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Abstract

We propose a probabilistic account of seman-
tic learning from interaction formulated in
terms of probabilistic type theory with records,
building on Cooper et al. (2014, 2015); Lars-
son and Cooper (2021). Starting from a prob-
abilistic type theoretic formulations of naive
Bayes classifiers, we illustrate our account
of semantic learning with a simple language
game (the fruit recognition game).

1 Introduction

A probabilistic type theory was presented by
Cooper et al. (2014) and Cooper et al. (2015),
which extends Cooper’s Type Theory with Records
(TTR, Cooper, 2012a; Cooper and Ginzburg, 2015;
Cooper, in prep). This theory, Probabilistic Type
Theory with Records (ProbTTR) assigns probabil-
ity values, rather than Boolean truth-values, to type
judgements.

TTR has been used previously for natural lan-
guage semantics (see, for example, Cooper (2005)
and Cooper (2012a)), and to analyze semantic co-
ordination and learning (for example, Larsson and
Cooper (2009); Cooper and Larsson (2009)). It
has also been applied to the analysis of interac-
tion in dialogue (for example, Ginzburg (2012) and
Breitholtz (2020)), and in modelling robotic states
and spatial cognition (for example, Dobnik et al.
(2013)). We believe that a probabilistic version of
TTR could be useful in all these domains.

Two main considerations motivated recasting
TTR in probabilistic terms. First, a probabilistic
type theory offers a natural framework for captur-
ing the gradience of semantic judgements. This
allows it to serve as the basis for an account of
vagueness in interpretation, as shown by Fernández
and Larsson (2014). Second, such a theory lends
itself to developing a model of semantic learning
that can be straightforwardly integrated into more

general probabilistic explanations of learning and
inference. It is the latter goal that we pursue here.

In this paper we build on the account of prob-
abilistic inference and classification in ProbTTR
introduced by Larsson and Cooper (2021). There, a
ProbTTR version of a random variable, not present
in the work of Cooper et al. (2015), was introduced.
It was also shown how probabilistic classification
of perceptual evidence can be combined with prob-
abilistic reasoning. By proposing a Bayesian ac-
count of semantic learning formulated in terms of
probabilistic type theory, we connect probabilistic
semantic learning to the modeling of perceptual
meaning as classifiers.

In the following, we first provide a brief
overview of TTR and Probabilistic TTR. Section 3
reviews the account of semantic classification pre-
sented by Larsson and Cooper (2021). Section 4
details a frequentist account of semantic learning in
ProbTTR, and Section 5 provides an example of se-
mantic learning. Section 6 concludes and discusses
related and future work.

2 Background

This section reviews the background needed to fol-
low the rest of the paper: TTR, Probabilistic TTR
fundamentals, and Bayes nets and Naive Bayes
classifiers.

2.1 TTR: A brief introduction
We will be formulating our account in a Type The-
ory with Records (TTR). We can here only give
a brief and partial introduction to TTR; see also
Cooper (2005), Cooper (2012b) and Cooper (in
prep). To begin with, s : T is a judgment that some
s is of type T . One basic type in TTR is Ind, the
type of an individual; another basic type is Real,
the type of real numbers.

Next, we introduce records and record
types. If a1 : T1, a2 : T2(a1), . . . , an :
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Tn(a1, a2, . . . , an−1), where T (a1, . . . , an) rep-
resents a type T which depends on the objects
a1, . . . , an, the record to the left in Figure 1 is of
the record type to the right.

In Figure 1, `1, . . . `n are labels which can be
used elsewhere to refer to the values associated
with them. A sample record and record type is
shown in Figure 2.

Types constructed with predicates may be depen-
dent. This is represented by the fact that arguments
to the predicate may be represented by labels used
on the left of the ‘:’ elsewhere in the record type.
In Figure 2, the type of cman is dependent on ref (as
is crun).

