
Proceedings of the ESSLLI 2021 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 45–52
Utrecht, The Netherlands (online), 26–27 July, 2021. ©2021 Association for Computational Linguistics

Donkey Anaphora: Type-Theoretic Semantics
with Both Strong and Weak Sums

Zhaohui Luo
Royal Holloway, University of London
zhaohui.luo@hotmail.co.uk

Abstract

Donkey sentences are among the challenging
examples that present a difficult problem in
compositional logical semantics and their se-
mantic treatment is one of the early applica-
tions of dependent type theory to linguistic se-
mantics, where the strong sum Σ, rather than
weak sums (as given by traditional existential
quantifiers), is used for existential quantifica-
tion. However, it is known that this method is
inadequate because it fails to deal with count-
ing properly. In this paper, we propose to con-
sider the semantics of donkey sentences in a
type theory with both strong and weak sums
and show that, with both sum operators, don-
key sentences can be given adequate semantic
interpretations which, in particular, take care
of counting properly.

1 Introduction

Donkey sentences, as first studied by Geach (1962)
and exemplified in (1), where an anaphoric expres-
sion refers to an existentially quantified entity, are
among the challenging examples that present a dif-
ficult problem in compositional logical semantics.

(1) Every farmer who owns a donkey beats it.

Their studies (and that of trans-sentential anaphora)
have led to the development of dynamic seman-
tics such as DRT (Kamp, 1981) and DPL (Groe-
nendijk and Stokhof, 1991) which, however, re-
quire one to consider substantial changes of the
underlying logical systems.1 (For a recent sum-
mary of the dynamic approach to donkey anaphora,
see Brasoveanu and Dotlacil (2021).)

1For example, DPL (Groenendijk and Stokhof, 1991) is a
rather non-standard logical system: among other things, it is
non-monotonic and the notion of dynamic entailment fails to
be reflexive or transitive.

In the mid-80s, as one of the early applications
of dependent type theory in logical semantics, re-
searchers such as Mönnich (1985) and Sundholm
(1986) have proposed to use Martin-Löf’s type
theory (Martin-Löf, 1984) to deal with donkey
anaphora, where Σ-types are employed to repre-
sent existentially quantified formulas. Σ-types
Σx:A.P (x) are also called strong sums, as opposed
to the traditional existentially quantified formulas
∃x:A.P (x) which are called weak sums, because
from an object of the strong sum, one can obtain
its witness, by means of a projection operation,
while this is not possible for the weak sum. It is
because of the availability of witness projection
that an anaphoric reference can be obtained from
an object of a Σ-type, while this is not possible for
an existential quantification in the traditional case
(and hence the problem in the first place). However,
it is known that this approach of using Σ-types to
deal with donkey anaphora suffers from a problem
of counting (Sundholm, 1989; Tanaka, 2015) and
fails to provide us an adequate solution. (See §2
for more details.)

In this paper, we contend that the problem of the
above type-theoretical approach has come from a
double role played by Σ, as an existential quantifier,
on the one hand, and as a structural mechanism to
represent collections of objects, on the other. These
two roles should be separate and played by different
type constructors. But in traditional logics (first-
order logic or simple type theory) or in Martin-
Löf’s type theory, only either ∃ or Σ exists, not
both, and therefore there is no way to consider
such a separation. We show that, in a type theory
with both strong and weak sums, donkey sentences
can be given adequate semantics in which counting
is taken into proper account.

Our proposal is also linked to the research on
different readings of donkey sentences and, in par-
ticular, the strong and weak readings as studied

45

by Chierchia (1990) and others. Also, donkey
anaphora are closely related to (and, for some
researchers, they are examples of) the so-called
E-type anaphora, as first studied by Evans (1977,
1980), which may be interpreted by means of de-
scriptions (see, for example, Nouwen (2021) for a
recent discussion). It is not surprising that Σ-types
are essentially useful in semantic interpretations
of donkey sentences since they have close links to
descriptions (Martin-Löf, 1984; Carlström, 2005;
Mineshima, 2013) and we shall give some brief
discussions about this.

