truth of log-
ical formulae is generally undecidable. However,
Chatzikyriakidis and Luo exploit themselves the
decidable direction of this duality—from types to
predicates—for modeling negation: they introduce
what they call a predicational form of typing judge-
ment, that is, for any type, say man, a correspond-
ing predicate pman : man→ t such that if x : man
then pman(x) = true, where true is a tauto-
logical proposition5. In this case, the problem of
type checking is avoided by the definition, since
the well-typedness of pman(x) necessarily entails
x : man.

The very fact that such a predicational form is
needed even in a framework following the CNs-as-
types approach is indicative of the practical inter-
est that the CNs-as-both property could have. Yet
we do not want to just define for each type a cor-
responding predicate which is true if and only if
its argument is of the right type because it could
threaten the decidability of some parts of a seman-
tic analysis. Moreover, if we want such a property

5For clarity and other reasons which will become clearer
later in this section, we amalgamate the classical type of truth
values and the intuitionistic type of propositions under the
same notation t.

to be usable in a MTT-based framework, it would
be better to provide a constructivist account of this
duality. To establish such a result, we propose here
to take a step forward in the path of type theory
abstraction by studying which model UTT with
coercive subtyping can receive in category theory.

3.2 A Categorical Perspective on UTT

To the best of the author’s knowledge, computa-
tional linguistics have only made a sparse use of
category theory and its results compared to other
domains of computer science6. Through discussing
the acceptability of the CNs-as-both property, we
shall also illustrate how the categorical interpreta-
tion of type theories may help to design a frame-
work suitable for natural language semantics. How-
ever, as the present paper cannot bring a full ac-
count of the definitions and properties useful to
build a categorical model of UTT, we will stick to
the fundamentals of category theory, and the curi-
ous reader is invited to consult other sources such
as (Goldblatt, 1979; MacLane and Moerdijk, 1992;
Johnstone, 2002) for more definitions and results.

A category is a collection of objects and, for
each pair A,B of objects, a set of morphisms from
A to B, obeying two additional laws. The conve-
nient notation f : A → B is used to express the
fact that f is a morphism from A to B; A and B
are then respectively called domain and codomain
of f . The additional laws are the following: first,
there is an operation of composition on morphisms
which sends f : A → B and g : B → C to
the morphism g ◦ f : A → C and is associative;
and second, there is for any object A a morphism
idA : A→ A, called identity ofA, which is neutral
for right and left compositions. Two other categori-
cal notions will be used in the rest of this paper: in
any category, a terminal object is an object 1 such
that for any object A there is a unique morphism
1A : A → 1, and a monomorphism is a monor-
phism f : A→ B such that for any object X and
pair of morphisms g, h : X → A, the equality
f ◦ g = f ◦ h implies g = h. We will use the nota-
tion f : A B to indicate that f is a monomor-
phism from A to B. For illustration, a well-known
example of category is Set, whose objects are all
the possible sets and whose morphisms are func-
tions between them, with the common definitions
of composition and identity function. Furthermore

6Notable exceptions include (La Palme Reyes et al., 1994;
Coecke et al., 2010; Asher, 2011).
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the terminal objects of Set are the singletons, and
its monomorphisms are exactly the injective func-
tions7.

A type theory may be interpreted as a category
whose objects are types and morphisms are map-
pings between the corresponding types, enriched
with additional properties as counterparts to each
constructor or feature of the type system. Thus,
a type a will correspond to an object A, a term
of type a → b will be represented as a morphism
A→ B and, as a special case, an entity x : a will
correspond to a morphism 1 → A, assuming that
a terminal object exists in the category8. Notable
correspondences hold between cartesian closed cat-
egories and typed λ-calculus (Lambek, 1980), and
between locally cartesian closed categories and
Martin-Löf type theories (Seely, 1984)9. As for
Luo’s UTT with coercive subtyping, it can be cap-
tured by another kind of category called topos. In-
deed, as explained by Luo (1994), the underlying
logic of UTT is a higher-order one, and Lambek
and Scott (1986) showed that the categories gen-
erated by such type theories are precisely toposes.
Toposes already emerged in Asher’s (2011) categor-
ical model for TCL as suitable (and even necessary)
for interpreting dot types, and Babonnaud (2019)
further argues that toposes could be the best cate-
gorical models to interpret on a unified basis a large
variety of semantic frameworks with subtyping.

The definition of a topos includes several key
properties that will not be exhaustively listed here10.
For our purposes, it is enough to know that the rel-
evance of toposes for semantic models comes from
the existence in these categories of a particular ob-
ject Ω called subobject classifier, which can be
interpreted as the categorical counterpart for the
type t of truth values or propositions—depending
on the underlying logic of the chosen type system.
The subobject classifier is characterised by a spe-

7Note that not all categories may have terminal objects and
monomorphisms. Moreover, this example shows that terminal
objects are defined up to isomophism, so that the notation 1
and reference to the terminal object of a category are valid by
misuse of language.

8The type-theoretical counterpart of the terminal object 1
is generally the unit type.

9The reader may consult (Bell, 2012) among others for
history and details on categories and their equivalence with
type theories.

10While not directly linked to the present discussion, it may
be worth noticing at least that toposes have all the properties
of the kinds of categories mentioned above, that is, cartesian
closed and locally cartesian closed categories. As a conse-
quence, a topos is also acceptable as a model for simple type
and Martin-Löf’s theories.

cific morphism > : 1 → Ω which represent the
value true (or the tautological proposition true),
and a universal property which binds it to the ex-
istence of monomorphisms which, as argued by
Babonnaud (2019), can interpret subtyping rela-
tions. This property is formally embodied into the
following Ω-axiom (Goldblatt, 1979):

Ω-axiom. For every monomorphism f : B A
there is a unique morphism χf : A→ Ω such that:

(i) χf ◦ f = > ◦ 1B; and

(ii) for any object C and morphism g : C → A
such that χf ◦ g = > ◦ 1C , there is a unique
morphism h : C → B such that f ◦ h = g.11

This axiom, conjointly with the property of
toposes to have all finite limits (see Goldblatt, 1979;
MacLane and Moerdijk, 1992; Johnstone, 2002),
have an important consequence once transposed in
a semantic type system. Assume a topos T with
a distinguished object E corresponding to e. A
first-order predicate such as man : e → t is in-
terpreted as a morphism man : E → Ω. The
properties of T ensure that there exists an object M
along with a monomorphism c : M E12 such
that man ◦ c = > ◦ 1M, that is, there exists a
type man in the system such that x : man entails
man(c(x)) = true. Conversely, one can also
prove that if y : e is such that man(y) = true,
then there is an x : man such that y = c(x)13.
As a result, the Ω-axiom is a theoretical support
in toposes for the duality between predicates and
types, and as the categorical model generated by
UTT is a topos, we conclude that this axiom and
its consequences are also part of UTT.

3.3 Translation of Topos Properties into UTT
To know that the Ω-axiom exists in UTT is one
thing, but understanding how this axiom manifests
itself is another one which shall be clarified here.
But before exploring in more details its practical
consequences in the theory, let us give a few words
about the predicational form of typing judgement
proposed by Chatzikyriakidis and Luo (2017). It is

11This also entails 1B ◦ h = 1C , but it is already true
by definition of the terminal object. Category theorists shall
recognise in this property the defintion of B as the pullback
of χf and >.

12The object M is then said to be a subobject of E, whence
the name of subobject classifier given to Ω.

13It is so because variables of type e are interpreted as mor-
phisms 1→ E. The result then comes from direct application
of property (ii) of the Ω-axiom
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not hard to see that the corresponding morphism of
pa in the topos model T of UTT is>◦1A : A→ Ω:
not only this morphism has the expected domain
and codomain, but if we take a morphism x : 1→
A corresponding to an entity of type a, we can also
prove that > ◦ 1A ◦ x = >, which is the desired
property14. Then we notice that this morphism
>◦1A is exactly the kind of morphism that appears
in the right-hand side of the equalities in the Ω-
axiom. As a consequence, an interpretation of the
axiom is the following: if we are given a subtyping
coercion c : a ≤ b, then we can find a predicate
χc : b→ t such that χc ◦ c = pa.

But what kind of predicate would be χc? Can
we define it in a constructivist way? Given that
UTT, as shown by Luo (1994), allows for building
higher-order propositions, we can answer by the
affirmative. Assume a constant c : a → b corre-
sponding to the coercive subtyping a ≤ b. Then,
pose the following:

χc := λy : b.∃x : a. (c(x) = y) : b→ t (3)

The existentially quantified part of this term is a
definable proposition in UTT. Thus χc is defined
as the “characteristic” of a in b, such that χc is true
on y if and only if y is in the image of the coercion
function c. This shows how the conversion from
type to predicate works in such type theories. As
for the reverse direction of the type-predicate dual-
ity, if we are given any predicate P : b → t, then
following Seely (1984) the corresponding type may
be defined as:

a := Σx : b. (P (x) = true) (4)

where Σ denotes a dependent sum15. In other
words, a as defined in (4) is the type of pairs (x, p)
where x : b and p is a proof that P (x) is true. As
declared by Luo (2010), the first projection π1 of
such a sum is indeed a subtyping coercion, that is,
π1 : a ≤ b as required.

The formulations in (3) and (4) are sound in the
sense that if c : a ≤ b is a coercion then we have
a proof of x : a if and only if we have a proof of

14The complete proof runs as follows: by associativity of
the composition, (> ◦ 1A) ◦ x = > ◦ (1A ◦ x), and 1A ◦ x
is a morphism 1 → 1. Yet, by definition of 1, there can be
only one morphism 1→ 1, which is its identity id1. Hence,
> ◦ (1A ◦ x) = > ◦ id1 = > because the identity is neutral
for composition.

15As mentioned in footnote 11, this works because by Ω-
axiom the object A corresponding to a is the pullback of
P : B → Ω and >.

x : Σy : b.(χc(y) = true), and if P : b → t is
a predicate and π : (Σx : b.P (x) = true) → b
is the corresponding subtype coercion, we have a
proof of P (x) = true if and only if we have a
proof of χπ(x) = true. Hence there is a way
to move from types to predicates: for instance, if
x : man and c : man ≤ e, it suffices to define
man = λx.∃y.(c(y) = x) : e → t to have a
corresponding predicate with man(x) = true.

We should however point out that the categor-
ical model presented in this paper, as well as the
properties described, do not suffice to ensure that
the corresponding type theory has key properties
such as normalisation and decidability, nor that its
implementation would be easier16. Moreover, as
Chatzikyriakidis and Luo (2017) warned, we still
have a threat to type-checking decidability when
trying to move from predicates to types since prov-
ing P (x) = true in a MTT may be as hard as
proving the truth of P (x) in classical predicate cal-
culus. To overcome this difficulty, a solution could
be to adapt the type system so that the types of
predicate arguments are themselves subtypes of e
in order to make type checking more precise, as
shall be discussed in the next section.

4 A Linguistic Perspective on Base Types

4.1 Type Theory and the Lexicon

Let us start with the following observation: if a is
the type interpretation of some CN, then any b such
that a ≤ b ≤ e defines a possible predicational in-
terpretation of this CN, the extreme cases being
respectively Chatzikyriakidis and Luo’s predica-
tional form pa : a → t, and regular Montagovian
predicates e → t. A topos type theory therefore
provides a full range of predicate interpretations for
CNs which only depends on the types we accept
in the hierarchy between their direct type interpre-
tations and the greatest base type e. Besides, we
shall notice that the Ω-axiom applies to any pred-
icate, which may include for instance adjectives
and intransitive verbs: we may then obtain some
unexpected types such as the type heavy of heavy
entities. Hence we may end up with an unreason-
able amount of types and a large variety of possible
interpretations for predicates—on top of the type
checking difficulty.

16As an anonymous rewiever rightly highlighted, the cat-
egorical interpretation of dependent types of Seely (1984)
suffered from coherence issues that may be treated by a care-
ful work on models, has discussed e.g. in (Curien et al., 2014).
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We claim that the key solution for this issue is a
proper definition of the lexicon, whose idea follows
the lines of Pustejovsky and Batiukova (2019): a
mapping between linguistic lemmas and their se-
mantic representation, along with all relevant data
for compositionality. It manifested earlier in this
paper as the bracket application J.K sending a word
to its typed interpretation. Facing the profusion of
possible interpretations of a word in our type the-
ory, a carefully-designed lexicon behaves as a filter
which selects one (sometimes two) interpretation
to be used. Thus we are not committed to use all
the theoretically possible types and predicates, but
only a proper subset thereof—without ruling out
the properties of the type system. In other words,
the lexicon may provide the basis to define a decid-
able fragment of a type theory by restriction to the
terms using the constants it carries, without need
to apply the type-predicate duality anymore within
that fragment.

This puts a new highlight on the question of what
types inhabit the hierarchy: the problem does not
lie in the type theory proper, but rather at the inter-
face between language and semantic representation,
that is, in the lexicon. The main concern of lexi-
con design is therefore to choose types and predi-
cates that are relevant for distinguishing between
straightforward cases of semantic composition and
other phenomena such as coercions, and this choice
should obey the following criterion: types must be
precise enough to distinguish the various cases of
composition, but not too precise if this precision
is not relevant for compositional matters. As such,
we intend to separate the notion of type from the
notion of meaning to the extent that the involve-
ment of types in a semantic analysis is narrowed to
the compositional behaviour of words, abstracting
upon the other dissimilarities they may have.

4.2 Types in Compositionality and Negative
Predications

To explain this latter idea, consider for instance the
words cat and dog and their corresponding inter-
pretations under the CNs-as-types approach. What
does distinguish them from a compositional point
of view? As a matter of fact, both words are very
similar to that extent: lots of predicates which are
meaningful on one are also meaningful on the other,
as to be seen with physical descriptions, actions or
even moods. Only a few words seem to resist such
an analysis, among which the verbs corresponding

to their respective cries, meow and bark. Yet even
the compositional power of these predicates w.r.t.
cat and dog is questionable: how meaningless is it
to apply e.g. meow to dog? We are prone to think
that a meowing dog is an absurdity, and that meow
should be only employed with cats, hence a typing
restriction meow : cat→ t. Let however constrast
this view with the sentences in (1) below:

(1) a. Dogs do not meow but bark.
b. #Tables do not meow but bark.

The sentence (1a) is obviously true, while (1b)
is anomalous. Now, if we forget about the second
verb in both sentences, we have to admit that the
resulting ones should still differ in meaning, since
tables and dogs fail to meow for different reasons.
Moreover, reversing the verbs would turn (1a) to
falsity but would keep (1b) anomalous, which hints
that a meaningful predication of meow to dog could
be possible. As a consequence, we shall recognise
that the negative predications in (1a) and (1b) have
different underlying logics.

Actually, as discussed by Horn (1989), many
philosophers have recognised at least two forms
of negation which, following the terminology of
Sommers (1965, 1971), will be called here negation
and denial. The subtle difference between them
can be illustrated by the sentences in (2), where it is
integrated in the distinction between the use of not
for negation versus the prefix un- for denial, and
results in a divergence in semantic acceptability:

(2) a. Triangles are not intelligent.
b. #Triangles are unintelligent.

Their distinction is a matter of application level and
presupposition: denial applies to predicates so that
in a meaningful predication either the predicate or
its denial is true on the argument, while negation
applies directly to propositions and do not obey
this excluded middle clause. Thus (2b) is anoma-
lous because triangles can be neither intelligent
nor unintelligent, hence a meaningless predication.
By constrast, (2a) is acceptable under the reading
which states precisely that intelligent (or its denial)
cannot apply to triangles.

However, for predicates like bark and meow both
negation and denial are rendered by the particle not,
leading to an ambiguity in the negative predications
in (1). Yet those sentences show that these predi-
cates belong to the same “meaning scale” where
they contrast each other, similarly to the opposi-
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tion between intelligent and unintelligent. We may
reasonably assume that all predicates from such
a meaning scale are meaningful on the same ar-
guments; from which we may conclude that (1a)
contains a denial, while (1b) contains a pure nega-
tion. As a result, meow applies meaningfully to
dog and meaninglessly to table, a distinction cap-
turable with semantic types by extending the span
of meow from cat to a greater argument type which
includes dog and cat, but excludes table. If the type
animate fits such a role, then we end up with a new
interpretation JmeowK = meow : animate → t in
the lexicon.

The analysis above, if correct, should be repro-
duceable on any predicate which seems to distin-
guish cat and dog from a compositional point of
view, including the nouns themselves in their pred-
icative use if we accept that sentences in the sort
of “cats are not dogs” are actually denials. From
this generalisation, we conclude that the types cat
and dog are not needed in our lexicon, since all
predicates are blind to the distinction they intro-
duce w.r.t. compositionality. Their interpretations,
instead of relying on those types, would use the
supertype animate in predicates cat : animate→ t
and dog : animate → t, in such a way that any
entity determined to be a dog or a cat would re-
ceive by type-checking the type animate in ques-
tion, which is sufficient for further predications.
Any other kind of difference between cats and dogs
is not a matter of compositionality anymore, and
should rather be accounted for in deeper semantic
or pragmatic analyses.

4.3 Interpreting Negation in Type Theories

The previous discussion raises the issue of interpret-
ing negation in semantic type theories. Chatzikyri-
akidis and Luo (2017) propose a polymorphic op-
erator NOT rather than the usual connective ¬ to
ensure consistency with their predicational forms17,
since well-typedness of ¬pman(x) enforces the con-
tradictory condition x : man whereas NOT(pman, x)
does not. However, this interpretation is not suffi-
cient to distinguish negation from denial because
predicational forms are too restrictive: in particular,

17In UTT, the operator NOT has the polymorphic type
Πα : CN.(α→ t)→ (e→ t) (by assimilating propositions to
t and objects to e), where CN is the type universe of CN types.
Note that this universe seems to correspond conceptually to
the collections of subtypes of e. As a consequence, types of
the form Πα : CN.τ and of the bounded polymorphic form
∀α < e.τ from (Babonnaud and de Groote, 2020), as used in
Sect. 2, may be seen as equivalent.

NOT(pdog, x) has the same meaning regardless of
x being of type cat or table.