If r is a record and ` is a label in r, we can use a
path r.` to refer to the value of ` in r. Similarly, if
T is a record type and ` is a label in T , T .` refers
to the type of ` in T . Records (and record types)
can be nested, so that the value of a label is itself
a record (or record type). As can be seen in Fig-
ure 2, types can be constructed from predicates,
e.g., “run” or “man”. Such types are called ptypes
and can intuitively be thought of as types of situa-
tions. Such types of situations can be construed as
propositions, following the “propositions as types”
principle.

2.2 Probabilistic TTR fundamentals
The core of ProbTTR is the notion of a probabilistic
judgement, where a situation s is judged to be of a
type T with some probability.

(1) p(s : T ) = r, where r ∈ [0,1]

Such a judgement expresses a subjective probabil-
ity in that it encodes an agent’s take on the likeli-
hood that a situation is of that type.

A probabilistic Austinian proposition is an ob-
ject (a record) that corresponds to, or encodes, a
probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (2).

(2)




sit : Sit
sit-type : Type
prob : [0,1]




A probabilistic Austinian proposition ϕ of this type
corresponds to the judgement that ϕ.sit is of type
ϕ.sit-type with probability ϕ.prob.

(3) p(ϕ.sit:ϕ.sit-type)= ϕ.prob

We assume that agents track observed situations
and their types, modelled as probabilistic Austinian
propositions.

We use p(T1||T2) to represent the probability
that any situation s is of type T1, given that s is
of type T2. Note that p(T1||T2), is different from
p(T1|T2), the probability of there being something
of type T1 given that there is something of type T2.
We can refer to the former as the bound variable
(or perhaps universal) conditional probability1, and
the latter as the existential conditional probability.

2.3 Bayesian nets and the Naive Bayes
classifier

A Bayesian Network is a Directed Acyclic Graph
(DAG). The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution for its ran-
dom variables. Bayesian Networks provide graphi-
cal models for probabilistic learning and inference
(Pearl (1990); Halpern (2003)).

A standard Naive Bayes model is a special
case of a Bayesian network. More precisely, it
is a Bayesian network with a single class vari-
able C that influences a set of evidence variables
E1, . . . , En (the evidence), which do not depend
on each other. Figure 3 illustrates the relation be-
tween evidence types and class types in a Naive
Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(4)

p(c) =
∑

e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and

(5) p(c | e1, . . . , en) =

p(c)p(e1 | c) . . . p(en | c)∑
C=c′ p(c

′)p(e1 | c′) . . . p(en | c′)

2.4 Random variables in TTR

Larsson and Cooper (2021) introduce a type theo-
retic counterpart of a random variable in Bayesian

1In Bayesian jargon, such conditional probabilities are
often referred to as likelihoods.
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


`1 = a1
`2 = a2
. . .
`n = an
. . .




:




`1 : T1
`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln−1)




Figure 1: Schema of record and record type




ref = obj123
cman = prfman
crun = prfrun


:




ref : Ind
cman : man(ref)
crun : run(ref)




Figure 2: Sample record and record type

C

E1 E2 ... En

Figure 3: Evidence and Class in a Naive Bayes classi-
fier

inference. To represent a single (discrete) ran-
dom variable with a range of possible (mutually
exclusive) values, ProbTTR uses a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An} such that the following conditions
hold.

(6) a. All value types for a variable type V are
subtypes of V , formally Aj v V for 1 ≤
j ≤ n

b. All value types for a given vari-
able type V are disjoint, formally
Aj ⊥ Ai for all i, j such that 1 ≤ i 6=
j ≤ n

c. The probability of a situation s being of
a variable type V is either 0 or 1, which
is also the sum of the probabilities of s
being of any of the variable value types ,
formally for any s, p(s : V ) ∈ {0, 1} and
p(s : V ) =

∑
T∈R(V ) p(s : T )

(6)(c) encodes a conceptual difference between
the probability that something has a property (such

as colour, p(s:Colour)), and the probability that it
has a certain value of a variable (e.g. p(s:Green)).
If the probability distribution over different values
(colours) sums to 1, then the probability that the
object in question has a colour is 1. The prob-
ability that an object has colour is either 0 or 1.
We assume that certain ontological/conceptual type
judgements of the form “physical objects have
colour” are categorical, and so have Boolean val-
ues.