Combining strong and weak sums in type theory
is a subtle matter that needs us to tread carefully, for
otherwise we may easily slip into problems such as
inconsistency. We shall discuss this briefly as well.

This is a short version of a paper we plan to
write. In this paper, in particular, we shall focus
on telling a complete story of this new treatment of
donkey anaphora with both strong and weak sums,
but shall be brief about or completely omit some
related respects.

2 Strong and Weak Sums in Type Theory

In this section, we explain the concepts of weak
sums (for example, traditional existential quanti-
fiers) and strong sums (Σ-types) and, using the
notion of the cardinality of a finite type, illustrate
the counting problem when using only Σ-types to
interpret donkey sentences.

Weak sums (existential quantifiers). Under
the Curry-Howard propositions-as-types principle
(Curry and Feys, 1958; Howard, 1980), traditional
existentially quantified formulas are examples of
weak sum types of the form ∃x.P (x). In first-
order logic, depending on whether it is intuitionistic
or classical, the existential quantifier can be intro-
duced directly or defined by means of the universal
quantifier together with negation, respectively. In
higher-order logic (or simple type theory) as used
in Montague’s semantics, where there is an im-
predicative type t of all formulas, it can be either
directly introduced or defined by means of the uni-
versal quantifier as in (2).

(2) ∃x.P (x) = ∀X:t. (∀x.(P (x)⇒ X))⇒ X .

It is known that, given a proof of ∃x.P (x), al-
though one knows that there is an entity such that
P holds, in the logical calculus one cannot find
out which entity it is. It is because of this that

an anaphoric reference to an existentially quanti-
fied entity becomes problematic. For example, in
a traditional compositional semantics, the donkey
sentence (1) would obtain (3) as its interpretation,
which is not a well-formed formula since the vari-
able y in beat(x, y) is out of the scope of the exis-
tential quantifier.

(3) (#) ∀x. [farmer(x) &
∃y.(donkey(y) & own(x, y))]
⇒ beat(x, y)

This illustrates the original problem in interpreting
donkey sentences, as mentioned at the beginning
of Introduction.

Strong sums (Σ-types). Σ is a dependent type
constructor. IfA is a type andB is a family of types
that depend on objects of type A, then Σx:A.B(x)
is a type, consisting of pairs (a, b) such that a is
of type A and b is of type B(a). Σ-types are asso-
ciated with the projection operators π1 and π2 so
that, for (a, b) of type Σx:A.B(x), π1(a, b) = a
and π2(a, b) = b. Formally, Σ-types are governed
by the inference rules in Appendix A.

Besides being useful mechanisms to organise
structures in various applications, Σ-types may also
play other roles. For example, in Martin-Löf’s type
theory, Σ also plays the role of existential quantifier
in its logic2. Therefore, for instance, the donkey
sentence (1) can be interpreted as (4), in which FΣ,
as defined in (5), is the type intended to represent
the collection of donkey-owning farmers, where
F and D are the types that interpret farmer and
donkey, respectively.3

(4) ∀z : FΣ. beat(π1(z), π1(π2(z)))

(5) FΣ = Σx:F Σy:D. own(x, y)

Σ-types are strong in the sense that from a proof
of Σx:A.P (x) one can preform the first projection
operation to obtain the witness of this ‘existentially’
quantified formula and it is because of this, if Σ is
used as existential quantifier, one can project out
its witness from a proof term of the Σ-type, even

2This is concerned with intuitionistic philosophy – a
strongly minded intuitionist may believe that the witness of
a proven existentially quantified formula can be obtained in-
ternally in a logical calculus. We omit further discussions
here.

3In formal semantics based on modern type theories, CNs
such as ‘farmer’ and ‘donkey’ are interpreted as types (rather
than predicates). This was first proposed by Mönnich (1985)
and Sundholm (1986) and further elaborated in (Ranta, 1994;
Luo, 2012).