Taking a broader predicate interpretation for
dog may solve this problem as well-typedness of
¬dog(x) holds for x : animate, and cat < animate.
We may thus interpret denials using ¬, and keep the
operator NOT for negations, so that NOT(dog, x)
would mean that the type of x is uncompatible
with the argument type of dog. It appears then
that NOT enables us to transpose the type-theoretic
property of type incompatibility into a logical for-
mula. Another option for negation could be to use
the most general predicate dog′ : e → t while us-
ing dog only for denials, replacing NOT(dog, x)
by ¬dog′(k(x)) with k an adequate coercion to e,
but that would require an additional mechanism to
introduce such a predicate when needed, for we
cannot be committed to have this general interpre-
tation available in the lexicon.

5 Conclusion

A first observation about the interpretation of CNs
is the fact that neither types nor predicates seem to
offer a greater practical advantage: in both cases,
adding little theoretical machinery into the frame-
work enables their interaction with subtyping and
dot types in a fairly straightforward way. In the
case of predicates however, this interaction comes
at the cost of reconsidering composition, as it gen-
erally requires new mechanisms that go beyond
direct application. Nevertheless, such a revision
in compositionality may be an unavoidable step
towards better interpretations of complex semantic
phenomena anyways.

Yet the main observation of the present paper is
the fact that any type theory with enough assump-
tions can actually model both views of interpreting
CNs in a equivalent way, by establishing a bijective
correspondence between predicates of type e→ t
and subtypes of e. Theories with this property in-
clude MTTs such as Martin-Löf type theory and
Luo’s UTT, and further considerations show that
many other type-theoretical frameworks can be ex-
tended to get access to this property as well. The
discussion in Sect. 3 shows how abstracting type
theories through the perspective of category theory
helps in identifying and establishing their key prop-
erties. The present paper particularly highlighted
the correspondence between the expected duality
of interpretations and a general property of the cat-
egorical class of toposes.
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This duality gives access to intermediate choices
of interpretation for CNs which blur the lines be-
tween the strict applications of each view. In
Sect. 4, we proposed an interpretation of CNs
as predicates with refined argument types, whose
choice relies on their compositional abilities with
other predicates from the language, and the pos-
sible arguments thereof. This refinement requires
to determine on which entities it is meaningful to
assert or deny the given predicate, thus excluding
the entities on which the predication is absurd. In
negative sentences, this amounts to be able to disso-
ciate pure negation and denials. Generalising such
a reasoning on a natural language should eventu-
ally lead to the construction of a lexicon using a
proper sub-hierarchy of the possible types, each
type corresponding to some cluster of CNs with the
same compositional behaviour.
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Abstract

This paper addresses Semantic Role Label-
ing (SRL) within the context of English Dis-
course Representation Structure (DRS) pars-
ing. In particular, we investigate whether se-
mantic roles predicted by a near-state-of-the-
art SRL model can be used to improve the out-
puts of modern end-to-end neural DRS parsers
using a rule-based post-processing algorithm.
We compare two methods of generating train-
ing data for the SRL model from the Parallel
Meaning Bank, one DRS-based and one CCG-
based. We also compare two different post-
processing algorithms. Our results vary across
different DRS parsers, but overall we find a
small to moderate improvement of up to 0.5 F1
on the final DRSs. We find a small but consis-
tent advantage of DRS-based over CCG-based
training data generation, and of token-based
over concept-based post-processing, where ap-
plicable.

1 Introduction

With the increasing availability of multi-layered
semantically annotated corpora, semantic pars-
ing today is typically approached as an end-
to-end task of predicting a meaning representa-
tion in one go, including information on word
senses, predicate-argument structure, scope, se-
mantic roles, and more. Since each of these lay-
ers is complex in its own right, it might be benefi-
cial to rely on multiple specialized components to
separately predict individual semantic layers, and
to combine their output. In this paper, we focus
on separately predicting semantic roles in the con-
text of Discourse Representation Structure (DRS)
parsing.

DRSs are meaning representations grounded
in Discourse Representation Theory (Kamp and
Reyle, 1993). We use the English part of the
Parallel Meaning Bank (PMB; Abzianidze et al.,

2017), which contains sentences annotated with
DRSs. Figure 1 shows an example. Events (e.g.,
e1) are related to their participants (e.g., x1, x2)
via semantic roles (e.g., Theme, Destination)
from the VerbNet/LIRICS inventory (Bonial et al.,
2011). Semantic roles are a crucial aspect of
meaning since they encode how each entity par-
ticipates in an event (Fillmore, 1968).

e1 t1 b2

jump.v.01(e1)
Theme(e1, x1)
Destination(e1, x2)

time.n.08(t1)
Time(e1, t1)
t1 ≺ now

x1 b1

male.n.02(x1)

x2 b3

train.n.01(x2)

Figure 1: DRS for He jumped into the train (source:
PMB, document 00/2759)

Semantic role labelling (SRL) is typically ap-
proached as a task of labeling tokens or parse tree
edges with predicate/role labels, independently of
other aspects of meaning (e.g., Li et al., 2019,
2020b; Shi et al., 2020; Marcheggiani and Titov,
2020; Li et al., 2020a). Conversely, DRS parsers
such as Evang (2019); Fancellu et al. (2020); van
Noord et al. (2020); Liu et al. (2021) do not have
dedicated SRL modules but predict a complete
meaning representation of which roles are one
part. In this paper, we explore the possibility of
combining semantic parsers with a dedicated SRL
system. The main research question we seek to
answer is: can we in this way obtain DRSs with
more accurate semantic roles?

Our approach is summarized in Figure 2: we
first convert the PMB training data into a stan-
dard SRL annotation format (§2) in order to train
a near-state-of-the-art SRL system on it (§3). At
test time, we merge the output of DRS parsers
with that of the SRL system using a rule-based
post-processing algorithm (§4), aiming to produce
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a more accurate final DRS. We experiment with
applying our procedure on top of several recent
DRS parsing systems, and find that, albeit with
some caveats, our procedure leads to overall better
scores (§5). 1

Figure 2: System overview

2 DRS-to-SRL Conversion

Before we can train an SRL system, we first need
to convert semantic role annotations in the PMB
to a more standard SRL format. Two characteris-
tics of the PMB make this a non-trivial task. First,
role annotations in the PMB are predicate-based,
meaning that roles are carried by predicates in-
stead of by arguments, as in standard SRL sys-
tems. Table 1 illustrates this: in standard SRL, the
Theme role would be marked on he. Instead, in the
PMB, the role is annotated on jumped, the predi-
cate assigning the role; in a later step, the DRS
parser makes sure that the role is associated to the
discourse referent introduced by “He”. Second,
prepositional and adverbial roles (e.g. into the
train, slowly) are treated differently from “core”
semantic roles: they are carried by the preposition
or adverb itself, instead of by the verbal predicate
they are associated to.

Token He jumped into the train

PMB Theme Destination
SRL: head Theme PRED Destination
SRL: span Theme PRED { ← Destination → }

Table 1: PMB-style versus standard SRL annotations.

We experiment with two approaches for convert-
ing PMB role labels to a standard SRL format:

2.1 DRS-based conversion

Here, predicates and fillers for semantic roles are
found via DRSs, which in the training data are
anchored, i.e., most clauses are aligned to ex-
actly one token. We extract predicate-role-filler
triples such as 〈jumped,Theme,he〉 from the an-
chored DRSs by looking for role clauses such as

1Code and data at https://github.com/TaniaBladier/DRS
Parsing with SRL

b2 Theme e1 x1 and then finding the clause
introducing the filler (b1 REF x1, anchored to
He), and the clause introducing the event (b2
REF e1, anchored to jumped). The process is il-
lustrated in Figure 3.2

Disadvantages of this approach are 1) that it
only yields the heads of the fillers, not full spans,
and 2) that in some cases, the ‘deep’ semantic
structure of the DRS does not directly match the
surface realisations of the semantic roles we want
to find. One example of the latter problem is found
in sentences such as “She saw herself”, where a
DRS-based approach would return “She” as the
Stimulus role, instead of “herself”, which is the
surface filler of this role but does not introduce a
discourse referent of its own.

b1 REF x1             % He [0...2]
b1 PRESUPPOSITION b2  % He [0...2]
b1 male "n.02" x1     % He [0...2]
b2 REF e1             % jumped [3...9]
b2 REF t1             % jumped [3...9]
b2 TPR t1 "now"       % jumped [3...9]
b2 Theme e1 x1        % jumped [3...9]
b2 Time e1 t1         % jumped [3...9]
b2 jump "v.01" e1     % jumped [3...9]
b2 time "n.08" t1     % jumped [3...9]
b2 Destination e1 x2  % into [10...14]
b3 REF x2             % the [15...18]
b3 PRESUPPOSITION b2  % the [15...18]
b3 train "n.01" x2    % train [19...24]
                     % . [24...25]

2) find role filler 
(Theme → x1)  

1) find predicate 
(“jumped”)

3) find 
introduction of 
filler (x1 → “He”)

4) result: predicate 
= “jumped”, Theme 
= “he”

Figure 3: Example of DRS-based conversion.

2.2 CCG-based conversion
The second approach aims at overcoming both
limitations of the DRS-based approach by mak-
ing use of the CCG derivations in the PMB. Here,
predicates and fillers for semantic roles are found
via the CCG (Categorial Combinatorial Grammar,
Steedman 2000) syntax trees and predicate-based
role annotations in the PMB.

Main conversion process First, we transform
the CCG trees using the pmb ccg to term
module in the LangPro package (Abzianidze,
2017), removing directionality of the combina-
tory rules and reducing the number of possible
combinators, which simplifies tree traversing. In
particular, long-distance dependencies (such as
wh-movement) are handled using the λ-operator,
which introduces a relationship between two vari-
ables at different points in the tree. An example of
this kind of tree is given in Figure 4.

2The DRS in clause notation in Figure 3 is equivalent to
the one in box notation in Figure 1, but additionally shows
the alignment with tokens in the sentence.
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s[dcl]

@

np np~>s[dcl]

@

s[qem]~>np
~>s[dcl]

s[qem]

t

"I"

t

"know"

@

(pp~>s:dcl)
~>s[qem]

pp~>s[dcl]

t

"where"

λ

p1
(pp)

s[dcl]

@

np~>s
(np~>s)
~>s[dcl]

*

np

t

"he"

pp~>np
~>s[dcl]

@

p1
(pp)

t

"is"

Figure 4: Simplified CCG tree with examples of all combinators (@: simple functional application; λ: variable
introduction;, ∗: type-raising). Solid rectangles are types, circles are operators, dotted rectangles are lambda vari-
ables, and ovals are lexical nodes. s[dcl] means ‘declarative sentence’; s[qem] means ‘embedded question’.

Next, we deploy our role span extraction al-
gorithm, which traverses the simplified tree and
tries to match the semantic roles annotated on each
predicate to the constituents filling these roles.
Figure 5 displays a high-level overview of this pro-
cess, showing how CCG arguments get mapped to
constituents in the tree. This process is explained
in more detail in Figure 6.

Given a simplified tree, we extract each predi-
cate’s syntactic roles from its CCG type signature
and match them with the annotated semantic roles.
For example, suppose jump has the type signature
NP→S3 and the role annotation [Theme], then
it has a single NP syntactic role, corresponding to

3The original CCG category would be S\NP, which we
simplify into the direction-agnostic NP→S.

2) find & trace CCG 
argument for role 
(Theme → “\NP”)

1) find predicate 
(“jumped”)

3) find derivation 
step where role is 
resolved

4) result: predicate = 
“jumped”, Theme = 
“he”

Figure 5: Example of CCG-based conversion.

a Theme semantic role. Then, we move upwards
through the syntax tree, checking the type signa-
ture at every step; whenever we detect that a role
has been filled, we process the constituent that was
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Identify predicate

"jumped"
lemma: "jump"

cat: PP~>NP~>S[dcl]
verbnet: [Theme]

Match syntactic and
semantic roles

syn: [PP, NP]
sem: [PP_ROLE, Theme]

Any unfilled
roles left?

Stop

no

Move up one level in
the tree

yes

yes (PP and
NP/Theme)

"jumped into the train"
cat: NP~>S[dcl]
verbnet: [Theme]

Did this step
fill a role? (a) yes (the PP)

Find the span of the
role (b)

PP/Destination:

"into the train"

yes

Are we at the
root node?

no

no

no

yes

yes 
(NP/Theme)

"he jumped into the train"
cat: S[dcl]
verbnet: []

yes (the NP
/Theme)

NP/Theme:

"he"

Figure 6: Flow chart of the main CCG-based conversion process. Algorithmic steps in white, example in purple.

merged at that point of the tree as the filler of the
corresponding semantic role. This process is re-
peated until we have found a filler for every role,
or until we reach the top of the tree.4

Detecting merged constituents A crucial step
of our process (step (a) in Figure 6) is detect-
ing, given a particular node in the tree, whether
a role has been resolved at that node. In many
cases, this is straightforward; for example, in the
sentence in Figures 5 and 6, we can see that
he fills the NP/Theme role of jump at the point
where he is combined with jumped into the train
through simple functional application, changing
the type signature from NP→S to S. In other cases,
more complicated rules are needed, for example
when dealing with to-clauses (She wants me to
leave), where, on combining wants me with to
leave, the type signature of to leave changes from
NP→S[to] to NP→S[dcl]. In such cases, at
first glance, it appears as if not much has changed
except a change of clause type (from a to-clause

4In some cases, e.g. wh-questions, it is possible that some
roles remain unfilled.

to a declarative sentence), whereas in fact, me has
filled the subject NP of leave, and a new NP ar-
gument (the subject NP of wants) has been added.
We have developed a set of heuristics that cover
all such difficult cases occurring in the gold an-
notations in the PMB. While we believe that this
amounts to a wide general coverage, it is likely
that there exist other constructions that our algo-
rithm does not (yet) cover.

Once it has been defined that a role is resolved at
a given node in the tree, the next crucial step (step
b in Figure 6) is to find the correct role span within
the constituent that was combined. In many cases
(like he in he jumped), the entire constituent is the
role filler, but in other cases (like wants me in She
wants me to leave), only a part of the constituent
(me) is the role filler that we are looking for. To
find this constituent, we designed a separate al-
gorithm that moves down the tree starting from
the merged constituent, until an argument with the
correct type is found.

PP and adverbial roles Semantic roles carried
by PP constituents (e.g. into the train) or by adver-
bial phrases (e.g. quickly) pose an additional chal-
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lenge, since, in the PMB annotation framework,
these roles are annotated on the syntactic head of
the PP or adverbial phrase (e.g. into in into the
train) rather than on the verb that they combine
with. In cases where the PP is a syntactic argu-
ment of the verb (as in jump into the train), we
solve this by first adding a placeholder role (see
the PP role at the top of Figure 6) corresponding
to the verb’s PP argument, and then replacing this
by the semantic role carried by the PP at the point
where it is combined with the predicate. In cases
where a PP or adverb is an adjunct (e.g. with type
signature S→S or (NP→S)→(NP→S)), we add
the semantic roles introduced by the adjunct to the
predicates in the constituent that is modified (e.g.,
quickly modifies he ran in he ran quickly. To en-
sure that adjuncts get the right scope, we added a
constraint to our algorithm that forbids adding ad-
junct roles to predicates if doing so would cross a
clause boundary; e.g., loudly in he loudly said he
was going to leave can modify said but not leave.

Span-to-head conversion As a final step, to
make the outputs of the CCG-based algorithm
comparable to those of the DRS-based algorithm,
we add a final step that converts the extracted
role spans to their semantic heads. This algo-
rithm consists of a set of (recursive) rules defining
what the head of each type of phrase is. For ex-
ample, H(the old woman) = H(old woman) =
H(woman) = woman, where H is a function ap-
plying the appropriate rule for a given phrase type
and returning the ‘head part’ of the phrase. There
are many possible phrase types, but in general, the
head of an NP is a noun, the head of a VP is a
verb, the head of a PP is an NP, and the head of a
sentence is the VP.

2.3 Comparing the approaches

Comparing the outputs of both conversion ap-
proaches, we find that 68% of documents match
exactly, and 82% differ by at most one role. This
shows that both approaches show significant dif-
ferences worth further investigating. The differ-
ences mainly concern structural mismatches be-
tween syntax and semantics. For example, in sen-
tences with co-referential NPs, CCG-based con-
version gives more intuitive results than DRS-
based conversion: in she handed him1 the money
that she owed him2, DRS-based conversion treats
the two hims as the same entity and assigns the
Beneficiary role of owe to him1, whereas CCG-

based conversion correctly assigns it to him2. Sim-
ilarly, with reflexives, in she saw herself, DRS-
based conversion is unable to assign any role to
herself, since this word does not introduce a new
discourse referent but refers back to she. The
syntax-driven CCG-based conversion also allows
for a better resolution of hearer and speaker dis-
course participants in such sentences as I don’t re-
member your name.

On the other hand, CCG-based conversion has
difficulties dealing with light verb constructions
where the semantics of the main verb and the light
verb interact. For instance, in he had his wallet
stolen, the relationship between he and stolen is
not detected. Finally, more heuristics will need to
be added to CCG-based conversion to cover all ad-
junct semantic roles due to the way that these are
annotated in the PMB, e.g. by-clauses in passive
sentences. Also, the CCG-based conversion needs
additional rules to distinguish between the seman-
tic and syntactic head in such constructions as all
of the town or a kilo of plums.

3 SRL Predictions

We predict semantic roles using the graph-based
end-to-end coreference resolution system by He
et al. (2018). This syntax-agnostic SRL model
jointly predicts predicates, role fillers, and role la-
bels. The SRL system builds contextualized rep-
resentations for spans of arguments and predicate
tokens based on BiLSTM outputs. The argument
spans and predicates are predicted independently
of each other and the aggressive beam pruning is
used to discard the least probable combinations
of predicate and argument spans. The output of
the system is a graph, which lists predicted SRL
roles as edges and the associated text spans as
nodes. The SRL graph is predicted directly over
text spans. Unlike He et al., we do not predict
the full spans of semantic roles, but only syntactic
heads of the semantic role spans, since the DRSs
in the PMB do not contain information about full
spans of arguments.5 We experiment with GloVe
(Pennington et al., 2014) and ELMo (Peters et al.,
2018) embeddings to train the SRL system.6

We use the gold section of the English PMB
data (release 3.0.0) to train and test the SRL sys-
tem, which contains a train, dev, and test split of

5The full spans of semantic arguments can be recon-
structed from head spans using syntactic information from
dependency graphs (Gliosca and Amsili, 2019).