2.5 Representing probability distributions
For a situation s, a probability distribution over the
m value types Aj ∈ R(A), 1 ≤ j ≤ m belonging
to a variable type A can be written (as above) as a
set of probabilistic Austinian propositions, e.g.

(7) {




sit = s
sit-type = Aj
prob = p(s : Aj)


 | Aj ∈ R(A)}

However, we will also have use for a vector rep-
resentation of probability distributions, which is
also more compact. If we assume R(A) is an or-
dered set {A1, . . . Am}, we can define probability
distribution dA(s):

(8) dA(s) = 〈p1, . . . , pm〉 where pj = p(s : Aj)
for Aj ∈ R(A), 1 ≤ i ≤ m

2.6 A ProbTTR Naive Bayes classifier
Corresponding to the evidence, class variables, and
their value types, we associate with a ProbTTR
Naive Bayes classifier κ:

(9) a. a collection of n evidence variable types
Eκ1 , . . . ,Eκn

b. n associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn)
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c. a class variable type Cκ, e.g. Fruit, and

d. an associated set of class value types
R(Cκ)

To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types.

Larsson and Cooper (2021) define a ProbTTR
Bayes classifier κ as a function from a situation s
(of the meet type of the evidence variable types
Eκ1 , . . . ,Eκn) to a set of probabilistic Austinian
propositions that define a probability distribution
over the values of the class variable type Cκ, given
probability distributions over the values of each
evidence variable type Eκ1 , . . . ,Eκn. Formally, a
ProbTTR NaiveBayes classifier is a function

(10) κ : Eκ1 ∧ . . . ∧ Eκn →

Set(




sit : Sit
sit-type : Type
prob : [0,1]


)

such that if2 s : Eκ1 ∧ . . . ∧ Eκn, then

(11) κ(s)={




sit = s
sit-type = C
prob = pκ(s : C)


 | C ∈ R(Cκ)}

2.7 The fruit recognition game
Larsson and Cooper (2021) illustrate semantic
classification using a Naive Bayes classifier in
ProbTTR using the fruit recognition game. Later
in this paper, we will build on this example to illus-
trate mentor-driven semantic learning.

In this game a teacher shows fruits to a learning
agent. The agent makes a guess, the teacher pro-
vides the correct answer, and the agent learns from
these observations.

We will use shorthands Apple and Pear for the
types corresponding to an object being an apple
or a pear, respectively3. Furthermore, we will as-
sume that the objects in the fruit recognition game
have one of two shapes (a-shape or p-shape, corre-
sponding to types Ashape and Pshape) and one of
two colours (green or red, corresponding to types
Green and Red).

2Recall that for any s, p(s : V ) ∈ {0, 1} for any variable
type V . Therefore, any type judgement regarding a variable
type, such as that involved in the classifier function, can be
regarded as categorical.

3For details, see Larsson and Cooper (2021).

The class variable type is Fruit, with value
types R(Fruit) = {Apple,Pear}. The evidence
variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}. Fig-
ure 4 shows the evidence and class types of the fruit
recognition game in a simple Bayesian Network.

Fruit

Shape Colour

Figure 4: Bayesian Network for the fruit recognition
game

For a situation s the classifier FruitC(s) returns
a probability distribution over the value types in
R(Fruit).

(12) FruitC(s) =

{




sit = s
sit-type = F
prob = pFruitC(s : F )


 | F ∈ R(Fruit)}

3 Semantic classification using
conditional probabilities

In this section, we follow Larsson and Cooper
(2021) in showing how semantic classification
(i.e., estimating a probability distribution over
class value types) works under the assumption
that we can compute conditional probabilities
p(Cj ||E1 . . . En) of a class value types Cj given
evidence value types E1 . . . En.

In general, for Cj ∈ R(Cκ), we have

(13) pκ(s : Cj) =

∑

E1∈R(Eκ1 )
...