46

outside its scope (the terms π1(z) and π1(π2(z))
in (4) are such examples).

The type FΣ above contains two occurrences of
Σ and they play two different roles: the first acts as
a structural mechanism to represent the collection
of the farmers who own donkeys and the second
as the existential quantifier to say that there exists
a donkey owned by the farmer concerned. As we
shall see below, using Σ to play this double role is
problematic. In particular, FΣ is in fact represent-
ing a collection whose cardinality (the number of
its objects) is different from that of the collection
of donkey-owning farmers and, therefore, the se-
mantic interpretation (4) of (1) is inadequate (Sund-
holm, 1989; Tanaka et al., 2015).

Counting and cardinality of finite types.
When a type A is finite in the sense that it has
finitely many objects, it is possible to define its car-
dinanity |A| as the number of its objects. Formally,
a type is finite if, for some n, it is isomorphic to
Fin(n), the type with exactly n objects – see Ap-
pendix B. For example, the cardinality of a finite
Σ-type is the number of pairs in the type.

The problem of counting can be illustrated by
considering the sentence in (6),4 where the quanti-
fier Every in (1) is replaced by Most. Its formal se-
mantics by means of Σ-types in Martin-Löf’s type
theory is given in (7), which can be seen obtained
by replacing ∀ by the quantifier MostS , which is
defined by Sundholm (1989) (S in MostS for Sund-
holm) so that, for a finite type A, MostS x:A.P (x)
is true if, and only if, more than half of the objects
in A satisfy P .

(6) Most farmers who own a donkey beat it.

(7) MostS z : FΣ. beat(π1(z), π1(π2(z)))

Let us now consider the cardinality of FΣ, as de-
fined in (5). Because of the second Σ in FΣ, |FΣ|
is not that of the collection of donkey-owning farm-
ers; instead, to calculate |FΣ|, we’d have to count
every triple (x, y, p) of farmers x, donkeys y and
proofs p that x owns y. For example, if there are
ten farmers, one of whom owns twenty donkeys
and beats all of them, and the other nine own one
donkey each and do not beat their donkeys. Then,
|FΣ| ≥ 29 (it is an inequality because, if farmer x
owns donkey y, there may be more than one proof
that x owns y), but the number of farmers who do

4Thanks to Justyna Grudziñska for a discussion about this
example.

Logic: ∀, Prop

D
D
D
D
D
DD

�
�
�
�
�
��Data types:

N , Π, Σ, ...
Type0, Type1, ...

Figure 1: The type structure in UTT.

not beat their donkeys is 9. Therefore, the above
semantics (7) of (6) would be true in such a case,
which is obviously incorrect.5

3 Donkey Anaphora: a Type-Theoretical
Solution with Both Σ and ∃

In this section, we shall first introduce a depen-
dent type theory UTT (Luo, 1994), which has both
strong and weak sums, and then show how don-
key sentences like (1) and (6) can be interpreted
type-theoretically, giving adequate treatments for
different readings and taking care of counting in a
proper way as well.

3.1 UTT: an impredicative type theory

The type structure of UTT (Unifying Theory of de-
pendent Types) (Luo, 1994) consists of two parts:
the world of data types and that of logical propo-
sitions (see Fig. 1). It contains various types such
as dependent product types (Π-types), strong sum
types (Σ-types), the type N of natural numbers,
the universes Typei, and many other types. UTT
also contains an impredicative type universe Prop
of logical propositions which provide means to
describe the logical properties of objects of any
type (see Appendix C). Formally, UTT can be con-
sidered as the combination of Martin-Löf’s (in-
tensional) type theory (Martin-Löf, 1975; Nord-
ström et al., 1990) with Coquand-Huet’s Calcu-
lus of Constructions (Coquand and Huet, 1988).
In computer science, type theories such as UTT
have been implemented in theorem proving sys-
tems (called proof assistants) for formalisation of
mathematics and verification of programs, and re-
cently, they have been used for formal reasoning

5This is similar to the ‘proportion problem’ when one uses
DRT to interpret such donkey sentences, where one counts
farmer-donkey pairs rather than the donkey-owning farmers.
See Kanazawa (1994) and Brasoveanu and Dotlacil (2021),
among others, for discussions.