6The hyper-parameters are given in the appendix.
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6 620, 885, and 898 documents, respectively. The
SRL system is trained on the output of both DRS-
to-SRL conversion tools separately. We include
only verbal predicates and exclude the predicate
be due to its inconsistent annotation in the PMB.

4 Merging DRS and SRL Predictions

As baseline DRS parsers without external SRL
prediction, we use DRS parsers for which the out-
put is publicly available: the transition-based com-
positional parser of Evang (2019) and three neural
sequence-to-sequence models: the character-level
model of van Noord et al. (2018b), an extension of
this model that uses linguistic features (van Noord
et al., 2019) and the best BERT-based model of van
Noord et al. (2020). We refer to these models with
E19, N18, N19, and N20.

We propose two methods for merging DRS and
SRL output: a token-based method for parsers that
are lexically anchored (each clause maps to one to-
ken), such as E19, and a concept-based method for
parsers for which this is not the case (N18, N19,
N20). Both methods only aim to replace roles in
the DRS; no new full clauses are inserted.

Token-based merging When the SRL sys-
tem predicts a predicate-role-filler tuple such as
〈jumped,Theme,he〉, we look for a corresponding
role prediction in the parser output. A correspond-
ing prediction is a role clause such as b2 Agent
e1 x1, where the event discourse referent (e1)
and the filler discourse referent (x1) are intro-
duced by the corresponding tokens, i.e., jumped,
and he, respectively. We say that a referent is in-
troduced by a token if the token is anchored to a
concept clause for that referent, such as b2 jump
"v.01" e1 or b1 male "n.02" x1. In this
example, the DRS parser predicted a different role
(Agent) than the SRL system (Theme), so we re-
place the former with the latter.

Concept-based merging Concept-based merg-
ing works similarly but does not rely on clauses
being anchored to tokens. Instead, concept clauses
are matched to tokens using corpus-level align-
ment and lemmatization. We say that a concept
clause (e.g., b1 male "n.02" x1) matches a
token (e.g., he) if it is observed anchored to the
same word anywhere in the full PMB training
data (bronze, silver, and gold). We also say that
a concept clause (e.g., b2 jump "v.01" e1)
matches a token (e.g., jumped) if there is a string

match between the concept and the lemma7 of the
token (jump).

Restrictions In order to avoid some incor-
rect role replacements, we impose the following
heuristics to restrict replacement: a role r is not
replaced with r′ if 1) r is one of the special roles
Time and Name, 2) r′ was predicted by the SRL
system with < 50% precision, 3) r′ already exists
in the same box as r. For concept-based merging,
the general concepts person, be and entity
are never matched with any input tokens.

5 Experiments and Discussion

The main results of our experiments are shown
in Table 2. Overall, we see small but consistent
improvements for all parsers, except for N20, the
most recent system. It seems that once the parser
reaches a certain accuracy it is not straightforward
to improve the scores by using an imperfect exter-
nal system. This is also reflected by the number of
replaced roles, which goes down as the parsers get
better. Comparing the two conversion methods,
we find that DRS-based conversion leads to higher
scores. The difference with CCG-based conver-
sion is small, though consistent between setups.
In a sense, this is unsurprising given that DRS
is also our target representation format. Further-
more, we found that using ELMo outperformed
GloVe; while this is unsurprising, it supports the
intuition that using a higher quality SRL system
leads to more improvement. In other words, any
development on the SRL parsing side is likely to
lead to better performance on DRS parsing as well.
Comparing token-based to concept-based merging
on the output of the E19 parser (the only one where
it is applicable), it makes more replacements and
results in slightly higher accuracy, suggesting an
advantage in terms of recall over concept-based
merging.

Room for improvement As can be seen in Ta-
ble 2, SRL performance seems to be a bottleneck;
hence, using future, higher-quality SRL systems
might also lead to better overall performance of
our method. In particular, due to the merging
step in our pipeline system, missing roles in SRL
predictions are less costly than wrong predictions.
Hence, we expect that SRL systems that are opti-
mized for precision rather than for F-score will be
more suited for use in our task. Furthermore, we

7We use spaCy (Honnibal et al., 2020) for this.
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Experiments SRL E19-tok E19 N18 N19 N20

dev test dev test dev test dev test dev test dev test
Baseline – – 81.4 (0) 81.4 (0) 81.4 (0) 81.4 (0) 84.3 (0) 84.9 (0) 86.8 (0) 88.7 (0) 88.4 (0) 89.3 (0)
DRS conv.: upper 100 100 +1.5 (154) +1.3 (144) +1.3 (124) 1.2 (124) +0.9 (92) +1.2 (132) +0.9 (88) +1.1 (117) +0.5 (51) +0.7 (76)

CCG conv.: upper 100 100 +1.2 (145) +1.2 (134) +1.2 (115) 1.1 (118) +0.9 (89) +1.2 (129) +0.8 (80) +1.1 (114) +0.5 (50) +0.8 (78)
DRS conv. + GloVe 79.7 81.6 +0.3 (129) +0.3 (113) +0.4 (97) +0.2 (102) +0.2 (68) +0.4 (92) +0.1 (64) +0.2 (90) -0.2 (57) -0.1 (70)
DRS conv. + ELMo 85.8 86.3 +0.5 (128) +0.4 (120) +0.5 (104) +0.4 (110) +0.3 (73) +0.5 (107) +0.2 (74) +0.3 (104) -0.1 (55) 0.0 (69)
CCG conv. + GloVe 80.7 83.0 +0.3 (129) +0.3 (117) +0.3 (107) +0.2 (108) +0.1 (96) +0.4 (102) 0.0 (93) +0.1 (103) -0.2 (73) -0.1 (74)
CCG conv. + ELMo 85.2 87.0 +0.4 (118) +0.4 (109) +0.4 (99) +0.3 (103) +0.2 (81) +0.4 (104) +0.1 (73) +0.2 (102) -0.2 (63) 0.0 (66)

Table 2: Experiment results, including F-scores and number of replaced roles (in brackets). The F-scores are
calculated using Counter (van Noord et al., 2018a). Scores for N19 and N20 are averaged over 5 runs. E19-tok
uses token-based merging, E19 uses concept-based merging like the rest.

expect that further improvements in the conversion
algorithms will lead to better overall performance.

Error analysis We identified four sources of er-
rors in the SRL predictions. The data show an im-
balanced role distribution towards the roles Theme
and Agent, which take up 52% of all annotations
out of 32 semantic roles. This leads to overpre-
diction of these roles by the SRL-labeler. Indeed,
for N20 we find that these roles have an inser-
tion precision of < 50%, or in other words, they
were more often wrongly inserted than that they
correctly replaced a non-matching role. Figure 7
shows the confusion matrix for the most frequent
semantic roles.

pred./gold Agent Co-Theme Dest. Exper. Loc. Patient Source Stim. Theme

Agent 337 0 0 5 0 1 0 0 5

Co-Theme 0 54 0 0 0 1 0 0 3

Destination 0 0 33 0 2 0 0 0 0

Experiencer 1 0 62 0 3 0 1 1

Location 0 0 0 0 62 0 0 0 0

Patient 2 0 1 1 77 0 1 7

Source 1 0 0 0 0 0 21 1 2

Stimulus 2 0 0 0 0 0 0 56 2

Theme 14 2 1 0 2 7 0 4 356

Figure 7: Confusion matrix for semantic labeling er-
rors, showing the numbers of predicted labels for the
most frequent labels.

The role Theme and Agent are also frequently
predicted extra in cases where no semantic role
should be predicted. For example, the pronoun
her in the sentence she ate her dinner is erro-
neously assigned the role Agent. Semantic roles
of prepositional phrases also lead to prediction er-
rors. For example, the phrase the field of biology in
the sentence He is working in the field of biology is
wrongly recognized as Location instead of Theme.
Another cause of prediction errors are possessive
determiners which are wrongly predicted as role
fillers. For example, both her and dinner are pre-
dicted as Patient in the following sentence: She
ate her dinner. Also, no semantic roles are pre-
dicted by the SRL-labeler if the head word has no

vector embedding due to a special character, for
example like post∼office. Due to the merging step
in our pipeline, the erroneously missing semantic
roles in SRL predictions do not lead to a drop of
parsing performance and also do not improve it.

6 Conclusions and Future Work

We have presented experiments on using exter-
nally predicted semantic roles to improve the out-
put of four recent DRS parsers. We saw that
there is considerable room for improvement and
our method fills it – but not fully, especially as
parsers get more accurate. We conclude that our
approach is useful especially with parsers such as
E19 which do not reach state-of-the-art accuracy
but may have other advantages such as smaller
models or lexical anchoring. An advantage of our
approach is that it is very flexible: it can be applied
on top of any DRS parsing model without having
to alter or retrain the model itself. This means
that our method, or an improved version of it,
could also be applied to future DRS parsers, possi-
bly with completely different architectures. In fu-
ture work we intend to experiment with enhancing
the SRL system using syntactic input from CCG-
based supertags and also try out other SRL sys-
tems. We also plan to experiment with prediction
of nominal and adjectival predicates along with
their semantic roles. We also intend to reconstruct
and predict full spans of semantic roles. Moreover,
we plan to carry out parsing experiments with fur-
ther languages in the PMB, including Dutch, Ger-
man, and Italian, as our method should be univer-
sally applicable. Finally, it would be interesting
to improve the SRL predictions by enforcing co-
herence of predicted predicates and corresponding
semantic roles.
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Appendix

Layer Hyper-parameters Value

Characters CNN numb. of filters 50

Bi-LSTM state size 200
# layers 3

Words embedding vector dim. 300

Char. embedding dimension 8

batch size 40

Dropout dropout rate 0.5

Max. gradient norm 5.0

Optimizer Adam

Learning rate 0.001

Decay rate 0.999

Decay frequency 100

Hyper-parameters of the SRL system.
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Abstract

We propose a probabilistic account of seman-
tic learning from interaction formulated in
terms of probabilistic type theory with records,
building on Cooper et al. (2014, 2015); Lars-
son and Cooper (2021). Starting from a prob-
abilistic type theoretic formulations of naive
Bayes classifiers, we illustrate our account
of semantic learning with a simple language
game (the fruit recognition game).

1 Introduction

A probabilistic type theory was presented by
Cooper et al. (2014) and Cooper et al. (2015),
which extends Cooper’s Type Theory with Records
(TTR, Cooper, 2012a; Cooper and Ginzburg, 2015;
Cooper, in prep). This theory, Probabilistic Type
Theory with Records (ProbTTR) assigns probabil-
ity values, rather than Boolean truth-values, to type
judgements.

TTR has been used previously for natural lan-
guage semantics (see, for example, Cooper (2005)
and Cooper (2012a)), and to analyze semantic co-
ordination and learning (for example, Larsson and
Cooper (2009); Cooper and Larsson (2009)). It
has also been applied to the analysis of interac-
tion in dialogue (for example, Ginzburg (2012) and
Breitholtz (2020)), and in modelling robotic states
and spatial cognition (for example, Dobnik et al.
(2013)). We believe that a probabilistic version of
TTR could be useful in all these domains.

Two main considerations motivated recasting
TTR in probabilistic terms. First, a probabilistic
type theory offers a natural framework for captur-
ing the gradience of semantic judgements. This
allows it to serve as the basis for an account of
vagueness in interpretation, as shown by Fernández
and Larsson (2014). Second, such a theory lends
itself to developing a model of semantic learning
that can be straightforwardly integrated into more

general probabilistic explanations of learning and
inference. It is the latter goal that we pursue here.

In this paper we build on the account of prob-
abilistic inference and classification in ProbTTR
introduced by Larsson and Cooper (2021). There, a
ProbTTR version of a random variable, not present
in the work of Cooper et al. (2015), was introduced.
It was also shown how probabilistic classification
of perceptual evidence can be combined with prob-
abilistic reasoning. By proposing a Bayesian ac-
count of semantic learning formulated in terms of
probabilistic type theory, we connect probabilistic
semantic learning to the modeling of perceptual
meaning as classifiers.

In the following, we first provide a brief
overview of TTR and Probabilistic TTR. Section 3
reviews the account of semantic classification pre-
sented by Larsson and Cooper (2021). Section 4
details a frequentist account of semantic learning in
ProbTTR, and Section 5 provides an example of se-
mantic learning. Section 6 concludes and discusses
related and future work.

2 Background

This section reviews the background needed to fol-
low the rest of the paper: TTR, Probabilistic TTR
fundamentals, and Bayes nets and Naive Bayes
classifiers.

2.1 TTR: A brief introduction
We will be formulating our account in a Type The-
ory with Records (TTR). We can here only give
a brief and partial introduction to TTR; see also
Cooper (2005), Cooper (2012b) and Cooper (in
prep). To begin with, s : T is a judgment that some
s is of type T . One basic type in TTR is Ind, the
type of an individual; another basic type is Real,
the type of real numbers.

Next, we introduce records and record
types. If a1 : T1, a2 : T2(a1), . . . , an :
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Tn(a1, a2, . . . , an−1), where T (a1, . . . , an) rep-
resents a type T which depends on the objects
a1, . . . , an, the record to the left in Figure 1 is of
the record type to the right.

In Figure 1, `1, . . . `n are labels which can be
used elsewhere to refer to the values associated
with them. A sample record and record type is
shown in Figure 2.

Types constructed with predicates may be depen-
dent. This is represented by the fact that arguments
to the predicate may be represented by labels used
on the left of the ‘:’ elsewhere in the record type.
In Figure 2, the type of cman is dependent on ref (as
is crun).

If r is a record and ` is a label in r, we can use a
path r.` to refer to the value of ` in r. Similarly, if
T is a record type and ` is a label in T , T .` refers
to the type of ` in T . Records (and record types)
can be nested, so that the value of a label is itself
a record (or record type). As can be seen in Fig-
ure 2, types can be constructed from predicates,
e.g., “run” or “man”. Such types are called ptypes
and can intuitively be thought of as types of situa-
tions. Such types of situations can be construed as
propositions, following the “propositions as types”
principle.

2.2 Probabilistic TTR fundamentals
The core of ProbTTR is the notion of a probabilistic
judgement, where a situation s is judged to be of a
type T with some probability.

(1) p(s : T ) = r, where r ∈ [0,1]

Such a judgement expresses a subjective probabil-
ity in that it encodes an agent’s take on the likeli-
hood that a situation is of that type.

A probabilistic Austinian proposition is an ob-
ject (a record) that corresponds to, or encodes, a
probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (2).

(2)




sit : Sit
sit-type : Type
prob : [0,1]




A probabilistic Austinian proposition ϕ of this type
corresponds to the judgement that ϕ.sit is of type
ϕ.sit-type with probability ϕ.prob.

(3) p(ϕ.sit:ϕ.sit-type)= ϕ.prob

We assume that agents track observed situations
and their types, modelled as probabilistic Austinian
propositions.

We use p(T1||T2) to represent the probability
that any situation s is of type T1, given that s is
of type T2. Note that p(T1||T2), is different from
p(T1|T2), the probability of there being something
of type T1 given that there is something of type T2.
We can refer to the former as the bound variable
(or perhaps universal) conditional probability1, and
the latter as the existential conditional probability.

2.3 Bayesian nets and the Naive Bayes
classifier

A Bayesian Network is a Directed Acyclic Graph
(DAG). The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution for its ran-
dom variables. Bayesian Networks provide graphi-
cal models for probabilistic learning and inference
(Pearl (1990); Halpern (2003)).

A standard Naive Bayes model is a special
case of a Bayesian network. More precisely, it
is a Bayesian network with a single class vari-
able C that influences a set of evidence variables
E1, . . . , En (the evidence), which do not depend
on each other. Figure 3 illustrates the relation be-
tween evidence types and class types in a Naive
Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(4)

p(c) =
∑

e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and

(5) p(c | e1, . . . , en) =

p(c)p(e1 | c) . . . p(en | c)∑
C=c′ p(c

′)p(e1 | c′) . . . p(en | c′)

2.4 Random variables in TTR

Larsson and Cooper (2021) introduce a type theo-
retic counterpart of a random variable in Bayesian

1In Bayesian jargon, such conditional probabilities are
often referred to as likelihoods.
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


`1 = a1
`2 = a2
. . .
`n = an
. . .




:




`1 : T1
`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln−1)




Figure 1: Schema of record and record type




ref = obj123
cman = prfman
crun = prfrun


:




ref : Ind
cman : man(ref)
crun : run(ref)




Figure 2: Sample record and record type

C

E1 E2 ... En

Figure 3: Evidence and Class in a Naive Bayes classi-
fier

inference. To represent a single (discrete) ran-
dom variable with a range of possible (mutually
exclusive) values, ProbTTR uses a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An} such that the following conditions
hold.

(6) a. All value types for a variable type V are
subtypes of V , formally Aj v V for 1 ≤
j ≤ n

b. All value types for a given vari-
able type V are disjoint, formally
Aj ⊥ Ai for all i, j such that 1 ≤ i 6=
j ≤ n

c. The probability of a situation s being of
a variable type V is either 0 or 1, which
is also the sum of the probabilities of s
being of any of the variable value types ,
formally for any s, p(s : V ) ∈ {0, 1} and
p(s : V ) =

∑
T∈R(V ) p(s : T )

(6)(c) encodes a conceptual difference between
the probability that something has a property (such

as colour, p(s:Colour)), and the probability that it
has a certain value of a variable (e.g. p(s:Green)).
If the probability distribution over different values
(colours) sums to 1, then the probability that the
object in question has a colour is 1. The prob-
ability that an object has colour is either 0 or 1.
We assume that certain ontological/conceptual type
judgements of the form “physical objects have
colour” are categorical, and so have Boolean val-
ues.

2.5 Representing probability distributions
For a situation s, a probability distribution over the
m value types Aj ∈ R(A), 1 ≤ j ≤ m belonging
to a variable type A can be written (as above) as a
set of probabilistic Austinian propositions, e.g.