En∈R(Eκn)

pκ(Cj ||E1 . . . En)p(s : E1) . . . p(s : En)

Correspondingly, in the fruit recognition game, for
each F ∈ R(Fruit) we have
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(14) pFruitC(s : F ) =

∑

L∈R(Col)
S∈R(Shape)

p(F ||L ∧ S)p(s : L)p(s : S)

Therefore, to determine the probability that a situa-
tion is of the apple type, we sum over the various
evidence type values for apple.

(15) pFruitC(s:Apple) =
p(Apple||Green ∧ Ashape)p(s:Green)p(s:Ashape) +

p(Apple||Green ∧ Pshape)p(s:Green)p(s:Pshape) +

p(Apple||Red ∧ Ashape)p(s:Red)p(s:Ashape) +

p(Apple||Red ∧ Pshape)p(s:Red)p(s:Pshape)

Conditional probabilities for the fruit classifier are
derived from previous judgements of the form
p(F ||C ∧ S). The example values in the matrix
in (16) illustrate a joint probability distribution for
the Bayesian Network in Figure 4.

(16)
Apple/Pear Ashape Pshape
Green 0.93/0.07 0.63/0.37
Red 0.56/0.44 0.13/0.87

For each square with Apple/Pear type values, the
conditional probabilities of the fruit being an apple
and of its being a pear sum to 1.

The non-conditional probabilities in (15) are de-
rived from the agents’ take on the particular situa-
tion being classified; let us call it s5.

(17)
T = Ashape Pshape Green Red
p(s5:T ) 0.90 0.10 0.80 0.20

This means we have e.g.

(18) dShape(s5) = 〈0.90, 0.10〉

Larsson and Cooper (2021) suggest regarding
these probabilities as resulting from probabilistic
classification of real-valued (non-symbolic) visual
input, where a classifier assigns to each image a
probability that the image shows a situation of the
respective type. Such a classifier can be imple-
mented in a number of different ways, e.g. as a
neural network, as long as it outputs a probability
distribution.

With these numbers in place, we can compute
the probability that the fruit shown in s5 is an apple:

(19) pFruitC(s5: Apple) =
0.93 ∗ 0.80 ∗ 0.90 + 0.63 ∗ 0.80 ∗ 0.10 +

0.56 ∗ 0.20 ∗ 0.90 + 0.13 ∗ 0.20 ∗ 0.10 =
0.67 + 0.05 + 0.10 + 0.00 =
0.82

4 Frequentist semantic learning

For the model of semantic classification that uses
conditional probabilities, a central question is of
course how to estimate conditional probabilities,
of the form p(C||E1 ∧ . . . ∧ En) (where C ∈
R(C), Ei ∈ R(Ei), 1 ≤ i ≤ n). Using Bayes
rule and marginalising over the class value types,
we get for a Naive Bayes classifier:

(20) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)

For all combinations of evidence value types
E1, . . . , En and class value types C, we need (a)
the conditional probability of the evidence value
types given the class value type, p(Ei||C), and (b)
the prior of the class value type, p(C ′).

4.1 Computing conditional probabilities

Following a frequentist4 methodology, conditional
probabilities can be estimated by counting previous
instances of C and Ei:

p(Ei|C) =
|Ei&C|
|C|

This relies on previous judgements being categori-
cal rather than probabilistic. However, it appears
reasonable to assume that agents sometimes make
non-categorical judgements, assigning a probabil-
ity other than 0 or 1 to a situation being of a certain
type, and we want to explore the idea of using

4Regarding the tension between Bayesian and frequentist
modelling, one might argue that no practically useful model
is purely Bayesian, since the moment that you introduce data,
you will extract frequencies from it. While theoretical models
may be purely bayesian, in all machine learning models there
is an element of frequentism. However, being too naively
frequentist yields models which generalise poorly. To take
an extreme example, a purely frequentist 5-gram model will
assign 0-probability to any 5-gram which does not occur at
all in the data, which is clearly wrong. Bayesian reasoning is
ultimately a mathematical recipe to construct models which
explicitly capture the dependencies between various random
variables (hidden or not). In the paper we show two ways
to improve the model, with varying levels of complexity and
robustness.
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such non-categorical past judgements as a basis for
future (probabilistic) judgements.