47

based on linguistic semantics (see, for example,
(Chatzikyriakidis and Luo, 2016)).6

Note that UTT contains both strong sums
Σx:A.B(x) (Σ-types, as ‘data types’) and weak
sums ∃x:A.P (x) (existentially quantified types, as
logical propositions), and this is essential when
considering semantic interpretations of donkey sen-
tences in §3.2 below.

Logic and proof irrelevance. In UTT, a type is
a logical proposition if it is of type Prop. The type
universe Prop is impredicative and, therefore, the
other logical operators can be defined by means of
the operator ∀ for universal quantification7. For ex-
ample, the conjunction operator and the existential
quantifier ∃ can be defined as in (8) and (9), respec-
tively, and the definitions of the other operators can
be found in Appendix C.

(8) P ∧ Q = ∀X : Prop. (P ⇒ Q⇒ X)⇒ X

(9) ∃x : A.P (x)
= ∀X:Prop.(∀x : A.(P (x)⇒ X))⇒ X

The principle of proof irrelevance says that any
two proofs of the same logical proposition should
be the same. For instance, it implies that, for farmer
x and donkey y, any two proof terms of the propo-
sition own(x, y) should be the same. It has been
shown that, when employing a type theory for nat-
ural language semantics, proof irrelevance should
be enforced (Luo, 2012, 2019). Note that, because
in UTT there is a clear distinction between logi-
cal propositions and other types (the former being
those of type Prop), it is straightforward to intro-
duce proof irrelevance by means of the following
rule (Werner, 2008; Luo, 2012):

P : Prop p : P q : P

p = q : P

Intuitively, it says that, if P is a logical proposition
and if p and q are proof terms of P , then p and q are

6There are several proof assistants based on type theories
including Agda (Agda, 2008) based on Martin-Löf’s type
theory, Coq (Coq, 2010) implementing the type theory pCIC,
and Lego/Plastic (Luo and Pollack, 1992; Callaghan and Luo,
2001) implementing UTT. It may be worth remarking that
pCIC, implemented in the Coq proof assistant, is very similar
to UTT – this is especially the case after Coq’s universe Set
became predicative in 2004 (it was impredicative in earlier
versions).

7The fact that other logical operators can be defined in
higher-order logical systems by means of universal quantifier
was discovered in the 60s by Prawitz (1965) (and several
others, independently) and, this is the same in an impredicative
type theory.

the same. In particular, according to the above rule,
every proposition of type Prop is either an empty
type or a singleton type. In terms of cardinality, we
have |P | ≤ 1 for every P : Prop and, therefore, if
A is finite and Q : A → Prop is a predicate over
A, then we have

(10) |Σx:A.Q(x)| ≤ |A|.

3.2 Semantics of donkey anaphora in UTT

When a type theory has both strong and weak sums
(Σ-types and ∃-propositions as in UTT), together
with proof irrelevance, there is a new way to se-
mantically interpret donkey sentences, which takes
care of counting adequately. We’ll use the example
(6), which is repeated as (11) below, to explain.

(11) Most farmers who own a donkey beat it.

In §2, we have shown that, because in Martin-
Löf’s type theory Σ is used to play a double role,
the semantic interpretation (7) of (11) is inadequate
because it gets counting wrong. In that definition,
we have used quantifier MostS defined in Martin-
Löf’s type theory and, here, we can define a seman-
tic interpretation of the quantifier most in UTT in a
similar fashion as in (Sundholm, 1989) but with a
crucial difference: instead of Σ, we shall use ∃ as
defined in (9) as the existential quantifier and, intu-
itively, for a finite A, Most x:A.P (x) also means
that more than half of the objects in A satisfy P .
Note that, MostS x:A.P (x) is a non-propositional
type, but Most x:A.P (x) is a logical proposition
of type Prop. (See Appendix D for details.)