(7) {




sit = s
sit-type = Aj
prob = p(s : Aj)


 | Aj ∈ R(A)}

However, we will also have use for a vector rep-
resentation of probability distributions, which is
also more compact. If we assume R(A) is an or-
dered set {A1, . . . Am}, we can define probability
distribution dA(s):

(8) dA(s) = 〈p1, . . . , pm〉 where pj = p(s : Aj)
for Aj ∈ R(A), 1 ≤ i ≤ m

2.6 A ProbTTR Naive Bayes classifier
Corresponding to the evidence, class variables, and
their value types, we associate with a ProbTTR
Naive Bayes classifier κ:

(9) a. a collection of n evidence variable types
Eκ1 , . . . ,Eκn

b. n associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn)
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c. a class variable type Cκ, e.g. Fruit, and

d. an associated set of class value types
R(Cκ)

To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types.

Larsson and Cooper (2021) define a ProbTTR
Bayes classifier κ as a function from a situation s
(of the meet type of the evidence variable types
Eκ1 , . . . ,Eκn) to a set of probabilistic Austinian
propositions that define a probability distribution
over the values of the class variable type Cκ, given
probability distributions over the values of each
evidence variable type Eκ1 , . . . ,Eκn. Formally, a
ProbTTR NaiveBayes classifier is a function

(10) κ : Eκ1 ∧ . . . ∧ Eκn →

Set(




sit : Sit
sit-type : Type
prob : [0,1]


)

such that if2 s : Eκ1 ∧ . . . ∧ Eκn, then

(11) κ(s)={




sit = s
sit-type = C
prob = pκ(s : C)


 | C ∈ R(Cκ)}

2.7 The fruit recognition game
Larsson and Cooper (2021) illustrate semantic
classification using a Naive Bayes classifier in
ProbTTR using the fruit recognition game. Later
in this paper, we will build on this example to illus-
trate mentor-driven semantic learning.

In this game a teacher shows fruits to a learning
agent. The agent makes a guess, the teacher pro-
vides the correct answer, and the agent learns from
these observations.

We will use shorthands Apple and Pear for the
types corresponding to an object being an apple
or a pear, respectively3. Furthermore, we will as-
sume that the objects in the fruit recognition game
have one of two shapes (a-shape or p-shape, corre-
sponding to types Ashape and Pshape) and one of
two colours (green or red, corresponding to types
Green and Red).

2Recall that for any s, p(s : V ) ∈ {0, 1} for any variable
type V . Therefore, any type judgement regarding a variable
type, such as that involved in the classifier function, can be
regarded as categorical.

3For details, see Larsson and Cooper (2021).

The class variable type is Fruit, with value
types R(Fruit) = {Apple,Pear}. The evidence
variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}. Fig-
ure 4 shows the evidence and class types of the fruit
recognition game in a simple Bayesian Network.

Fruit

Shape Colour

Figure 4: Bayesian Network for the fruit recognition
game

For a situation s the classifier FruitC(s) returns
a probability distribution over the value types in
R(Fruit).

(12) FruitC(s) =

{




sit = s
sit-type = F
prob = pFruitC(s : F )


 | F ∈ R(Fruit)}

3 Semantic classification using
conditional probabilities

In this section, we follow Larsson and Cooper
(2021) in showing how semantic classification
(i.e., estimating a probability distribution over
class value types) works under the assumption
that we can compute conditional probabilities
p(Cj ||E1 . . . En) of a class value types Cj given
evidence value types E1 . . . En.

In general, for Cj ∈ R(Cκ), we have

(13) pκ(s : Cj) =

∑

E1∈R(Eκ1 )
...

En∈R(Eκn)

pκ(Cj ||E1 . . . En)p(s : E1) . . . p(s : En)

Correspondingly, in the fruit recognition game, for
each F ∈ R(Fruit) we have
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(14) pFruitC(s : F ) =

∑

L∈R(Col)
S∈R(Shape)

p(F ||L ∧ S)p(s : L)p(s : S)

Therefore, to determine the probability that a situa-
tion is of the apple type, we sum over the various
evidence type values for apple.

(15) pFruitC(s:Apple) =
p(Apple||Green ∧ Ashape)p(s:Green)p(s:Ashape) +

p(Apple||Green ∧ Pshape)p(s:Green)p(s:Pshape) +

p(Apple||Red ∧ Ashape)p(s:Red)p(s:Ashape) +

p(Apple||Red ∧ Pshape)p(s:Red)p(s:Pshape)

Conditional probabilities for the fruit classifier are
derived from previous judgements of the form
p(F ||C ∧ S). The example values in the matrix
in (16) illustrate a joint probability distribution for
the Bayesian Network in Figure 4.

(16)
Apple/Pear Ashape Pshape
Green 0.93/0.07 0.63/0.37
Red 0.56/0.44 0.13/0.87

For each square with Apple/Pear type values, the
conditional probabilities of the fruit being an apple
and of its being a pear sum to 1.

The non-conditional probabilities in (15) are de-
rived from the agents’ take on the particular situa-
tion being classified; let us call it s5.

(17)
T = Ashape Pshape Green Red
p(s5:T ) 0.90 0.10 0.80 0.20

This means we have e.g.

(18) dShape(s5) = 〈0.90, 0.10〉

Larsson and Cooper (2021) suggest regarding
these probabilities as resulting from probabilistic
classification of real-valued (non-symbolic) visual
input, where a classifier assigns to each image a
probability that the image shows a situation of the
respective type. Such a classifier can be imple-
mented in a number of different ways, e.g. as a
neural network, as long as it outputs a probability
distribution.

With these numbers in place, we can compute
the probability that the fruit shown in s5 is an apple:

(19) pFruitC(s5: Apple) =
0.93 ∗ 0.80 ∗ 0.90 + 0.63 ∗ 0.80 ∗ 0.10 +

0.56 ∗ 0.20 ∗ 0.90 + 0.13 ∗ 0.20 ∗ 0.10 =
0.67 + 0.05 + 0.10 + 0.00 =
0.82

4 Frequentist semantic learning

For the model of semantic classification that uses
conditional probabilities, a central question is of
course how to estimate conditional probabilities,
of the form p(C||E1 ∧ . . . ∧ En) (where C ∈
R(C), Ei ∈ R(Ei), 1 ≤ i ≤ n). Using Bayes
rule and marginalising over the class value types,
we get for a Naive Bayes classifier:

(20) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)

For all combinations of evidence value types
E1, . . . , En and class value types C, we need (a)
the conditional probability of the evidence value
types given the class value type, p(Ei||C), and (b)
the prior of the class value type, p(C ′).

4.1 Computing conditional probabilities

Following a frequentist4 methodology, conditional
probabilities can be estimated by counting previous
instances of C and Ei:

p(Ei|C) =
|Ei&C|
|C|

This relies on previous judgements being categori-
cal rather than probabilistic. However, it appears
reasonable to assume that agents sometimes make
non-categorical judgements, assigning a probabil-
ity other than 0 or 1 to a situation being of a certain
type, and we want to explore the idea of using

4Regarding the tension between Bayesian and frequentist
modelling, one might argue that no practically useful model
is purely Bayesian, since the moment that you introduce data,
you will extract frequencies from it. While theoretical models
may be purely bayesian, in all machine learning models there
is an element of frequentism. However, being too naively
frequentist yields models which generalise poorly. To take
an extreme example, a purely frequentist 5-gram model will
assign 0-probability to any 5-gram which does not occur at
all in the data, which is clearly wrong. Bayesian reasoning is
ultimately a mathematical recipe to construct models which
explicitly capture the dependencies between various random
variables (hidden or not). In the paper we show two ways
to improve the model, with varying levels of complexity and
robustness.
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such non-categorical past judgements as a basis for
future (probabilistic) judgements.

Cooper et al. (2015) sketch a solution with a fre-
quentist flavour (but also with some differences to
regular frequentist learning acccounts), based on
the idea that an agent makes judgements based on a
finite string of probabilistic Austinian propositions,
the judgement history J. When an agent A encoun-
ters a new situation s and wants to know if it is
of type T or not, A uses probabilistic reasoning to
determine p(s : T ) on the basis of A’s previous
judgements J.

So the history of judgements J does not contain
definite judgements, but rather probabilistic ones.
How are these probabilities to be understood? We
assume that each such probability corresponds to
the judging agent’s estimate of the probability that
a member of the linguistic community would judge
s to be of type T . That is, we assume that agents
make the (semantic) judgements that they estimate
that other agents would also make (on average).
This can be intuitively justified by the assumption
that agents they take language (including mean-
ings) to be public (shared in a community). Hence,
each probabilistic judgement in the history can be
considered to correspond to a large number N of
independent categorical judgements.

How do we motivate this? After all, language is
categorical in nature at least insofar as a speaker
makes or does not make an utterance U to de-
scribe some situation s, thus categorising s as (cat-
egorically) correctly described by U . However,
the categorical nature of language does not im-
ply that agents cannot entertain non-categorical
judgements, only that once they speak their judge-
ments, they become categorical5. When it comes
to computing the probabilities needed for prob-
abilistic classifiers, this means that round(p(s :
C)p(s : Ei)N) of them are considered to be of
type (C ∧ Ei). (The motivation for rounding to
integers using the round function is that if we talk
about discrete events, there must be an integer num-
ber of them.) On this basis, we can compute likeli-
hoods and probabilities as a ratio of the frequencies
of occurrences, summed over all judgements in the
history:

5We are here ignoring for the moment some complications,
including that hearers may assign probabilities to speakers
having made an utterance U based on perceptual, semantic
and pragmatic confidences. We hope to return to these points
in future work.

(21)

p(Ei||C) =

lim
N→∞

∑
j∈J,j.sit=s round(p(s : C)p(s : Ei)N)∑

j∈J,j.sit=s round(p(s : C)N)
=

∑
j∈J,j.sit=s p(s : C)p(s : Ei)∑

j∈J,j.sit=s p(s : C)

Formula (21) tells us that we can consider prob-
abilities in the history of judgments as fractions of
events; and this is justified by interpreting them as
fractions of language-community speakers making
the corresponding categorical judgement. In this
sense, we are providing a frequentist interpretation
of epistemic probability6

One might ask regarding (21), is it possible to
multiply the probabilities associated with variables
that may be dependent, without taking into account
their conditional probabilities? Yes, in this case,
it is. We are multiplying probabilistic judgements
that have already been made rather than hypotheti-
cal judgements7.

For the purposes of this paper, we will assume
that the probabilities needed are indeed encoded
directly in J, but of course in general this might

6Assuming we have N situations in total, some integer
number will be classified as each category. We can then sum
these integer numbers. We can get a probability by taking the
limit of the ratio with N tending to infinity.

7This can perhaps be better understood by analogy to
counting in standard probability theory. Suppose that we
have a corpus of English sentences where all nouns are an-
notated for part of speech, and for whether the noun has a
subject/object role (or neither). We estimate the conditional
probability that a noun is a subject by counting the number of
nouns that are also subjects, and divide this sum by the total
number of nouns.

p(Subject|Noun) =
|Subject&Noun|
|Noun|

Categorical judgements can be regarded as probabilistic
judgments with probability 1.0, so that judging a word w to
be noun is to judge the probability of w being a nount to be
1.0. Assuming a word w has ben judged as being a subject
and a noun, we can describe this probabilistically as p(w is
Subject)=1.0, p(w is Noun)=1.0, and we conclude that p(w
is Subject&Noun)=p(w is Subject)p(w is Noun)=1.0*1.0=1.0
without involving p(Subject|Noun), the conditional probability
of something being a subject given that it is a noun (which is
in fact what we are trying to compute). In doing so, we are not
taking the probability that a word is a subject to be independent
of its being a noun. In fact, we are assuming the opposite. We
are trying to compute the conditional probability of a word
being a subject given that it is a noun. But when counting a
word w as being both a subject and a noun, we do not invoke
this conditional probability as part of the enumeration. To
do so it would be both circular and unnecessary, as we have
already judged w to be a subject, and to be a noun.
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not be the case. Cooper et al. (2015) explains how
probabilities of complex types (such as meet types,
join types, function types and record types) can be
computed from simpler types.

4.2 Computing priors

In addition to conditional probabilities, (20) re-
quires the prior probabilities of the class value
types C ∈ R(C). We use pJ(T ) to denote the
prior probability that an arbitrary situation is of
type T given J. However, it is important to note
that the prior probability for a value type A is
not the same as the probability p(A) that there
is something of type A. Rather, it is the proba-
bility that some arbitrary situation s (of which we
have no other relevant information) is of type A.
To see this, imagine that p(s1 : A) = 0.8 and
p(s2 : A) = 0.2, and that there are no judgements
concerning other situations in J. In this case, p(A),
the probability that there is something of type A8,
is 0.8 + 0.2 − (0.8 ∗ 0.2) = 0.84. However, the
prior probability that an arbitrary situation is of
type A, pJ(A), is (0.8 + 0.2)/2 = 0.5.

Following this, we define the prior probability
of an arbitrary situation being of a type T , pJ(T ),
thus:

(22)

pJ(T ) =

∑
j∈JT j.prob

P(J)
if P(J) > 0, otherwise 0

where JT is the set of all judgements concerning
T :

(23)
JT = {j | j ∈ J, j.sit-type = T}

and P(J) is the cardinality of situations in J, i.e.
the total number of situations in J9:

(24) P(J) = |{s|∃j ∈ J, j.sit = s}|

Accordingly, we replace (20) with (25), where
p(C) is replaced with pJ(C):

(25) p̂κ(C||E1 ∧ . . . ∧ En) =

pJ(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) pJ(C

′)p(E1||C ′) . . . p(En||C ′)

8See Cooper et al. (2015) for details.
9This replaces an earlier definition in Cooper et al. (2015).

5 Example: frequentist semantic
learning in the fruit recognition game

The conditional probabilities in (16) are generated
from J by a learning component. Let’s assume that
J is as in Figure 5, based on previous rounds of the
game.

The recorded judgements concerning the types
Apple and Pear are here assumed to be derived not
only from the agent’s own perception of the fruits
in question, but also (and perhaps primarily) from
a tutor’s explicit judgements, possibly in combina-
tion with an estimation of the likelihood that the
teacher is competent at judging apples and pears
under whatever conditions (light etc.) held at the
time of judgement.

In our example, p(F ||L ∧ S) comes from previ-
ous experience as encoded in J. We estimate this
probability with Bayes’ rule, as in (26).

(26) p(F ||L ∧ S) =

pJ(F )p(L||F )p(S||F )∑
F ′∈R(Fruit) pJ(F

′)p(L||F ′)p(S||F ′)

To compute this we need the following for all
F ∈ {Apple,Pear}:

(27) a. for all L ∈ {Green,Red}, p(L||F )

b. for all S ∈ {Ashape,Pshape}, p(S||F )

c. pJ(F )

We use (21) to compute conditional probabilities,
so that for example

(28) p(Green||Apple) =
∑

j∈J,j.sit=s p(s : Apple)p(s : Green)∑
j∈J,j.sit=s p(s : Apple)

=

0.9 ∗ 1.0 + 0.7 ∗ 0.5 + 1.0 ∗ 0.9 + 0.0 ∗ 0.1
1.0 + 0.5 + 0.9 + 0.1

= 0.86

We also use (22) to compute priors, so that for
example

(29)

pJ(Apple) =

∑
j∈J,j.sit=s p(s : Apple)

P(J)
=

1.0 + 0.5 + 0.9 + 0.1

4
=

2.50

4
= 0.63
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j.p j.sit-type∈ R(Fruit) j.sit-type∈ R(Col) j.sit-type∈ R(Shape)
j.sit Apple Pear Green Red Ashape Pshape
s1 1.0 0.0 0.9 0.1 0.7 0.3
s2 0.5 0.5 0.7 0.3 0.6 0.4
s3 0.9 0.1 1.0 0.0 1.0 0.0
s4 0.1 0.9 0.0 1.0 0.0 1.0

Figure 5: Conditional probabilities in the fruit recognition game

Based on this, we compute the conditional prob-
abilities shown in (16) and used in classification in
Section 2.7, for example

(30) p(Apple||Green ∧ Ashape) =

pJ(Apple)p(Green||Apple)p(Ashape||Apple)∑
F∈{Apple,Pear} pJ(F )p(Green||F )p(Ashape||F ) =

0.41
0.41+0.03 = 0.93

Based on the judgement above in (19), our agent
may venture the guess that the fruit in question
in s5 is an apple, to which the tutor may respond
“Very good!”. This in turn could trigger extending
J to include probabilistic judgements concerning
the classification of s5 as being of types Apple,
Pear, Green, Red, Ashape and Pshape, to be used
in future rounds of the game.

6 Conclusion

Cooper et al. (2014) and Cooper et al. (2015), and
more recently Larsson and Cooper (2021), pre-
sented a probabilistic formulation of a rich type
theory with records, and used it as the foundation
for a compositional semantics in which a proba-
bilistic judgement that a situation is of a certain
type plays a central role. The basic types and type
judgements at the foundation of the type system
correspond to perceptual judgements concerning
objects and events in the world, rather than to en-
tities in a model, and set theoretic constructions
defined on them. This approach grounds meaning
in observational judgements concerning the likeli-
hood of situations holding in the world. We have
proposed a Bayesian account of semantic learning
formulated in terms of ProbTTR, thereby connect-
ing probabilistic semantic learning to other phe-
nomena studied in TTR and ProbTTR, including
the modeling of perceptual meaning as classifiers
(Larsson, 2013; Larsson and Cooper, 2021).

Our treatment of learning relies on the idea that
an agent keeps a record of their previous judge-
ments concerning the likelihood of a classification

and sums the probabilities of these judgements.
The agent computes conditional probabilities and
priors for current judgements on the basis of this
record. We have illustrated this view of learning
with the fruit recognition game. This simplified
example provides a sketch of how an agent can
acquire a set of predicates through mentor vetted
(supervised) classifier learning.

With respect to semantic learning, this paper
follows in the general footsteps of van Eijck and
Lappin (2012), who propose a probabilistic theory
of language semantics which includes a sketch of
semantic learning. It appears that our model is an
instance of the strategies outlined by van Eijck and
Lappin. Where they only sketch a strategy, we have
shown in detail how learning from examples can
be modelled.

As part of the Rational Speech Act Theory,
Goodman and Lassiter (2015); Lassiter and Good-
man (2017) provide an account of semantic update
of an agent’s view of the world, which can possibly
be regarded as a form of semantic learning. Even
though they apply it to a single event, their account
can be generalised to several events in a natural
way. Indeed, Bernardy et al. (2018, 2019) have
implemented such a generalisation. What sets the
present work apart, in addition to being formulated
in ProbTTR, is that each individual event is not cat-
egorical, but itself probabilistic. We have achieved
this by incorporating elements of frequentist think-
ing in an otherwise Bayesian account. Conversely,
the approaches previously mentioned manage to re-
main in a purely Bayesian framework, but they do
not generalise to probabilistic events in a straight-
forward manner.