Cooper et al. (2015) sketch a solution with a fre-
quentist flavour (but also with some differences to
regular frequentist learning acccounts), based on
the idea that an agent makes judgements based on a
finite string of probabilistic Austinian propositions,
the judgement history J. When an agent A encoun-
ters a new situation s and wants to know if it is
of type T or not, A uses probabilistic reasoning to
determine p(s : T ) on the basis of A’s previous
judgements J.

So the history of judgements J does not contain
definite judgements, but rather probabilistic ones.
How are these probabilities to be understood? We
assume that each such probability corresponds to
the judging agent’s estimate of the probability that
a member of the linguistic community would judge
s to be of type T . That is, we assume that agents
make the (semantic) judgements that they estimate
that other agents would also make (on average).
This can be intuitively justified by the assumption
that agents they take language (including mean-
ings) to be public (shared in a community). Hence,
each probabilistic judgement in the history can be
considered to correspond to a large number N of
independent categorical judgements.

How do we motivate this? After all, language is
categorical in nature at least insofar as a speaker
makes or does not make an utterance U to de-
scribe some situation s, thus categorising s as (cat-
egorically) correctly described by U . However,
the categorical nature of language does not im-
ply that agents cannot entertain non-categorical
judgements, only that once they speak their judge-
ments, they become categorical5. When it comes
to computing the probabilities needed for prob-
abilistic classifiers, this means that round(p(s :
C)p(s : Ei)N) of them are considered to be of
type (C ∧ Ei). (The motivation for rounding to
integers using the round function is that if we talk
about discrete events, there must be an integer num-
ber of them.) On this basis, we can compute likeli-
hoods and probabilities as a ratio of the frequencies
of occurrences, summed over all judgements in the
history:

5We are here ignoring for the moment some complications,
including that hearers may assign probabilities to speakers
having made an utterance U based on perceptual, semantic
and pragmatic confidences. We hope to return to these points
in future work.

(21)

p(Ei||C) =

lim
N→∞

∑
j∈J,j.sit=s round(p(s : C)p(s : Ei)N)∑

j∈J,j.sit=s round(p(s : C)N)
=

∑
j∈J,j.sit=s p(s : C)p(s : Ei)∑

j∈J,j.sit=s p(s : C)

Formula (21) tells us that we can consider prob-
abilities in the history of judgments as fractions of
events; and this is justified by interpreting them as
fractions of language-community speakers making
the corresponding categorical judgement. In this
sense, we are providing a frequentist interpretation
of epistemic probability6

One might ask regarding (21), is it possible to
multiply the probabilities associated with variables
that may be dependent, without taking into account
their conditional probabilities? Yes, in this case,
it is. We are multiplying probabilistic judgements
that have already been made rather than hypotheti-
cal judgements7.

For the purposes of this paper, we will assume
that the probabilities needed are indeed encoded
directly in J, but of course in general this might

6Assuming we have N situations in total, some integer
number will be classified as each category. We can then sum
these integer numbers. We can get a probability by taking the
limit of the ratio with N tending to infinity.

7This can perhaps be better understood by analogy to
counting in standard probability theory. Suppose that we
have a corpus of English sentences where all nouns are an-
notated for part of speech, and for whether the noun has a
subject/object role (or neither). We estimate the conditional
probability that a noun is a subject by counting the number of
nouns that are also subjects, and divide this sum by the total
number of nouns.