Having defined Most in UTT, we can now inter-
pret the donkey sentence (11) as (12), in which F∃
is defined in (13):

(12) Most z : F∃.
∀y′ : Σy:D.own(π1(z), y). beat(π1(z), π1(y′))

(13) F∃ = Σx:F. ∃y:D.own(x, y)

Note that |∃y:D.own(x, y)| ≤ 1, that is, if
∃y:D.own(x, y) is true, the cardinality of the
proposition is 1. Therefore, the type F∃ correctly
represents the collection of donkey-owning farm-
ers, as intended, and the above semantics (12) is
adequate and, in particular, it deals with counting
correctly.

Researchers have studied different readings (in
particular, strong and weak readings) of donkey
anaphora, as studied by Chierchia (1990, 1992) and

48

others. For instance, the strong and weak readings
of (11) are (14) and (15), respectively:

(14) Most farmers who own a donkey beat the don-
keys they own.

(15) Most farmers who own a donkey beat some
donkeys they own.

The above interpretation (12) of (11) is a strong one,
interpreting (14) directly: most donkey-owning
farmers beat all donkeys they own. A weaker in-
terpretation of its weak reading (15) would be (16),
obtained from (12) by changing ∀ into ∃:

(16) Most z : F∃.
∃y′ : Σy:D.own(π1(z), y). beat(π1(z), π1(y′))

People have also considered more sophisticated
examples where donkey anaphora are involved
in various ways. For example, (17) is one of
them, taken from Brasoveanu’s thesis (Brasoveanu,
2007), in which the readings for the donkey
anaphora are different (‘a TV’ having a strong
reading and ‘a credit card’ a weak one). Its type-
theoretical semantics with both strong and weak
sums is given in (18).

(17) Every person who buys a TV and has a credit
card uses it to pay for it.

(18) ∀z : Σx:Person. ∃y1:TV. buy(x, y1)
∧ ∃y2:Card. own(x, y2)

∀y : Σy1:TV. buy(π1(z), y1)
∃y′ : Σy2:Card. own(π1(z), y2).

pay(π1(z), π1(y), π1(y′))

One may change the quantifier Every in (17) into
Most (and make other minor changes in the sen-
tence) and, in that case, we can use the quantifier
Most defined in UTT to interpret the sentence and
the resulting interpretations take care of counting
correctly as well.

3.3 E-type anaphora

Here, we discuss, albeit rather briefly, the so-called
E-type anaphora to which donkey anaphora are
closed related (and, for some researchers, donkey
anaphora are examples of E-type anaphora).8 E-
type anaphora are first studied by Evans (1977,
1980), and further discussed by many, including
(Heim and Kratzer, 1998) among others. They can

8Here, I use the term ‘E-type’ for a kind of anaphora, rather
than an approach to solving anaphora (‘the E-type approach’
as people often put it).

be interpreted by means of descriptions (Russell,
1905, 1919) (see, for example, Nouwen (2021) for
a recent discussion). An example, due to Evans, is
(19). Note that the pronoun ‘they’ in (19) is not
bound by ‘Few’ for otherwise the meaning is incor-
rect. A common conceptual answer, proposed by
Evans (1977, 1980), is that these pronouns are de-
scriptive in that they can be paraphrased by means
of descriptions as exemplified in (20) that para-
phrases (19).

(19) Few congressmen admire Kennedy, and they
are very junior.

(20) Few congressmen admire Kennedy, and the
congressmen that do admire Kennedy are very
junior.