Future work includes exploring and adapting
other learning methods to ProbTTR, including a
linear transformation model and related neural net-
work and deep learning models, and continuing to
apply ProbTTR to a variety of problems in natural
language semantics.
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Abstract

Donkey sentences are among the challenging
examples that present a difficult problem in
compositional logical semantics and their se-
mantic treatment is one of the early applica-
tions of dependent type theory to linguistic se-
mantics, where the strong sum Σ, rather than
weak sums (as given by traditional existential
quantifiers), is used for existential quantifica-
tion. However, it is known that this method is
inadequate because it fails to deal with count-
ing properly. In this paper, we propose to con-
sider the semantics of donkey sentences in a
type theory with both strong and weak sums
and show that, with both sum operators, don-
key sentences can be given adequate semantic
interpretations which, in particular, take care
of counting properly.

1 Introduction

Donkey sentences, as first studied by Geach (1962)
and exemplified in (1), where an anaphoric expres-
sion refers to an existentially quantified entity, are
among the challenging examples that present a dif-
ficult problem in compositional logical semantics.

(1) Every farmer who owns a donkey beats it.

Their studies (and that of trans-sentential anaphora)
have led to the development of dynamic seman-
tics such as DRT (Kamp, 1981) and DPL (Groe-
nendijk and Stokhof, 1991) which, however, re-
quire one to consider substantial changes of the
underlying logical systems.1 (For a recent sum-
mary of the dynamic approach to donkey anaphora,
see Brasoveanu and Dotlacil (2021).)

1For example, DPL (Groenendijk and Stokhof, 1991) is a
rather non-standard logical system: among other things, it is
non-monotonic and the notion of dynamic entailment fails to
be reflexive or transitive.

In the mid-80s, as one of the early applications
of dependent type theory in logical semantics, re-
searchers such as Mönnich (1985) and Sundholm
(1986) have proposed to use Martin-Löf’s type
theory (Martin-Löf, 1984) to deal with donkey
anaphora, where Σ-types are employed to repre-
sent existentially quantified formulas. Σ-types
Σx:A.P (x) are also called strong sums, as opposed
to the traditional existentially quantified formulas
∃x:A.P (x) which are called weak sums, because
from an object of the strong sum, one can obtain
its witness, by means of a projection operation,
while this is not possible for the weak sum. It is
because of the availability of witness projection
that an anaphoric reference can be obtained from
an object of a Σ-type, while this is not possible for
an existential quantification in the traditional case
(and hence the problem in the first place). However,
it is known that this approach of using Σ-types to
deal with donkey anaphora suffers from a problem
of counting (Sundholm, 1989; Tanaka, 2015) and
fails to provide us an adequate solution. (See §2
for more details.)

In this paper, we contend that the problem of the
above type-theoretical approach has come from a
double role played by Σ, as an existential quantifier,
on the one hand, and as a structural mechanism to
represent collections of objects, on the other. These
two roles should be separate and played by different
type constructors. But in traditional logics (first-
order logic or simple type theory) or in Martin-
Löf’s type theory, only either ∃ or Σ exists, not
both, and therefore there is no way to consider
such a separation. We show that, in a type theory
with both strong and weak sums, donkey sentences
can be given adequate semantics in which counting
is taken into proper account.

Our proposal is also linked to the research on
different readings of donkey sentences and, in par-
ticular, the strong and weak readings as studied
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by Chierchia (1990) and others. Also, donkey
anaphora are closely related to (and, for some
researchers, they are examples of) the so-called
E-type anaphora, as first studied by Evans (1977,
1980), which may be interpreted by means of de-
scriptions (see, for example, Nouwen (2021) for a
recent discussion). It is not surprising that Σ-types
are essentially useful in semantic interpretations
of donkey sentences since they have close links to
descriptions (Martin-Löf, 1984; Carlström, 2005;
Mineshima, 2013) and we shall give some brief
discussions about this.

Combining strong and weak sums in type theory
is a subtle matter that needs us to tread carefully, for
otherwise we may easily slip into problems such as
inconsistency. We shall discuss this briefly as well.

This is a short version of a paper we plan to
write. In this paper, in particular, we shall focus
on telling a complete story of this new treatment of
donkey anaphora with both strong and weak sums,
but shall be brief about or completely omit some
related respects.

2 Strong and Weak Sums in Type Theory

In this section, we explain the concepts of weak
sums (for example, traditional existential quanti-
fiers) and strong sums (Σ-types) and, using the
notion of the cardinality of a finite type, illustrate
the counting problem when using only Σ-types to
interpret donkey sentences.

Weak sums (existential quantifiers). Under
the Curry-Howard propositions-as-types principle
(Curry and Feys, 1958; Howard, 1980), traditional
existentially quantified formulas are examples of
weak sum types of the form ∃x.P (x). In first-
order logic, depending on whether it is intuitionistic
or classical, the existential quantifier can be intro-
duced directly or defined by means of the universal
quantifier together with negation, respectively. In
higher-order logic (or simple type theory) as used
in Montague’s semantics, where there is an im-
predicative type t of all formulas, it can be either
directly introduced or defined by means of the uni-
versal quantifier as in (2).

(2) ∃x.P (x) = ∀X:t. (∀x.(P (x)⇒ X))⇒ X .

It is known that, given a proof of ∃x.P (x), al-
though one knows that there is an entity such that
P holds, in the logical calculus one cannot find
out which entity it is. It is because of this that

an anaphoric reference to an existentially quanti-
fied entity becomes problematic. For example, in
a traditional compositional semantics, the donkey
sentence (1) would obtain (3) as its interpretation,
which is not a well-formed formula since the vari-
able y in beat(x, y) is out of the scope of the exis-
tential quantifier.

(3) (#) ∀x. [farmer(x) &
∃y.(donkey(y) & own(x, y))]
⇒ beat(x, y)

This illustrates the original problem in interpreting
donkey sentences, as mentioned at the beginning
of Introduction.

Strong sums (Σ-types). Σ is a dependent type
constructor. IfA is a type andB is a family of types
that depend on objects of type A, then Σx:A.B(x)
is a type, consisting of pairs (a, b) such that a is
of type A and b is of type B(a). Σ-types are asso-
ciated with the projection operators π1 and π2 so
that, for (a, b) of type Σx:A.B(x), π1(a, b) = a
and π2(a, b) = b. Formally, Σ-types are governed
by the inference rules in Appendix A.

Besides being useful mechanisms to organise
structures in various applications, Σ-types may also
play other roles. For example, in Martin-Löf’s type
theory, Σ also plays the role of existential quantifier
in its logic2. Therefore, for instance, the donkey
sentence (1) can be interpreted as (4), in which FΣ,
as defined in (5), is the type intended to represent
the collection of donkey-owning farmers, where
F and D are the types that interpret farmer and
donkey, respectively.3

(4) ∀z : FΣ. beat(π1(z), π1(π2(z)))

(5) FΣ = Σx:F Σy:D. own(x, y)

Σ-types are strong in the sense that from a proof
of Σx:A.P (x) one can preform the first projection
operation to obtain the witness of this ‘existentially’
quantified formula and it is because of this, if Σ is
used as existential quantifier, one can project out
its witness from a proof term of the Σ-type, even

2This is concerned with intuitionistic philosophy – a
strongly minded intuitionist may believe that the witness of
a proven existentially quantified formula can be obtained in-
ternally in a logical calculus. We omit further discussions
here.

3In formal semantics based on modern type theories, CNs
such as ‘farmer’ and ‘donkey’ are interpreted as types (rather
than predicates). This was first proposed by Mönnich (1985)
and Sundholm (1986) and further elaborated in (Ranta, 1994;
Luo, 2012).
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outside its scope (the terms π1(z) and π1(π2(z))
in (4) are such examples).

The type FΣ above contains two occurrences of
Σ and they play two different roles: the first acts as
a structural mechanism to represent the collection
of the farmers who own donkeys and the second
as the existential quantifier to say that there exists
a donkey owned by the farmer concerned. As we
shall see below, using Σ to play this double role is
problematic. In particular, FΣ is in fact represent-
ing a collection whose cardinality (the number of
its objects) is different from that of the collection
of donkey-owning farmers and, therefore, the se-
mantic interpretation (4) of (1) is inadequate (Sund-
holm, 1989; Tanaka et al., 2015).

Counting and cardinality of finite types.
When a type A is finite in the sense that it has
finitely many objects, it is possible to define its car-
dinanity |A| as the number of its objects. Formally,
a type is finite if, for some n, it is isomorphic to
Fin(n), the type with exactly n objects – see Ap-
pendix B. For example, the cardinality of a finite
Σ-type is the number of pairs in the type.

The problem of counting can be illustrated by
considering the sentence in (6),4 where the quanti-
fier Every in (1) is replaced by Most. Its formal se-
mantics by means of Σ-types in Martin-Löf’s type
theory is given in (7), which can be seen obtained
by replacing ∀ by the quantifier MostS , which is
defined by Sundholm (1989) (S in MostS for Sund-
holm) so that, for a finite type A, MostS x:A.P (x)
is true if, and only if, more than half of the objects
in A satisfy P .

(6) Most farmers who own a donkey beat it.

(7) MostS z : FΣ. beat(π1(z), π1(π2(z)))

Let us now consider the cardinality of FΣ, as de-
fined in (5). Because of the second Σ in FΣ, |FΣ|
is not that of the collection of donkey-owning farm-
ers; instead, to calculate |FΣ|, we’d have to count
every triple (x, y, p) of farmers x, donkeys y and
proofs p that x owns y. For example, if there are
ten farmers, one of whom owns twenty donkeys
and beats all of them, and the other nine own one
donkey each and do not beat their donkeys. Then,
|FΣ| ≥ 29 (it is an inequality because, if farmer x
owns donkey y, there may be more than one proof
that x owns y), but the number of farmers who do

4Thanks to Justyna Grudziñska for a discussion about this
example.

Logic: ∀, Prop

D
D
D
D
D
DD

�
�
�
�
�
��Data types:

N , Π, Σ, ...
Type0, Type1, ...

Figure 1: The type structure in UTT.

not beat their donkeys is 9. Therefore, the above
semantics (7) of (6) would be true in such a case,
which is obviously incorrect.5

3 Donkey Anaphora: a Type-Theoretical
Solution with Both Σ and ∃

In this section, we shall first introduce a depen-
dent type theory UTT (Luo, 1994), which has both
strong and weak sums, and then show how don-
key sentences like (1) and (6) can be interpreted
type-theoretically, giving adequate treatments for
different readings and taking care of counting in a
proper way as well.

3.1 UTT: an impredicative type theory

The type structure of UTT (Unifying Theory of de-
pendent Types) (Luo, 1994) consists of two parts:
the world of data types and that of logical propo-
sitions (see Fig. 1). It contains various types such
as dependent product types (Π-types), strong sum
types (Σ-types), the type N of natural numbers,
the universes Typei, and many other types. UTT
also contains an impredicative type universe Prop
of logical propositions which provide means to
describe the logical properties of objects of any
type (see Appendix C). Formally, UTT can be con-
sidered as the combination of Martin-Löf’s (in-
tensional) type theory (Martin-Löf, 1975; Nord-
ström et al., 1990) with Coquand-Huet’s Calcu-
lus of Constructions (Coquand and Huet, 1988).
In computer science, type theories such as UTT
have been implemented in theorem proving sys-
tems (called proof assistants) for formalisation of
mathematics and verification of programs, and re-
cently, they have been used for formal reasoning

5This is similar to the ‘proportion problem’ when one uses
DRT to interpret such donkey sentences, where one counts
farmer-donkey pairs rather than the donkey-owning farmers.
See Kanazawa (1994) and Brasoveanu and Dotlacil (2021),
among others, for discussions.
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based on linguistic semantics (see, for example,
(Chatzikyriakidis and Luo, 2016)).6

Note that UTT contains both strong sums
Σx:A.B(x) (Σ-types, as ‘data types’) and weak
sums ∃x:A.P (x) (existentially quantified types, as
logical propositions), and this is essential when
considering semantic interpretations of donkey sen-
tences in §3.2 below.

Logic and proof irrelevance. In UTT, a type is
a logical proposition if it is of type Prop. The type
universe Prop is impredicative and, therefore, the
other logical operators can be defined by means of
the operator ∀ for universal quantification7. For ex-
ample, the conjunction operator and the existential
quantifier ∃ can be defined as in (8) and (9), respec-
tively, and the definitions of the other operators can
be found in Appendix C.

(8) P ∧ Q = ∀X : Prop. (P ⇒ Q⇒ X)⇒ X

(9) ∃x : A.P (x)
= ∀X:Prop.(∀x : A.(P (x)⇒ X))⇒ X

The principle of proof irrelevance says that any
two proofs of the same logical proposition should
be the same. For instance, it implies that, for farmer
x and donkey y, any two proof terms of the propo-
sition own(x, y) should be the same. It has been
shown that, when employing a type theory for nat-
ural language semantics, proof irrelevance should
be enforced (Luo, 2012, 2019). Note that, because
in UTT there is a clear distinction between logi-
cal propositions and other types (the former being
those of type Prop), it is straightforward to intro-
duce proof irrelevance by means of the following
rule (Werner, 2008; Luo, 2012):

P : Prop p : P q : P

p = q : P

Intuitively, it says that, if P is a logical proposition
and if p and q are proof terms of P , then p and q are

6There are several proof assistants based on type theories
including Agda (Agda, 2008) based on Martin-Löf’s type
theory, Coq (Coq, 2010) implementing the type theory pCIC,
and Lego/Plastic (Luo and Pollack, 1992; Callaghan and Luo,
2001) implementing UTT. It may be worth remarking that
pCIC, implemented in the Coq proof assistant, is very similar
to UTT – this is especially the case after Coq’s universe Set
became predicative in 2004 (it was impredicative in earlier
versions).

7The fact that other logical operators can be defined in
higher-order logical systems by means of universal quantifier
was discovered in the 60s by Prawitz (1965) (and several
others, independently) and, this is the same in an impredicative
type theory.

the same. In particular, according to the above rule,
every proposition of type Prop is either an empty
type or a singleton type. In terms of cardinality, we
have |P | ≤ 1 for every P : Prop and, therefore, if
A is finite and Q : A → Prop is a predicate over
A, then we have

(10) |Σx:A.Q(x)| ≤ |A|.

3.2 Semantics of donkey anaphora in UTT

When a type theory has both strong and weak sums
(Σ-types and ∃-propositions as in UTT), together
with proof irrelevance, there is a new way to se-
mantically interpret donkey sentences, which takes
care of counting adequately. We’ll use the example
(6), which is repeated as (11) below, to explain.

(11) Most farmers who own a donkey beat it.

In §2, we have shown that, because in Martin-
Löf’s type theory Σ is used to play a double role,
the semantic interpretation (7) of (11) is inadequate
because it gets counting wrong. In that definition,
we have used quantifier MostS defined in Martin-
Löf’s type theory and, here, we can define a seman-
tic interpretation of the quantifier most in UTT in a
similar fashion as in (Sundholm, 1989) but with a
crucial difference: instead of Σ, we shall use ∃ as
defined in (9) as the existential quantifier and, intu-
itively, for a finite A, Most x:A.P (x) also means
that more than half of the objects in A satisfy P .
Note that, MostS x:A.P (x) is a non-propositional
type, but Most x:A.P (x) is a logical proposition
of type Prop. (See Appendix D for details.)

Having defined Most in UTT, we can now inter-
pret the donkey sentence (11) as (12), in which F∃
is defined in (13):

(12) Most z : F∃.
∀y′ : Σy:D.own(π1(z), y). beat(π1(z), π1(y′))

(13) F∃ = Σx:F. ∃y:D.own(x, y)

Note that |∃y:D.own(x, y)| ≤ 1, that is, if
∃y:D.own(x, y) is true, the cardinality of the
proposition is 1. Therefore, the type F∃ correctly
represents the collection of donkey-owning farm-
ers, as intended, and the above semantics (12) is
adequate and, in particular, it deals with counting
correctly.

Researchers have studied different readings (in
particular, strong and weak readings) of donkey
anaphora, as studied by Chierchia (1990, 1992) and
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others. For instance, the strong and weak readings
of (11) are (14) and (15), respectively:

(14) Most farmers who own a donkey beat the don-
keys they own.

(15) Most farmers who own a donkey beat some
donkeys they own.

The above interpretation (12) of (11) is a strong one,
interpreting (14) directly: most donkey-owning
farmers beat all donkeys they own. A weaker in-
terpretation of its weak reading (15) would be (16),
obtained from (12) by changing ∀ into ∃:

(16) Most z : F∃.
∃y′ : Σy:D.own(π1(z), y). beat(π1(z), π1(y′))

People have also considered more sophisticated
examples where donkey anaphora are involved
in various ways. For example, (17) is one of
them, taken from Brasoveanu’s thesis (Brasoveanu,
2007), in which the readings for the donkey
anaphora are different (‘a TV’ having a strong
reading and ‘a credit card’ a weak one). Its type-
theoretical semantics with both strong and weak
sums is given in (18).

(17) Every person who buys a TV and has a credit
card uses it to pay for it.

(18) ∀z : Σx:Person. ∃y1:TV. buy(x, y1)
∧ ∃y2:Card. own(x, y2)

∀y : Σy1:TV. buy(π1(z), y1)
∃y′ : Σy2:Card. own(π1(z), y2).

pay(π1(z), π1(y), π1(y′))

One may change the quantifier Every in (17) into
Most (and make other minor changes in the sen-
tence) and, in that case, we can use the quantifier
Most defined in UTT to interpret the sentence and
the resulting interpretations take care of counting
correctly as well.