p(Subject|Noun) =
|Subject&Noun|
|Noun|

Categorical judgements can be regarded as probabilistic
judgments with probability 1.0, so that judging a word w to
be noun is to judge the probability of w being a nount to be
1.0. Assuming a word w has ben judged as being a subject
and a noun, we can describe this probabilistically as p(w is
Subject)=1.0, p(w is Noun)=1.0, and we conclude that p(w
is Subject&Noun)=p(w is Subject)p(w is Noun)=1.0*1.0=1.0
without involving p(Subject|Noun), the conditional probability
of something being a subject given that it is a noun (which is
in fact what we are trying to compute). In doing so, we are not
taking the probability that a word is a subject to be independent
of its being a noun. In fact, we are assuming the opposite. We
are trying to compute the conditional probability of a word
being a subject given that it is a noun. But when counting a
word w as being both a subject and a noun, we do not invoke
this conditional probability as part of the enumeration. To
do so it would be both circular and unnecessary, as we have
already judged w to be a subject, and to be a noun.
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not be the case. Cooper et al. (2015) explains how
probabilities of complex types (such as meet types,
join types, function types and record types) can be
computed from simpler types.

4.2 Computing priors

In addition to conditional probabilities, (20) re-
quires the prior probabilities of the class value
types C ∈ R(C). We use pJ(T ) to denote the
prior probability that an arbitrary situation is of
type T given J. However, it is important to note
that the prior probability for a value type A is
not the same as the probability p(A) that there
is something of type A. Rather, it is the proba-
bility that some arbitrary situation s (of which we
have no other relevant information) is of type A.
To see this, imagine that p(s1 : A) = 0.8 and
p(s2 : A) = 0.2, and that there are no judgements
concerning other situations in J. In this case, p(A),
the probability that there is something of type A8,
is 0.8 + 0.2 − (0.8 ∗ 0.2) = 0.84. However, the
prior probability that an arbitrary situation is of
type A, pJ(A), is (0.8 + 0.2)/2 = 0.5.

Following this, we define the prior probability
of an arbitrary situation being of a type T , pJ(T ),
thus:

(22)

pJ(T ) =

∑
j∈JT j.prob

P(J)
if P(J) > 0, otherwise 0

where JT is the set of all judgements concerning
T :

(23)
JT = {j | j ∈ J, j.sit-type = T}

and P(J) is the cardinality of situations in J, i.e.
the total number of situations in J9:

(24) P(J) = |{s|∃j ∈ J, j.sit = s}|

Accordingly, we replace (20) with (25), where
p(C) is replaced with pJ(C):

(25) p̂κ(C||E1 ∧ . . . ∧ En) =

pJ(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) pJ(C

′)p(E1||C ′) . . . p(En||C ′)

8See Cooper et al. (2015) for details.
9This replaces an earlier definition in Cooper et al. (2015).

5 Example: frequentist semantic
learning in the fruit recognition game

The conditional probabilities in (16) are generated
from J by a learning component. Let’s assume that
J is as in Figure 5, based on previous rounds of the
game.

The recorded judgements concerning the types
Apple and Pear are here assumed to be derived not
only from the agent’s own perception of the fruits
in question, but also (and perhaps primarily) from
a tutor’s explicit judgements, possibly in combina-
tion with an estimation of the likelihood that the
teacher is competent at judging apples and pears
under whatever conditions (light etc.) held at the
time of judgement.

In our example, p(F ||L ∧ S) comes from previ-
ous experience as encoded in J. We estimate this
probability with Bayes’ rule, as in (26).

(26) p(F ||L ∧ S) =

pJ(F )p(L||F )p(S||F )∑
F ′∈R(Fruit) pJ(F

′)p(L||F ′)p(S||F ′)

To compute this we need the following for all
F ∈ {Apple,Pear}:

(27) a. for all L ∈ {Green,Red}, p(L||F )

b. for all S ∈ {Ashape,Pshape}, p(S||F )

c. pJ(F )

We use (21) to compute conditional probabilities,
so that for example

(28) p(Green||Apple) =
∑

j∈J,j.sit=s p(s : Apple)p(s : Green)∑
j∈J,j.sit=s p(s : Apple)

=

0.9 ∗ 1.0 + 0.7 ∗ 0.5 + 1.0 ∗ 0.9 + 0.0 ∗ 0.1
1.0 + 0.5 + 0.9 + 0.1

= 0.86

We also use (22) to compute priors, so that for
example

(29)

pJ(Apple) =

∑
j∈J,j.sit=s p(s : Apple)