As pointed out by Martin-Löf (1984), strong sum
types (Σ-types) are related to descriptions, because
he regards them as logical propositions as well.
If you think that Σx:A.B(x) as the existentially
quantified formula, it is strong and therefore its
first projection operator π1 gives us an internal
means of obtaining the witness from a proof of the
existentally quantified formula. As explained in
§2, this is stronger than the traditional existential
operator ∃ for which such a projection operator
does not exist, and it is exactly because of this that
Σ offers a form of description, as pointed out by
Martin-Löf (1984) and further studied by Carlström
(2005) and Mineshima (2013). For example, the E-
type example (19) may be interpreted as (21), either
in Martin-Löf’s type theory or in UTT, where we
assume that the quantifier Few has been defined:

(21) Few x:C. admire(x,K)
∧ ∀z:[Σx:C.admire(x,K)].junior(π1(z))

However, it should be made clear that Σ-types
are not the same as traditional existentially quanti-
fied formulas and, therefore, it is unclear how far
one may go to analyse E-type anaphora by means
of Σ-types. Actually, it would not go very far since,
as analysed above, using Σ as existential quantifier
does cause problems such as counting, which will
show up in context of E-type anaphora as well.

4 Combining Strong and Weak Sums

It is worth mentioning that combining the strong
sum (Σ) and the weak sum (∃) in type theory is a
subtle matter and, if not careful, it is easy to get
into problems. It would be interesting to note that

49

UTT does not have ‘Σ-propositions’ because the so-
called ‘large Σ-propositions’ would lead to incon-
sistency and the so-called ‘small Σ-propositions’
would make the weak sum types become strong.9

Consider, for example, to add large Σ-types into
the impredicative universe Prop by adding the fol-
lowing rule (together with those for its introduction
and projections that we omit):

(∗) A type P : A→ Prop

Σx:A.P (x) : Prop

It turns out that such Σ-propositions cannot be con-
sistently added – if they were added using the above
rule (∗) (and related ones), the resulting type the-
ory would be inconsistent in the sense that even the
false proposition would become provable (Hook
and Howe, 1986; Luo, 1994).

One may want to add Σ-propositions (so-called
small Σ-types) by a rule like the following, this
time restricting A to be a proposition of type Prop:

A : Prop P : A→ Prop

Σx:A.P (x) : Prop

Although the resulting type theory may be con-
sistent10, there is another problem: the addition
of such small strong sum as propositions in Prop
would make the weak sum proposition ∃x:A.P (x)
become strong (rather unexpectedly!) in the sense
that there is now an internal function in the type
theory that, from a proof of ∃x:A.P (x), returns
an object a : A such that P (a) holds. That would
mean that the traditional existential quantifier is
not weak anymore – such a side effect is of course
problematic and would make the above interpre-
tation method we have proposed fail to deal with
counting correctly.

Therefore, neither of the above large or small Σ
is a viable possibility and, put in another way, the
approach taken in UTT seems to be the only viable
approach in combining strong and weak sums.

5 Concluding Remarks

As a concluding remark, we point out that, in this
paper, we have studied a completely proof-theoretic
approach. This is rather different from the model-
theoretic approaches that have been considered in

9These situations are discussed in (Luo, 1994), from which
the interested reader may obtain more information.

10This consistency is a folklore – most researchers, includ-
ing the author, believe that it is the case, although the author
has not seen a proof of it.

the literature (see, for example, Brasoveanu and
Dotlacil (2021)). Among other things, this has the
advantage of clearer treatment, on the one hand,
and enables the use of proof assistants in reasoning,
on the other.

Acknowledgement. I am very grateful to the
anonymous reviewers for their helpful remarks.

References
Agda. 2008. The Agda proof assistant (v2).

URL: http://appserv.cs.chalmers.se/
users/ulfn/wiki/agda.php

A. Brasoveanu. 2007. Structured Nominal and Modal
Reference. Ph.D. thesis, The State University of
New Jersey.

A. Brasoveanu and J. Dotlacil. 2021. Donkey
anaphora: farmers and bishops. In D. Gutzmann et
al. (eds), The Wiley Blackwell Companion to Seman-
tics.