3.3 E-type anaphora

Here, we discuss, albeit rather briefly, the so-called
E-type anaphora to which donkey anaphora are
closed related (and, for some researchers, donkey
anaphora are examples of E-type anaphora).8 E-
type anaphora are first studied by Evans (1977,
1980), and further discussed by many, including
(Heim and Kratzer, 1998) among others. They can

8Here, I use the term ‘E-type’ for a kind of anaphora, rather
than an approach to solving anaphora (‘the E-type approach’
as people often put it).

be interpreted by means of descriptions (Russell,
1905, 1919) (see, for example, Nouwen (2021) for
a recent discussion). An example, due to Evans, is
(19). Note that the pronoun ‘they’ in (19) is not
bound by ‘Few’ for otherwise the meaning is incor-
rect. A common conceptual answer, proposed by
Evans (1977, 1980), is that these pronouns are de-
scriptive in that they can be paraphrased by means
of descriptions as exemplified in (20) that para-
phrases (19).

(19) Few congressmen admire Kennedy, and they
are very junior.

(20) Few congressmen admire Kennedy, and the
congressmen that do admire Kennedy are very
junior.

As pointed out by Martin-Löf (1984), strong sum
types (Σ-types) are related to descriptions, because
he regards them as logical propositions as well.
If you think that Σx:A.B(x) as the existentially
quantified formula, it is strong and therefore its
first projection operator π1 gives us an internal
means of obtaining the witness from a proof of the
existentally quantified formula. As explained in
§2, this is stronger than the traditional existential
operator ∃ for which such a projection operator
does not exist, and it is exactly because of this that
Σ offers a form of description, as pointed out by
Martin-Löf (1984) and further studied by Carlström
(2005) and Mineshima (2013). For example, the E-
type example (19) may be interpreted as (21), either
in Martin-Löf’s type theory or in UTT, where we
assume that the quantifier Few has been defined:

(21) Few x:C. admire(x,K)
∧ ∀z:[Σx:C.admire(x,K)].junior(π1(z))

However, it should be made clear that Σ-types
are not the same as traditional existentially quanti-
fied formulas and, therefore, it is unclear how far
one may go to analyse E-type anaphora by means
of Σ-types. Actually, it would not go very far since,
as analysed above, using Σ as existential quantifier
does cause problems such as counting, which will
show up in context of E-type anaphora as well.

4 Combining Strong and Weak Sums

It is worth mentioning that combining the strong
sum (Σ) and the weak sum (∃) in type theory is a
subtle matter and, if not careful, it is easy to get
into problems. It would be interesting to note that
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UTT does not have ‘Σ-propositions’ because the so-
called ‘large Σ-propositions’ would lead to incon-
sistency and the so-called ‘small Σ-propositions’
would make the weak sum types become strong.9

Consider, for example, to add large Σ-types into
the impredicative universe Prop by adding the fol-
lowing rule (together with those for its introduction
and projections that we omit):

(∗) A type P : A→ Prop

Σx:A.P (x) : Prop

It turns out that such Σ-propositions cannot be con-
sistently added – if they were added using the above
rule (∗) (and related ones), the resulting type the-
ory would be inconsistent in the sense that even the
false proposition would become provable (Hook
and Howe, 1986; Luo, 1994).

One may want to add Σ-propositions (so-called
small Σ-types) by a rule like the following, this
time restricting A to be a proposition of type Prop:

A : Prop P : A→ Prop

Σx:A.P (x) : Prop

Although the resulting type theory may be con-
sistent10, there is another problem: the addition
of such small strong sum as propositions in Prop
would make the weak sum proposition ∃x:A.P (x)
become strong (rather unexpectedly!) in the sense
that there is now an internal function in the type
theory that, from a proof of ∃x:A.P (x), returns
an object a : A such that P (a) holds. That would
mean that the traditional existential quantifier is
not weak anymore – such a side effect is of course
problematic and would make the above interpre-
tation method we have proposed fail to deal with
counting correctly.

Therefore, neither of the above large or small Σ
is a viable possibility and, put in another way, the
approach taken in UTT seems to be the only viable
approach in combining strong and weak sums.

5 Concluding Remarks

As a concluding remark, we point out that, in this
paper, we have studied a completely proof-theoretic
approach. This is rather different from the model-
theoretic approaches that have been considered in

9These situations are discussed in (Luo, 1994), from which
the interested reader may obtain more information.

10This consistency is a folklore – most researchers, includ-
ing the author, believe that it is the case, although the author
has not seen a proof of it.

the literature (see, for example, Brasoveanu and
Dotlacil (2021)). Among other things, this has the
advantage of clearer treatment, on the one hand,
and enables the use of proof assistants in reasoning,
on the other.
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A Rules for Σ-types

A type x:A ` B type

Σx:A.B type

a : A b : [a/x]B x:A ` B type

(a, b) : Σx:A.B

p : Σx:A.B

π1(p) : A

p : Σx:A.B

π2(p) : [π1(p)/x]B

a : A b : [a/x]B

π1(a, b) = a : A

a : A b : [a/x]B

π2(a, b) = b : [a/x]B

B Cardinality of Finite Types

We give the formal definition of finite types. It will
use the auxiliary type Fin(n) for which we define
first.

The type Fin(n), indexed by n : N with N
being the type of natural numbers, consists of ex-
actly n objects and can be specified by means of
with the following introduction rules (we omit their
elimination and computation rules):

n : N

zero(n) : Fin(n+ 1)
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n : N i : Fin(n)

succ(n, i) : Fin(n+ 1)

The cardinality of a finite type A, notation |A|,
is defined to be n if, and only if, A is isomorphic to
Fin(n), that is, in the type theory concerned, there
is a bijective function between A and Fin(n). In
particular, |Fin(n)| = n, since the identity func-
tion over Fin(n) is bijective.

C Logic in UTT

The logic in UTT11 consists of the impredicative
universe Prop, specified by the following rules:

Prop type

P : Prop

P type

and the operator ∀ for universal quantification,
specified by

A type x:A ` P : Prop

∀x:A.P : Prop

x:A ` b : P x:A ` P : Prop

λx:A.b : ∀x:A.P

f : ∀x:A.P a : A

f(a) : [a/x]P

x:A ` b : P a : A

(λx:A.b)(a) = [a/x]b : [a/x]P

In UTT, other logical operators can be defined by
means of ∀ and here are some definitions (see, for
example, §5.1 of (Luo, 1994)):

P ⇒ Q = ∀x : P. Q

true = ∀X : Prop. X ⇒ X

false = ∀X : Prop. X

P ∧ Q = ∀X : Prop. (P ⇒ Q⇒ X)⇒ X

P ∨ Q = ∀X : Prop.

(P ⇒ X)⇒ (Q⇒ X)⇒ X

¬P = P ⇒ false
∃x : A.P (x) = ∀X : Prop.

(∀x : A.(P (x)⇒ X))⇒ X

(a =A b) = ∀P : A→ Prop. P (a)⇒ P (b)

11One can find its definition in §9.2.1 of (Luo, 1994), where
it is specified in terms of the logical framework LF.

D Most in UTT

Let A be a finite type with |A| = nA, P : A →
Prop a predicate over A, and Fin(n) the types
with n objects defined in Appendix B. Then, in
UTT, the logical proposition Most x:A.P (x) of
type Prop is defined as follows, where inj(f) is a
proposition expressing that f is an injective func-
tion:

Most x:A.P (x)

= ∃k : N. (k ≥ bnA/2c+ 1)

∧ ∃f :Fin(k)→ A.

inj(f) ∧ ∀x:Fin(k).P (f(x))
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Abstract

This paper briefly presents an evaluation of
three models: a domain-specific one based
upon typed feature structures, a neural lan-
guage model, and a mixture of the two, on an
unseen but in-domain corpus of user queries
in the context of a dialogue classification task.
We find that the mixture performs the best,
which opens the door to a potentially new
application of neural language models. A
further examination of the domain- We also
consider the inner workings of the domain-
specific model in more detail, as well as how
it came into being, from an ethnographic per-
spective. This has changed our perspective on
the potential role of structured representations
in the future of dialogue systems, and suggests
that formal research in this area may have a
new role to play in validating and coordinating
ad hoc dialogue systems development.

1 Introduction

While contemporary NLP research marvels at
how closely a simple neural language model can
come to a coherent conversation partner in dia-
logue tasks, it nevertheless remains true that lan-
guage models, neural or otherwise, are difficult to
adapt in a manner that keeps both the responses
constructive and the number of dialogue turns to a
minimum in settings where users expect a rapid and
successful conclusion to their information-seeking
interactions.

Over the past year, we have worked with an
industrial partner, iNAGO, Inc., a specialist in con-
versational agents in domains such as product in-
formation and control, navigation and automotive
driver assistance, to find ways in which recent
developments in dialogue systems could improve
their products. Focussing on dialogue act classifi-
cation at the outset, we did indeed find a way to
make a simple but important improvement, which

is described below, but what struck us as equally
salient is just how well their system works to be-
gin with, relative to research systems currently in
circulation.

A subsequent investigation of just how their sys-
tem works has revealed some novel simplifications
of concepts that should be very familiar territory
to this audience: typed feature structures, user
modelling and semantic distances defined through
a combination of lattice-theoretic calculations on
epistemic networks and similarity coefficients. The
novelty arises to a great extent because the devel-
opers at iNAGO were mostly unfamiliar with re-
search publications on these topics, and so the re-
semblance of their proposed solution to a variety
of representational strategies that have been used
in the dialogue research community over the last
30 years is in itself noteworthy.

But the reason that our improvement works, we
believe, stems from the complementarity of this di-
alogue classifier and the language-modelling-based
approach that we combined it with. This comple-
mentarity needs to be investigated in more detail
in a wider range of domains and across languages
with a wider distribution of resource availabilities
(we have experimented only with English-language
systems), but it opens the door to a possible appli-
cation of neural language models that has hitherto
not been considered, possibly because of misbe-
gotten claims of their cognitive plausibility, which
are in turn more suggestive of their use exclusively
as drop-in replacements. Domain-specific models
are known to have problems with coverage, partic-
ularly outside their domains. Large-scale neural
language models do not have this problem, even
if their within-domain performance is somewhat
lackluster by comparison. Even the simple combi-
nation of the two that we tried appears to address
the weaknesses of both of these approaches in iso-
lation.
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We will begin with a discussion of the general
approach to mixing the results of these two ap-
proaches to dialogue act classification, and then
return to how iNAGO’s system computes its own
results.

2 Re-ranking

Re-ranking is a simple method for combining
discriminative and generative models that takes the
top answers from the generative model, in order of
preference, and merely changes the order of pref-
erence using information from the discriminative
model. The top answers from the generative model,
which serve as the inputs to the re-ranker, are often
known as candidates. In our case, these candidates
are generated by iNAGO’s system in response to
a user-provided query. It should be noted that in
this particular application, the user-provided query
is also made available to the discriminative model,
which is not always the case in re-ranking.

3 Task and Models

We evaluated three models: iNAGO’s classifier,
without re-ranking, the responses of a BERT-based
dialogue act classifier, and the result of mixing the
two models, which we shall refer to as the Mixed
model.

With all three models, the task is to classify the
transcription of a query spoken by an automobile
driver according to several hundred predetermined
classes of query that the system is capable of an-
swering, based upon information about the vehicle,
the state of the vehicle at the time of the query,
and other information from map resources, etc.,
as needed. The result is a list of classes, in de-
creasing order of their confidence scores. Higher
confidence answers have lower ordinate rank, i.e.,
the best answer, of rank 1, is the class with the
highest confidence. The presumption is that the
answer corresponding to the class with the highest
confidence in the database of predetermined classes
would be returned to the user when this model is
used.

Our mixture method crucially relies upon the
availability of these confidence scores.

The BERT-based classifier uses the pre-trained
model distributed with the original paper (Devlin
et al., 2019), and adds the three levels of embed-
dings (Figure 1) into a single vector that represents
an entire string of input. Queries are classified
by computing the cosine similarity of the vector

for the query with the vectors for each of a list of
sentences, one for each class in the database, that
characterizes a prototypical question for that class,
very much as an FAQ list would. Again the classes
are ranked by this similarity score.

The Mixed model takes evidence from both iN-
AGO’s model and the BERT model into consider-
ation. It does so by treating iNAGO’s confidence
score, ci, as a mixture parameter, and computes the
sequence:

mi = ci · ai + (1− ci) · bi

for each candidate class, where ai is the rank as-
signed by iNAGO’s model, and bi is the rank as-
signed by the BERT model. The new ranking of the
candidates is then given by sorting the candidates
in decreasing order of mi.

4 Data

The queries that were used in our experiments
were automatically generated using the method of
Zheng (forthcoming) from documentation provided
by a Tier-1 auto manufacturer. The documentation
was only provided in April, 2021, and were thus not
available either to the present authors or to iNAGO
during the development of its model. The corpus
consists of 232 queries.

Ground-truth answers were not made available
for any of the queries by the manufacturer, but iN-
AGO manually mapped the corresponding answers
generated by Zheng (forthcoming) to the most suit-
able class within their database of prototype ques-
tions and answers. iNAGO provided us with their
model’s rankings and confidence scores, as well as
a complete list of the 410 classes and prototypes
from the database that their model could refer to.
As a result, we are capable of computing scores
that evaluate these models in a dialogue turn classi-
fication task, but not overall measures of dialogue
quality such as number of turns to completion, or
the percentage of accomplishment of a stated user
goal.

Among the 232 queries, 20 of them were un-
recalled, meaning that an appropriate class was
available within iNAGO’s database (it was for all
232), but was not in iNAGO’s model’s candidate
list. The existence of these instances precludes
the use of an average precision score directly, as
is standard in query-reranking approaches to inter-
net search or information retrieval systems, on any
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Figure 1: A graphical depiction of the computation of BERT embeddings (Devlin et al., 2019).

of our three models except BERT, which always
produces a score.

Below, we report our evaluation of the three mod-
els on two query samples from this dataset: Without
Unrecalled Cases, in which only the 212 queries
for which the correct class label was recalled at any
rank are used, and With Unrecalled Cases, which
considers all 232. For the latter sample, for the pur-
poses of computing the Mixed model’s ranking of
the 20 unrecalled queries, the manually annotated
class is appended at the bottom of the list of candi-
date classes for iNAGO’s model, with a confidence
of zero.

5 Evaluation Scores

We used three different scores to evaluate each
model. All can be regarded as derivative measures
of performance, although they have applications to
further exploratory data analysis, such as through
visualization.

We compute the mean, variance and median
of the rank of the ground truth category in each
candidate list. In the case where confidences can
be interpreted as probabilities, this corresponds to
a data likelihood score.

We also compute the mean reciprocal rank
(MRR), which is a variant of mean average pre-
cision. The formula of MRR is:

MRR =
1

N

N∑

i=1

1

ranki

where N is either 212 or 232 (see Section 4) and
ranki denotes the rank of item i in a list. MRR
is a classification accuracy measure that bestows
partial credit for answers of rank greater than 1,
according to a hyperbolic curve.

Finally, we compute the top-1 accuracy of the
model. Here, we simply consider the percentage of

cases where the model assigned the top rank (1) to
the manually annotated class.

6 Model Evaluations

The evaluation scores are given in Tables 1–2.
See also Figures 2–4 for the counts of the man-
ually annotated label’s rank (the highest was 75)
without consideration of unrecalled cases, and Fig-
ures 5–8 for counts including unrecalled cases. The
generally hyperbolic shape of those distributions
compels us to compute the logarithms of the counts
at each rank and fit those logarithms to a line with
slope B using least-squares regression, having co-
efficient of determination, R2.

7 Discussion of Results

There are two points that can be clearly ascer-
tained. The first is that iNAGO’s model is to be
credited for its generally better performance on
these queries, which were unseen during the devel-
opment of that model, but mostly in-domain. BERT
is widely regarded as not an easy model to beat,
and iNAGO’s model did beat it soundly in both
conditions across all measures. As the histograms
show, iNAGO’s model and the Mixed model are
also both generally sharper around the top rank
than BERT.

That a linear combination of two independent,
unbiased estimators should exist that lowers vari-
ance is to be expected. On the other hand, we did
not determine the mixture parameter by directly op-
timizing variance or covariance. Note also that the
iNAGO model’s variance was already low, when it
was able to locate the correct class label at any rank.
This suggests that the mixed model’s improvement
to the iNAGO model was primarily through its
greater coverage.

The second point is that iNAGO’s and BERT’s
performances are complementary enough to be of
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Mean (Var) Median MRR T1 −B R2

iNAGO 1.594 (2.489) 1.0 0.854 77.83% 0.866 0.741
BERT 3.675 (16.145) 2.0 0.575 41.04 0.187 0.701
Mixed 1.552 (2.903) 1.0 0.851 75.00 1.031 0.933

Table 1: Performance on Dialogue Classification Task, not including unrecalled cases.

Mean (Var) Median MRR T1 −B R2

iNAGO 2.263 (10.766) 1.0 0.798 73.28% 0.266 0.407
BERT 3.560 (15.382) 2.0 0.590 43.10 0.259 0.567
Mixed 1.629 (3.239) 1.0 0.841 74.14 1.544 0.835

BERT (unrecalled cases only) 2.350 (6.029) 1.0 0.748 65.00 0.360 0.481

Table 2: Performance on Dialogue Classification Task, including unrecalled cases.

mutual benefit to each other. This is particularly
true when we consider the cases unrecalled by iN-
AGO’s model on their own, where BERT’s perfor-
mance is so good that the Mixed model’s perfor-
mance on all 232 cases has a mean rank of less than
2.

With a corpus of this size, fine-tuning BERT was
beside the point, and so this experiment was con-
ducted in a zero-shot setting. On the other hand, the
BERT model that assigned ranks within the mixed
model was also the base model.1 Corpora of this
size are not uncommon to dialogue system design-
ers, and so this is an ecologically valid setting.

8 How Did They Do It?

The better performance of iNAGO’s model natu-
rally compelled us to ask how it works. The answer
is surprising in just how unsurprising it is. It begins
with a round of slot/filler labelling inside the query
or candidate prototype using a sequential labeller,
very much as one finds in the ATIS NLU task (Niu
and Penn, 2019). Three linear passes over the an-
notated string with very small cascades of between
one and three rules lead to the iterative construc-
tion of a data structure that is essentially identical
to a typed feature structure (Carpenter, 1992). The
signature of the formalism contains 17 features and
a type hierarchy consisting of around 40 000 types,
although all but about 4 000 of those types are
proper nouns that designate types of cuisine, land-
marks, titles of songs, etc. The feature structures
represent a combination of propositional content

1An anonymous reviewer suggested that we attempt to
fine-tune the BERT model on this dataset, in spite of obvious
concerns about the generalization bound on a set of this size.
Indeed, performance was worse with respect to every measure
after fine-tuning.

and user intention, the latter being classifiable into
11 discrete types.