P(J)
=

1.0 + 0.5 + 0.9 + 0.1

4
=

2.50

4
= 0.63
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j.p j.sit-type∈ R(Fruit) j.sit-type∈ R(Col) j.sit-type∈ R(Shape)
j.sit Apple Pear Green Red Ashape Pshape
s1 1.0 0.0 0.9 0.1 0.7 0.3
s2 0.5 0.5 0.7 0.3 0.6 0.4
s3 0.9 0.1 1.0 0.0 1.0 0.0
s4 0.1 0.9 0.0 1.0 0.0 1.0

Figure 5: Conditional probabilities in the fruit recognition game

Based on this, we compute the conditional prob-
abilities shown in (16) and used in classification in
Section 2.7, for example

(30) p(Apple||Green ∧ Ashape) =

pJ(Apple)p(Green||Apple)p(Ashape||Apple)∑
F∈{Apple,Pear} pJ(F )p(Green||F )p(Ashape||F ) =

0.41
0.41+0.03 = 0.93

Based on the judgement above in (19), our agent
may venture the guess that the fruit in question
in s5 is an apple, to which the tutor may respond
“Very good!”. This in turn could trigger extending
J to include probabilistic judgements concerning
the classification of s5 as being of types Apple,
Pear, Green, Red, Ashape and Pshape, to be used
in future rounds of the game.

6 Conclusion

Cooper et al. (2014) and Cooper et al. (2015), and
more recently Larsson and Cooper (2021), pre-
sented a probabilistic formulation of a rich type
theory with records, and used it as the foundation
for a compositional semantics in which a proba-
bilistic judgement that a situation is of a certain
type plays a central role. The basic types and type
judgements at the foundation of the type system
correspond to perceptual judgements concerning
objects and events in the world, rather than to en-
tities in a model, and set theoretic constructions
defined on them. This approach grounds meaning
in observational judgements concerning the likeli-
hood of situations holding in the world. We have
proposed a Bayesian account of semantic learning
formulated in terms of ProbTTR, thereby connect-
ing probabilistic semantic learning to other phe-
nomena studied in TTR and ProbTTR, including
the modeling of perceptual meaning as classifiers
(Larsson, 2013; Larsson and Cooper, 2021).

Our treatment of learning relies on the idea that
an agent keeps a record of their previous judge-
ments concerning the likelihood of a classification

and sums the probabilities of these judgements.
The agent computes conditional probabilities and
priors for current judgements on the basis of this
record. We have illustrated this view of learning
with the fruit recognition game. This simplified
example provides a sketch of how an agent can
acquire a set of predicates through mentor vetted
(supervised) classifier learning.

With respect to semantic learning, this paper
follows in the general footsteps of van Eijck and
Lappin (2012), who propose a probabilistic theory
of language semantics which includes a sketch of
semantic learning. It appears that our model is an
instance of the strategies outlined by van Eijck and
Lappin. Where they only sketch a strategy, we have
shown in detail how learning from examples can
be modelled.

As part of the Rational Speech Act Theory,
Goodman and Lassiter (2015); Lassiter and Good-
man (2017) provide an account of semantic update
of an agent’s view of the world, which can possibly
be regarded as a form of semantic learning. Even
though they apply it to a single event, their account
can be generalised to several events in a natural
way. Indeed, Bernardy et al. (2018, 2019) have
implemented such a generalisation. What sets the
present work apart, in addition to being formulated
in ProbTTR, is that each individual event is not cat-
egorical, but itself probabilistic. We have achieved
this by incorporating elements of frequentist think-
ing in an otherwise Bayesian account. Conversely,
the approaches previously mentioned manage to re-
main in a purely Bayesian framework, but they do
not generalise to probabilistic events in a straight-
forward manner.

Future work includes exploring and adapting
other learning methods to ProbTTR, including a
linear transformation model and related neural net-
work and deep learning models, and continuing to
apply ProbTTR to a variety of problems in natural
language semantics.
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