P. Callaghan and Z. Luo. 2001. An implementation of
LF with coercive subtyping and universes. Journal
of Automated Reasoning, 27(1):3–27.

J. Carlström. 2005. Interpreting descriptions in inten-
sional type theory. The Journal of Symbolic Logic,
70(2).

S. Chatzikyriakidis and Z. Luo. 2016. Proof assis-
tants for natural language semantics. In Interna-
tional Conference on Logical Aspects of Computa-
tional Linguistics, pages 85–98. Springer.

G. Chierchia. 1990. Anaphora and dynamic logic.
ITLI Publication Series for Logic, Semantics and
Philosophy of Language, LP90-07.

G. Chierchia. 1992. Anaphora and dynamic binding.
Linguistics and Philosophy, 15.

Coq. 2010. The Coq Proof Assistant Reference Manual
(Version 8.3), INRIA.

T. Coquand and G. Huet. 1988. The calculus of con-
structions. Information and Computation, 76(2-
3):95–120.

H. Curry and R. Feys. 1958. Combinatory Logic, vol-
ume 1. North Holland Publishing Company.

G. Evans. 1977. Pronouns, quantifiers and relative
clauses. Canadian Journal of Philosophy, 7.

G. Evans. 1980. Pronouns. Linguistic Inquiry, 11(2).

P. Geach. 1962. Reference and Generality: An Exami-
nation of Some Medieval and Modern Theories. Cor-
nell University Press.

50

J. Groenendijk and M. Stokhof. 1991. Dynamic pred-
icate logic. Linguistics and Philosophy, pages 39–
100.

I. Heim and A. Kratzer. 1998. Semantics in Generative
Grammar. Blackwell.

J. Hook and D. Howe. 1986. Impredicative strong ex-
istential equivalent to Type:Type. Technical Report
TR86-760, Cornell University.

W. Howard. 1980. The formulae-as-types notion of
construction. In To H. B. Curry: Essays on Com-
binatory Logic, pages 479–490. Academic Press.
(Notes written and distributed in 1969.).

H. Kamp. 1981. A theory of truth and semantic rep-
resentation. In J. Groenendijk et al (eds.) Formal
Methods in the Study of Language, pages 189–222.

M. Kanazawa. 1994. Weak vs. strong readings of don-
key sentences and monotonicity inference in a dy-
namic setting. Linguistics and Philosophy, 17(2).

Z. Luo. 1994. Computation and Reasoning: A Type
Theory for Computer Science. Oxford University
Press.

Z. Luo. 2012. Common nouns as types. In Logical
Aspects of Computational Linguistics (LACL’2012).
LNCS 7351.

Z. Luo. 2019. Proof irrelevance in type-theoretical
semantics. Logic and Algorithms in Computa-
tional Linguistics 2018 (LACompLing2018), Stud-
ies in Computational Intelligence (SCI), pages 1–15.
Springer.

Z. Luo and R. Pollack. 1992. LEGO Proof Develop-
ment System: User’s Manual. LFCS Report ECS-
LFCS-92-211, Dept of Computer Science, Univ of
Edinburgh.

P. Martin-Löf. 1975. An intuitionistic theory of types:
predicative part. In Logic Colloquium’73.

P. Martin-Löf. 1984. Intuitionistic Type Theory. Bib-
liopolis.

K. Mineshima. 2013. Aspects of Inference in Natural
Language. Ph.D. thesis, Keio University.

U. Mönnich. 1985. Untersuchungen zu einer konstruk-
tiven Semantik fur ein Fragment des Englischen. Ha-
bilitation. University of Tübingen.

B. Nordström, K. Petersson, and J. Smith. 1990. Pro-
gramming in Martin-Löf’s Type Theory: An Intro-
duction. Oxford University Press.

R. Nouwen. 2021. E-type pronouns: congressmen,
sheep and paychecks. In D. Gutzmann et al. (eds),
The Wiley Blackwell Companion to Semantics.