8.1 Rules
The first cascade of rules looks only for evidence

that the input is or is not a continuation of an ear-
lier dialogue, and then classifies the input by user
intention. The second cascade fills in or refines the
value types of features that have been determined
to exist either (1) by the intention type, (2) by the
presence of a particular slot filler in the labelled
input sequence or (3) by previous dialogue turns in
the case of a continuation. The “filling” is mono-
tonic and is consistent with the type-inferencing
rules of Carpenter (1992) that are used to compute
what he terms most general satisfiers of expressions
from a Rounds-Kasper-style attributed description
language.

The third cascade modifies the feature structure
non-monotonically if it matches a template defined
by one of its rules. This stage essentially handles
exceptions that could not be accommodated by the
second stage. Each rule in this cascade handles one
exception each. Templates can detect:

1. whether the value at a feature path has been
refined by the second cascade as a result of
the current input,

2. whether a feature value bears a subtype of a
given type,

3. whether a feature value is exactly a given type,
and

4. whether the value of one of a finite number
of extra-logical variables is equal to a given
constant,
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5. closed under conjunction and disjunction.

The extra-logical variables are set by the state of
the automobile. Impressively, however, there are
only two rules/exceptions in the third cascade.

8.2 Similarity
Given a pair of these feature structures, one for

a query and one for a candidate, their similarity is
determined through a modified form of a weighted
Jaccard index acting upon a set-theoretic reduction
of the two structures. In this reduction, both fea-
ture structures are reduced to sets of feature paths
terminating in a value that consists of a type and
no other substructures. The actual lengths of the
feature paths are irrelevant to the similarity score,
but serve to identify like values between the two
feature structures that can be compared. Given
|K| such paths, on which at least one of feature
structures F and G define a value, let us call Fk

(resp. Gk) the value of F (resp. G) on path k ∈ K,
where it is defined, and the most general type, ⊥
(in the orientation of Carpenter (1992) — many
others would call it >), elsewhere.

While each value is merely a type with no ap-
propriate features, that type is situated within a
type hierarchy. This graph of subtyping relations
is assumed by Carpenter (1992) to be a meet semi-
lattice for convenience, as it is here. Let h(τ) be
the height of type τ , where the height of a type is
taken to be the length of the longest chain from ⊥
to that type. The A-similarity of F and G is then
definable as:

A(F,G) =
Σkwk · h(Fk uGk)

Σkwk ·max(h(Fk), h(Gk))
,

where σuτ is the meet of types σ and τ . It is this A-
similarity that is returned as iNAGO’s confidence
score. Note that its range is [0, 1] when Σkwk = 1
and that high values are attained through a combi-
nation of (1) there being many (vs. few) paths on
which both the query and a candidate have values
defined, and (2) those values having very high (vs.
low) meets. The meets are maximally high when
both Fk = Gk and Fk takes on a very high/specific
value. iNAGO determined the weights wk through
ad hoc experimentation on labelled training queries
that had been obtained from a different source.

The use of the height of a meet, or the depth of a
least common superconcept (LCS) in the parlance
of lexical semanticists, dates back to the conceptual
similarity score of Wu and Palmer (1994), although

there it is used as a normalizer on the length of the
walk from Fk to Gk via their LCS in the semi-
lattice. The walk lengths from either Fk or Gk to
Fk uGk are not taken into account in A-similarity.

The iNAGO model ranks the prototypes of its
classes by their A-similarity to each query, subject
to two thresholds. First, no more than the top 75
classes can be returned. Second, no class with an
A-similarity of less than 0.1 can be returned. These
thresholds were set empirically. Only one query
returned a list that was truncated at 75. The median
length of ranked class labels was 11.

8.3 Nomenclature

It is clear from the nomenclature used in
company-internal documentation that the develop-
ers of this system had not read Carpenter (1992),
nor anything else about typed feature logic, or
feature-based grammar development. Types are
referred to as “entities,” features as “roles,” fea-
ture paths as “criteria,” typed feature structures as
“interpretations,” the type hierarchy as a “criteria
set,” and chains of types in the hierarchy as “paths.”
Their knowledge of these structured representa-
tional devices seems to factor exclusively through
the same early-1980s research on programming lan-
guage theory and inclusional polymorphism that
was so influential on both typed feature logic and
linguistic formalisms such as HPSG (particularly
the earlier, pre-1994 versions of it; Pollard and
Sag, 1987), on the one hand, and modern, object-
oriented, imperative programming language con-
structs, on the other.

As a result, we see no evidence for any sort of
deeper convergence or objective suitability of the
formalism for dialogue analysis that iNAGO hap-
pened upon. Instead, we claim that this manner of
structured representation had become, and arguably
remains, the de facto strategy for reasoning about
language and dialogue among university-educated
software engineers. The real question may there-
fore be not how they did it, but why they would
ever have done anything else.

9 Conclusion

This paper briefly presented an evaluation of
three models, a domain-specific one based upon
typed feature structures, a neural language model
and a mixture of the two, on an unseen but in-
domain corpus of user queries. Our first recom-
mendation is therefore that mixtures of semanti-
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cally rich, conventional dialogue classifiers with
neural language models should be investigated fur-
ther, as our results suggest that they can produce
the best combination of classifier accuracies and
coverage.

We then considered the domain-specific model
in more detail. While it is probable that the ap-
proach taken by this model would not scale up
well to very large domains on its own, to say noth-
ing of domain-independent dialogue modelling, it
is indeed difficult to fathom why this manner of
reasoning about dialogue should simply go away.
Software developers, it appears, need no particular
formal instruction in order to create them, perhaps
apart from some standardization of their terminolo-
gies. Domain-specific approaches very apparently
can still achieve higher levels of performance than
what black-box semantic embeddings are currently
capable of.

Our second recommendation is therefore the
same as our first recommendation: we really
should, as a community, encourage this sort of
model combination as a means of enabling and
enhancing what software developers are already
doing without our permission. It not only improves
the accuracy of the systems they are building, but
may provide a low-cost means of relaxing domain
restrictions. Our third recommendation is that those
engaged in the formal study of structured repre-
sentations should develop their unique capacity to
provide the means for validating and coordinating
domain-specific dialogue systems that spring up
“in the wild,” which will allow us to harness a very
large pool of unspecialized talent to advance the
state of the art in this field.
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Figure 2: Count of ground truth’s rank (iNAGO’s
model), without unrecalled cases.

Figure 4: Count of ground truth’s rank (Mixed model),
without unrecalled cases.

Figure 6: Count of ground truth’s rank (BERT model),
with unrecalled cases.

Figure 8: Count of ground truth’s rank (Mixed model),
with unrecalled cases.

Figure 3: Count of ground truth’s rank (BERT model),
without unrecalled cases.

Figure 5: Count of ground truth’s rank (iNAGO’s
model), with unrecalled cases.

Figure 7: Count of ground truth’s rank (BERT model),
unrecalled cases only.
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Abstract

While prior work shows that pre-trained
language models (PLMs) primarily emulate
knowledge of entailment relations using sur-
face heuristics, this paper examines whether
PLMs learn aspects of symbolic and first-order
logic relations as a side effect of learning word
prediction. We introduce Logic and Knowl-
edge Natural Language Inference (LAKNLI),
a new NLI task, and we probe two different
PLMs: one fine-tuned on NLI tasks and the
other without NLI fine-tuning. Results show
that PLMs are sometimes able to use logical
knowledge for word prediction, yet they still
rely heavily on heuristics. We also examine
the conditions under which PLMs succeed and
fail at utilizing logical relations.

1 Introduction

State-of-the-art language models often rely on sur-
face level heuristics (McCoy et al., 2019). This
is problematic when the heuristics make incorrect
predictions involving logical properties (e.g., mod-
els may predict that Either Alice knows Bob or
Carl knows Claire implies Bob or Carl knows
Claire). This paper examines whether language
models, can, in addition to surface level heuristics,
infer symbolic and first-order logic relations from
textual data. We introduce LAKNLI (Logic and
Knowledge Natural Language Inference), a new
probing dataset which assesses whether language
models can reason by using logical patterns to pre-
dict entailment relationships (without being explic-
itly trained on them). We also examine the condi-
tions under which BERT (Devlin et al., 2019), a
widely used pre-trained language model, succeeds
and fails at utilizing these logical relations.

2 LAKNLI

2.1 Overview of the Task and Dataset
In order to probe pre-trained language models
(PLMs) to examine their symbolic and first-order
logic reasoning abilities, we create a new prob-
ing task and dataset: LAKNLI (Logic and Knowl-
edge Natural Language Inference). When solving
LAKNLI, a language model needs to exploit the
logical connective in the premise to predict whether
a logical entailment exists between it and the hy-
pothesis.

The dataset is divided according to 7 logical
connectives (such as and, or, etc; full list given in
Appendix A). 20 premises are attributed to each
logical connective, where each premise is followed
by 4 different hypotheses:

• Premise (P): Some statement which is as-
sumed as true. The premise is structured ac-
cording to one of the deductive schemas given
in Appendix A. Example: Alice got home by
2PM and met Bob then.

• Direct Deduction (DD) The (word-for-word)
logical deduction, subject to one of the seven
deductive schemas, which logically follows
from the premise. A model should always
judge a DD hypothesis to be entailed from
the premise even if it solely relies on one of
our distractor heuristics (LO or SS; defined
below). Example: Alice got home by 2PM.
Alice met Bob at 2PM.

• Lexical Overlap (LO) Some (possibly non-
sense) bag-of-words reiterated from the
premise. The hypothesis does not logically
follow from the premise (Parikh et al., 2016).
Example: Alice met home by Bob.

• Subsequence Overlap (SS) A random se-
quence of consecutive words reiterated from
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the premise. The hypothesis does not logi-
cally follow from the premise (otherwise SS
and DD would be indistinguishable). Exam-
ple: 2PM and met Bob.

• Knowledge (K) A hypothesis which sig-
nificantly restricts lexical and subsequence
overlap, yet still logically follows from the
premise. A model will only judge K to be
entailed by the premise if the training text
statistics encode some of the logical subtleties
of natural language. Example: Someone saw
someone else in the afternoon.

Premise-Hypothesis (P-H) Entailment
Premise - Direct Deduction (P-DD) X
Premise - Lexical Overlap (P-LO) 7

Premise - Subsequence (P-SS) 7

Premise - Knowledge (P-K) X

Table 1: The entailment relations that a non-heuristic
based statistical learner should predict when probed on
LAKNLI.

Note that LO and SS hypotheses do not logically
contradict their corresponding premises. Rather,
it is not possible to derive a logical entailment re-
lation between an LO or SS hypothesis and the
corresponding premise.1

2.2 Distinguishing LAKNLI From Other
NLI Tasks and Datasets

While other resources provide related benefits to
LAKNLI, the structure of LAKNLI differs from
existing NLI tasks and datasets. HANS (McCoy
et al., 2019) contains LO and SS sentences which
are grammatically correct, while in LAKNLI there
is no requirement for the LO and SS sentences
to be grammatical nor make sense. In LAKNLI,
grammatical correctness is an additional heuristic
that models can use to determine the entailment
relation between a premise and its hypothesis. If
a model fails to classify LO and SS hypotheses as
being non-entailed from their premise, one should
question the model’s ability to accurately encode
formal properties of syntax.

SuperGLUE (Wang et al., 2019) is another re-
source which enables probing of a model’s sensi-
tivity to logical relations. However, SuperGLUE is

1In this paper, we use ‘P-X’ to indicate a premise-
hypothesis pair. We use ‘{X,Y} Z’ to indicate that a model
was trained on hypotheses of types X and Y and tested on
hypotheses of type Z.

not as narrowly targeted for the probing of logical
information as LAKNLI. In SuperGLUE, logical
connectives can appear in the premise for some
items and in the hypothesis for other items. In
LAKNLI, the main logical connective always oc-
curs in the premise. LAKNLI also attempts to
avoid any sentence ambiguity in terms of the main
logical connective and in terms of referent binding.

Lastly, the construction and use of knowledge
sentences (K) which minimize the utility of LO and
SS heuristics are unique to LAKNLI and, to our
knowledge, have not previously been used within
NLI tasks and datasets.

3 Probing BERT architectures

In this paper, we focus on probing the BERT (De-
vlin et al., 2019) architecture’s facility with logical
relations. Given BERT’s extensive pre-training
and success on many NLP tasks, the model can
provide an example of the kinds of analyses that
can be done with LAKNLI as well as providing
a solid baseline measure for other how well neu-
ral language models in general would perform on
LAKNLI. That is, if BERT can solve LAKNLI,
other neural language models may also be able to
solve this task. However, if BERT fails on this
task, perhaps other neural language models will
not be able to solve this task. We first use a BERT-
NLI model, which is fine-tuned on SNLI (Bowman
et al., 2015) and MultiNLI (Williams et al., 2018),
to see whether BERT has the ability to use sym-
bolic logic to infer entailment even when fine-tuned
on the task. We then probe a non-fine tuned BERT-
base model on LAKNLI, to examine its capacity
to reason about and deduce textual inferences cor-
rectly without explicit NLI training.

4 BERT-NLI

4.1 Preprocessing
Given a premise and a hypothesis, BERT-NLI out-
puts the corresponding logical relations: entail-
ment, non-entailment, and neutral. We passed
all of the P-{DD,LO,SS,K} sentence pairs from
LAKNLI through BERT-NLI, but we coded neu-
tral outputs as non-entailment.

Since exact lexical and syntactic overlap occurs
between P and DD, any NLI-competent model
should mark the relationship of all P-DD sen-
tence pairs as entailment. However, BERT-NLI
did not mark all P-DD pairs as entailment (see
Appendix B), indicating a total failure to process
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Figure 1: BERT-NLI entailment relation prediction ac-
curacy when evaluated on a subset (492 P-H sentence
pairs) of LAKNLI.

Connective Accuracy
AND (conjunction) 89%
OR (disjunction) 50%
CON (conditional) 60%
ID (identity) 50%
UNI (universal) 50%
SYM (symmetry) 71%
TRN (transitivity) 58%

Table 2: BERT-NLI’s accuracy in predicting the entail-
ment relations of LAKNLI’s P-K sentences.

those items. Therefore, we removed all premises
and associated hypotheses in cases where P-DD
was predicted as non-entailment. This resulted in
removing 68 premise-hypothesis sets and preserv-
ing 492 premise-hypothesis sets.

4.2 Results and Discussion

The results (see Figure 1) parallel those of McCoy
and Linzen (2018) and indicate that BERT-NLI
primarily encodes entailment relations according
to subsequence overlap. BERT-NLI has the most
success at correctly predicting the entailment re-
lation between AND P-K sentences, achieving an
accuracy of 89% (see Table 2). Above chance per-
formance suggests that BERT-NLI encodes some
of the logical relations included in LAKNLI (AND,
CON, SYM, TRN).

5 BERT-base (uncased)

Since BERT-NLI only outputs one of three NLI
categories, we used BERT-base to conduct a more
thorough error analysis of the kinds of logical rela-
tions that can be inferred from text statistics.

We used a support-vector machine to probe
BERT. The [CLS] token in BERT encodes the over-
all meaning of each sentence, so we used each
layer’s encoding of the [CLS] token as the input to

our SVM. As only 560 P-H pairs are available in
LAKNLI, we used 5-fold cross-validation to train
3 different SVM probes (see Table 3).

Probe Name Trained On Tested On
{DD,LO} LO P-DD, P-LO P-LO
{DD,SS} SS P-DD, P-SS P-SS
{DD,K} K P-DD, P-K P-K

Table 3: Trained probes and their descriptions.

Remark Consider a probe of the form {A,B} C,
where A, B and C are some hypothesis types from
LAKNLI. If C=A or C=B (i.e. the test sentences
are of type A or B), the probe should predict 1 (an
entailment relation), otherwise, the probe should
predict 0 (a non-entailment relation). For exam-
ple, consider the {DD,LO} LO probe, which was
trained on P-DD and P-LO sentence pairs. Since
it was tested on P-LO sentence pairs, the probe
should output 1 for all of those items. If either P-
SS or P-K sentences (the item classes which were
not observed during probe training) are used during
testing of a {DD,LO} probe, it should output 0 for
all of those items.

We trained all probes on DD hypotheses in addi-
tion to another set of hypotheses, as DD hypotheses
have a common property with all LO, SS and K
hypotheses. That is, DD hypotheses include lexi-
cal and syntactic overlap with P (like LO and SS
hypotheses), yet are still logically entailed from P
(like K sentences, which do not include overlap).
Since P-K pairs contain minimal lexical overlap,
training probes on only P-K pairs could make the
probe negatively correlate lexical overlap with en-
tailment. That is, the probe could learn that lexical
overlap indicates non-entailment and vice-versa.
Our aim in training the probe on P-DD as well
as on P-K was to push the probe to identify more
generalizable knowledge within BERT (i.e. lex-
ical overlap can produce entailment under some
conditions).

5.1 Experiment #1
Training probes on contextualized embeddings can
yield high test accuracy even when embeddings do
not necessarily encode relevant information (He-
witt and Liang, 2019). Therefore, we defined two
tasks:

• The linguistic task tracked whether BERT
solved LAKNLI using logical relations. For
this task we used the {DD,K} K probe.
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Figure 2: Percent of test items classified as containing an entailment relation across the linguistic and control task
probes.

• The control task tracked whether BERT
solved LAKNLI using surface heuristics. For
this task we used the {DD,LO} LO and
{DD,SS} SS probes.

Each of these probes was trained on the P-H
[CLS] embeddings from each of the 13 layers of
the model,2 and we tracked the flow of information
throughout each layer of BERT. Figure 2c shows
the number of linguistic task items classified as
having an entailment relation while Figures 2a and
2b show the percent of control task items classified
as having an entailment relation, for each logical
connective, across each layer of BERT-base.

5.1.1 Results and Discussion
All of the probes classified several items as exhibit-
ing entailment across all non-embedding layers for
both the linguistic and control tasks (see Figure 2).
These results replicate previous findings showing
that BERT relies on surface level heuristics (Mc-
Coy and Linzen, 2018; McCoy et al., 2019), but we
found that information about logical relations were
decodable from BERT’s internal representations as
well.

In order to determine whether BERT’s contex-
tualized embeddings encoded the semantics of
logical connectives or whether the trained probes
learned the logical connectives separately from
BERT, we measured the selectivity of the probing
task (Hewitt and Liang, 2019). However, we modi-
fied the original definition to fit our experiment:

Definition 1. selectivity = percent entailment of
{DD,K} K probe on layeri - max(percent entail-
ment of {DD,LO} LO probe on layeri, percent en-
tailment of {DD,SS} SS probe on layeri).

A positive selectivity score represents the degree
to which the probe tracked entailment relations
using logic rather than surface heuristics, while

2We denote the embedding layer as layer 0.

Figure 3: Probe selectivity computed by Definition 1.

the absolute value of a negative selectivity score
represents the degree to which the probe tracked
entailment relations using surface heuristics rather
than logic (see Figure 3 and Appendix C).

A selectivity score of 1 would indicate that
BERT solved LAKNLI using only logical under-
standing and knowledge. While this was not what
we observed, our results still confirm that BERT
was able to track entailment relations and encode
some symbolic and first-order reasoning properties
when solving LAKNLI (represented by a positive
selectively score, with some exceptions where the
selectivity scores are negative).

Our results offer a counterpoint to McCoy et al.
(2019) who claimed that BERT primarily encodes
entailment relations according to surface heuristics.
We confirmed that BERT uses surface heuristics
but sometimes also encodes knowledge and logical
reasoning, though it was trained solely on text data.

5.2 Experiment #2
In order to examine how BERT distinguishes be-
tween knowledge and surface heuristic hypotheses,
we trained three more probes (see Table 4). The
percent of test items the probes classified as entail-
ment can be seen in Figure 4.

The goal of this analysis was to identify the spe-
cific features encoded by BERT that can distinguish
the hypotheses from one another. Lexical overlap
is one obvious difference, which we controlled for
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(c) {K} K

Figure 4: Percent of test sentence pairs that are classified as having an entailment relation when trained on K
sentences and tested on LO, SS and K.

Probe Name Trained On Tested On
{K} LO P-K P-LO
{K} SS P-K P-SS
{K} K P-K P-K

Table 4: Trained probes and their descriptions

in the previous analysis by including DD hypothe-
ses in each probe training set. By removing DD
hypotheses from the probe training sets in this anal-
ysis, we anticipated that the probes would learn a
negative correlation between lexical overlap and
logical entailment. However, we also expected that
the probes would help us identify other encoded
features that distinguish between knowledge-based
properties and surface layer heuristics.

5.2.1 Results and Discussion
The {K} K probe (Figure 4c) performed substan-
tially above chance after layer 4. The high per-
centage of items classified as containing an entail-
ment relation in the intermediate and upper lay-
ers suggests that BERT was able to exploit logi-
cal connectives to correctly determine entailment
relations. This result is consistent with previous
observations that BERT’s intermediate and upper
layers can encode semantic meaning (Jawahar et al.,
2019), though it may also indicate the availability
of input features at higher layers of BERT (we ex-
plore this more at the end of this section).

The {K} LO (Figure 4a) and {K} SS (Figure
4b) probes should have achieved 0 percent entail-
ment classification across all layers, for each log-
ical connective. When trained on P-K pairs, the
probe should not have been able to deduce an entail-
ment relation between the P-LO and P-SS sentence
pairs. While only a small percentage of items were
classified as containing entailment relations in lay-
ers 6-12, the lower 6 layers still classified 30% of
test items as entailment relations. That the probes

marked entailment relations between premises and
(sometimes ungrammatical) hypotheses suggests
that BERT does not use syntax and grammar as
a heuristic to encode logical entailment relations.
While BERT has the ability to handle subject-verb
agreement, learn rich syntactic features from mid-
dle layers and encode the most information regard-
ing linear word order in lower layers (Goldberg,
2019; Jawahar et al., 2019; Rogers et al., 2020) our
results should cause one to question BERT’s under-
standing of natural language grammar properties.

In order to determine how much more BERT
was able to distinguish knowledge hypotheses (K)
from their corresponding lexical and subsequence
overlap hypotheses (LO, SS), we again used selec-
tivity (although modified slightly from Definition
1):
Definition 2. selectivity = percent entailment clas-
sification of {K} K probe on layeri - max(percent
entailment classification of {K} LO probe on
layeri , percent entailment classification of {K} SS
probe on layeri).

Figure 5: Probe selectivity scores computed by Defini-
tion 2.

Per Figure 5, the probe was best able to distin-
guish between knowledge and surface heuristics
within layers 5 - 10 (see Figure 5 and Appendix
C). This result aligns with our previous selectivity
results (Figure 3 and Figure 8), which indicated
that the probe was able to decode logical relations
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from BERT’s representations mainly in the inter-
mediate (and some upper) levels. We hypothesize
that this was most likely due to BERT encoding
some properties of syntactic structures primarily in
lower layers (used for LO and SS sentences) and
encoding semantic and pragmatic information in in-
termediate and upper layers (used for K sentences).

As noted earlier, the high selectivity scores may
have been due to a lack of lexical overlap between
the premise and knowledge hypotheses. To explore
the influence of lexical overlap on the probe, we
trained an additional {K} DD probe (see Figure 6).

Probe Name Trained On Tested On
{K} DD P-K P-DD

Table 5: Trained probe and its description.
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Figure 6: Percent of test items classified as containing
an entailment relation by a {K} DD probe.

The {K} DD probe should have achieved near
100 percent entailment classification across all lay-
ers. However, as seen in Figure 6, this did not
occur, which indicates that a probe trained solely
on K sentences will learn entailment based on the
lack of surface level heuristics. However, a probe
trained on both DD and K sentences (that is, a
probe trained equally on sentences with and with-
out surface level overlap), can produce more gen-
eralizable entailment predictions, independent of
lexical overlap, as seen in Figure 2c.

Therefore, one potential solution to ensure accu-
rate probing results is to train probes on data that
contains a balance of surface features and knowl-
edge features. Furthermore, adding contradictory
knowledge hypotheses to LAKNLI would enable
researchers to calculate precision and recall scores,
which would give a better indication as to whether
a probe solves LAKNLI using logical relations.

6 Error Analyses

We next conducted qualitative analyses, where,
when applicable, we categorized P-K sentence
pairs from LAKNLI according to an error type.
All analyses used data from the {K} K probe in
Section 5.2.3 Below are the error types we used,
followed by their descriptions and a sample P-K
sentence pair:

• Visual Reasoning (VR) Sentences which re-
quire an analytic understanding of phrases re-
lated to spatial reasoning, such as left of, in
front of, behind, between etc. Example: P: If
Alice is next to Bob, Bob is to the right of Carl.
Alice is next to Bob→ K: Carl is to the left of
someone.

• Common Knowledge (CK) Sentences which
should be generally understood without any
specialized knowledge. Example: P: Alice
is friends with Bob→ K: Alice and Bob both
like each other.

• World Knowledge (WK) Sentences which
require general knowledge about entities
(such as animals, geographic locations, etc.)
in the real world. Example: P: Every boy
who likes Alice is in New York City. Bob likes
Alice→ K: Bob is in North America.

AND OR CON ID UNI SYM TRN TOTAL
VR 4 3 2 1 2 0 7 19
CK 7 3 8 8 9 14 10 59
WK 5 3 5 7 6 1 2 29

Table 6: Number of P-K sentence pairs tagged accord-
ing to an error type within LAKNLI.

Visual Reasoning Prior visual commonsense
reasoning (VCR) tasks such as NLVR (Suhr et al.,
2017) have some similarities to LAKNLI, although
we only probed PLMs on textual data. Our goal
was to examine PLMs’ inferential understanding
of object relations through the use of non-visually
grounded language and analytic consequences (e.g.,
X is to the right of Y ⇐⇒ Y is to the left of X).

Sentences which are tagged as VR within
LAKNLI can be further classified according to the
reasoning phrase involved. Such reasoning phrases
and their frequencies are: next to (5), right of / left
of (9), in front of / behind (5), on top of / below (3),
north of / south of (1).

3Within this section the phrase the probe refers to the
{K} K probe.
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The probe seemed to struggle with understand-
ing analytic consequences including right of/left of
(e.g., X is to the right of Y ⇐⇒ Y is to the left of
X), on top of/below (e.g., X is on top of Y ⇐⇒
Y is below X), and in front of/behind (e.g., X is in
front of Y ⇐⇒ Y is behind X) in lower layers.
However, from layer 4 and above, the degree of
error substantially decreased, with only 1 error in
layers 4, 5, 6 and 8 and 2 errors in layer 7. This re-
sult suggests that BERT was able to perform best at
a visual reasoning task between layers 4-8, which
aligns with the results from Section 5.2.

The majority of incorrect entailment predictions
in the upper layers (9-12) required understanding
the relationship between left and right. Even in
upper layers, which are supposedly more pragmati-
cally advanced (Tenney et al., 2019), BERT was not
fully able to understand such spatial implications.

In terms of logical connectives, it is possible
that BERT also encodes the semantics of the bi-
conditional deductive schema (which is not one of
the seven deductive schemas included in LAKNLI)
from layer 4 upwards, since the probe correctly
predicted the majority of visual reasoning phrases
which involved analytic consequences. However,
due to the small size of LAKNLI, and since BERT
did not encode the pragmatic relationship between
left and right, future work should probe BERT on
larger visual reasoning datasets with an emphasis
on analytic consequences.

Common Knowledge Common knowledge rea-
soning tasks require language models to understand
general scenarios that humans intuitively under-
stand (Mostafazadeh et al., 2016; Zellers et al.,
2018; LoBue and Yates, 2011).

For the error analysis, we further subcategorized
CK P-K sentence pairs into the following types:
Description (sentences which include a general
description about an individual or circumstance),
General Action (sentences which involve an indi-
vidual doing an action), Spatial Relation (sentences
with phrases that impose a spatial relation between
at least two entities yet do not require a language
model to solve a visual reasoning task), Time (sen-
tences which refer to specific and/or general times
of the day).

While many errors occurred with no particular
pattern in the lower layers (1-3), BERT seems able
to encode information regarding spatial relations
in these lower layers, particularly understanding
phrases such as in proximity, near, adjacent, is in.

BERT seemed to encode general descriptions from
layer 6 and above, with the probe classifying 100%
of the test items as entailment relations within lay-
ers 7-11.

The probe also struggled to correctly predict the
entailment relations of some general action P-K
sentence pairs, particularly in lower layers 1-4 and
in upper layers 9, 11-12 despite classifying a large
number of items as entailment relations in the in-
termediate (and one upper) layers 6-8, 10. The
probe incorrectly predicted the entailment relations
of the following two general action P-K sentence
pairs (a) P: Alice is at home. If Bob walks to the
park then Alice walks to the park. Bob walks to the
park. → K: Alice leaves her house, (b) P: Alice
is at home. Alice walks to the park with Bob. Bob
walks to the park with Carl. → K: Alice leaves
her house in layers 1-4, 11, 12 and 1-5, 9-12, re-
spectively. Since these were the only P-K sentence
pairs in which the displacement of an agent from
one location to another was apparent, it is plausi-
ble that BERT fails to understand such a relation.
This hypothesis is supported by Forbes et al. (2019)
who highlighted BERT’s struggle to reason about
objects and properties in the physical world.

BERT’s understanding of time was inconsistent,
with low entailment accuracy in the higher layers
of the model. The probe incorrectly predicted the
entailment relations of two P-K sentence pairs in
layers 7, 9-12 and layers 9-10, which required the
model to understand that eating at 2PM is associ-
ated with lunch time. These initial results correlate
with those of (Han et al., 2019) that BERT em-
beddings do not achieve high accuracy at temporal
relation extraction tasks. While their testing sen-
tences included phrases which were indicative of
temporal relations, the sentences in LAKNLI make
use of numerical symbols to denote time (e.g., eats
lunch at 2PM). Therefore, it may be that the probe
incorrectly predicted some entailment relations due
to BERT struggling to encode numerical symbols
(Wallace et al., 2019).

World Knowledge For this analysis, world
knowledge P-K sentence pairs were further sub-
categorized into three types: Location (sentences
which include relations between cities, countries
and continents), Eco-Systems (sentences which re-
quire an understanding of the basic facts of nature),
Languages (sentences which require an understand-
ing of the common facts about languages and where
they are typically spoken).

67



The probe correctly predicted the entailment re-
lations of language P-K sentence pairs such as P:
If Alice studies French, Bob studies Italian and no
other languages. Alice studies French and English
and Spanish→ K: Bob has knowledge of the lan-
guage spoken in Venice throughout all of BERT’s
layers, suggesting that BERT encodes where cer-
tain languages are commonly spoken. This was
supported by the probe correctly predicting the
entailment relation of P: Alice studies either En-
glish or French and Bob either studies English or
Spanish. Neither Alice nor Bob study English→
K: Alice and Bob both learn a Romance language
in all layers, which indicates that perhaps BERT
knows that French and Spanish are both considered
Romance languages. This suggests that BERT may
be encoding properties of set-theoretic member-
ship (e.g., Spanish ∈ Romance languages, French
∈ Romance languages).

Half of the eco-system P-K sentence pairs re-
quired understanding common features of sea crea-
tures, such as their abilities to swim or live in water.
The probe correctly predicted the entailment rela-
tions of all those P-K sentence pairs in layers 1-8,
yet struggled in upper layers (9, 11-12). This re-
sult aligns with recent work by Singh et al. (2020)
which stressed that many of the intermediate layers
contain knowledge-based information that is not
included in the final layer.

7 Conclusions

Our work shows that BERT encodes some sym-
bolic and first-order logic relations after training on
only textual information. Despite lexical overlap
having a large effect, we find that SVM probes of
BERT trained on LAKNLI’s knowledge sentences
still achieve high NLI accuracy. It is therefore pos-
sible that the text statistics encode enough about
symbolic logic relations for BERT to use these
relations to solve NLI tasks. However, since text-
trained models are likely unable to effectively learn
reference (Merrill et al., 2021), future work must
be done to determine the extent of symbolic un-
derstanding possible in models that lack reference.
We hope that the LAKNLI dataset can help further
investigate this question.
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A LAKNLI’s Logical Deductive Schema
Templates

The seven logical connectives and their deductive
schemas are defined below in the Fitch format.
This demonstrates (1) the crossover between
zeroth/first-order logic and equivalence relations
within natural language (the main logical connec-
tive is bolded within P) and (2) the relationship
between premises and the 4 different hypotheses
(DD, LO, SS, K) subject to each logical connective:

And (conjunction) Elim (AND)

1 A ∧B

2 A ∧Elim(1)

3 B ∧Elim(1)

Sample AND Sentences
P Alice is friends with Bob and Alice is not friends
with Carl.
DD Alice is friends with Bob. Alice is not friends
with Carl.
LO Bob is friends with Carl.
SS Bob and Alice is not friends with Carl.
K Alice knows two people.

Or (disjunction) Elim (OR)
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1 A ∨B

2 ¬A
3 A

4 ⊥ ⊥Intro(2, 3)
5 B ⊥Elim(4)

6 B

7 B Reit(6)

8 B Or − Elim(1, 3− 5, 6− 7)

Sample OR Sentences
P Alice is at home. Either Alice walks to the park
or Bob walks to the park. Alice does not walk to
the park.
DD Bob walks to the park.
LO Home walks to the park.
SS to the park or Bob walks.
K A man does not remain in his current state.

Conditional Elim (CON)

1 A→ B

2 A

3 B → Elim(1, 2)

Sample CON Sentences
P If Alice attends the party Bob attends the party.
Alice attends the party.
DD Bob attends the party.
LO Attends Alice the party.
SS The party Bob attends.
K Two people attend an event.

Identity Elim (ID)

1 b = f(a)

2 P (f(a))

3 P (b) = Elim(1, 2)

Sample ID Sentences
P Bob is Alice’s uncle. Alice’s uncle is in New
York City.
DD Bob is in New York City.
LO New York City is Alice’s uncle.
SS Uncle is in New York City.
K Somebody is in North America.

Universal Elim (UNI)

1 ∀x(P (x, a)→ Q(x))

2 P (b, a)

3 P (b, a)→ Q(b) ∀Elim(1)

4 Q(b) → Elim(2, 3)

Sample UNI Sentences
P Every boy who likes Alice is in New York City.
Bob likes Alice.
DD Bob is in New York City.
LO New York City is Alice.
SS Alice is in New.
K Somebody is in North America.

Symmetry (SYM)

1 A ∼ B

2 B ∼ A

Sample SYM Sentences
P Alice’s party outfit is similar to Bob’s shirt.
DD Bob’s shirt is similar to Alice’s party outfit.
LO Bob’s outfit is similar to Alice’s party.
SS Party outfit is similar to Bob’s.
K Two people have comparable clothing.

Transitivity (TRN)

1 A ∼ B

2 B ∼ C

3 A ∼ C

Sample TRN Sentences
P Alice’s party is north of Bob’s party. Bob’s
party is north of Carl’s party.
DD Alice’s party is north of Carl’s party.
LO Alice’s party is Bob’s party.
SS Bob’s party is north.
K Carl’s event is located in a southern location
compared to Alice’s event.

We avoided using negation (¬), except when nec-
essary (e.g. in the OR deductive schema), as it is
often used as a heuristic by PLMs to infer a non-
entailment relation between a premise and a hypoth-
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esis (McCoy and Linzen, 2018). However, consid-
ering that negation changes the semantics of univer-
sal quantifiers (e.g. ¬∀xP (x) ⇐⇒ ∃x¬P (x)),
conditionals (e.g. Modus Tollens P → Q,¬Q ∴
¬P ) and conjunctions/dijunctions (¬(A∧B) ⇐⇒
¬A ∨ ¬B) amongst other logical connectives, we
leave it for future work to determine a more so-
phisticated approach for probing PLM’s abilities to
understand first-order equivalences involving nega-
tion.

B BERT-NLI Preprocessing results
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Figure 7: BERT-NLI entailment relation prediction
accuracy across all 560 P-H sentence pairs from
LAKNLI.

C Selectivity Scores
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Figure 8: Probe selectivity scores computed by Definition 1.

Figure 9: Probe selectivity scores computed by Definition 2.
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