D. Prawitz. 1965. Natural Deduction, a Proof-
Theoretic Study. Lmqvist and Wiksell.

A. Ranta. 1994. Type-Theoretical Grammar. Oxford
University Press.

B. Russell. 1905. On denoting. Mind, 14(56).

B. Russell. 1919. Introduction to Mathematical Philos-
ophy. George Allen and Unwin.

G. Sundholm. 1986. Proof theory and meaning. In
Handbook of philosophical logic, pages 471–506.
Springer.

G. Sundholm. 1989. Constructive generalized quanti-
fiers. Synthese, 79(1):1–12.

R. Tanaka. 2015. Generalized quantifiers in dependent
type semantics. Talk given at Ohio State University.

Ribeka Tanaka, Koji Mineshima, and Daisuke Bekki.
2015. Factivity and presupposition in dependent
type semantics. In Proceedings of TyTLeS, ESS-
LLI2015.

B. Werner. 2008. On the strength of proof-irrelevant
type theories. Logical Methods in Computer Sci-
ence, 4(3).

A Rules for Σ-types

A type x:A ` B type

Σx:A.B type

a : A b : [a/x]B x:A ` B type

(a, b) : Σx:A.B

p : Σx:A.B

π1(p) : A

p : Σx:A.B

π2(p) : [π1(p)/x]B

a : A b : [a/x]B

π1(a, b) = a : A

a : A b : [a/x]B

π2(a, b) = b : [a/x]B

B Cardinality of Finite Types

We give the formal definition of finite types. It will
use the auxiliary type Fin(n) for which we define
first.

The type Fin(n), indexed by n : N with N
being the type of natural numbers, consists of ex-
actly n objects and can be specified by means of
with the following introduction rules (we omit their
elimination and computation rules):

n : N

zero(n) : Fin(n+ 1)

51

n : N i : Fin(n)

succ(n, i) : Fin(n+ 1)

The cardinality of a finite type A, notation |A|,
is defined to be n if, and only if, A is isomorphic to
Fin(n), that is, in the type theory concerned, there
is a bijective function between A and Fin(n). In
particular, |Fin(n)| = n, since the identity func-
tion over Fin(n) is bijective.

C Logic in UTT

The logic in UTT11 consists of the impredicative
universe Prop, specified by the following rules:

Prop type

P : Prop

P type

and the operator ∀ for universal quantification,
specified by

A type x:A ` P : Prop

∀x:A.P : Prop

x:A ` b : P x:A ` P : Prop

λx:A.b : ∀x:A.P

f : ∀x:A.P a : A

f(a) : [a/x]P

x:A ` b : P a : A

(λx:A.b)(a) = [a/x]b : [a/x]P

In UTT, other logical operators can be defined by
means of ∀ and here are some definitions (see, for
example, §5.1 of (Luo, 1994)):

P ⇒ Q = ∀x : P. Q

true = ∀X : Prop. X ⇒ X

false = ∀X : Prop. X

P ∧ Q = ∀X : Prop. (P ⇒ Q⇒ X)⇒ X

P ∨ Q = ∀X : Prop.

(P ⇒ X)⇒ (Q⇒ X)⇒ X

¬P = P ⇒ false
∃x : A.P (x) = ∀X : Prop.

(∀x : A.(P (x)⇒ X))⇒ X

(a =A b) = ∀P : A→ Prop. P (a)⇒ P (b)

11One can find its definition in §9.2.1 of (Luo, 1994), where
it is specified in terms of the logical framework LF.

D Most in UTT

Let A be a finite type with |A| = nA, P : A →
Prop a predicate over A, and Fin(n) the types
with n objects defined in Appendix B. Then, in
UTT, the logical proposition Most x:A.P (x) of
type Prop is defined as follows, where inj(f) is a
proposition expressing that f is an injective func-
tion:

Most x:A.P (x)

= ∃k : N. (k ≥ bnA/2c+ 1)

∧ ∃f :Fin(k)→ A.

inj(f) ∧ ∀x:Fin(k).P (f(x))

52

