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Abstract
In order to mediate the debate on whether
common nouns are better interpreted as types
or as predicates in type-theoretical seman-
tic frameworks, the present paper shows that
type theories whose models in category the-
ory are toposes have access to a property draw-
ing a one-to-one correspondence between first-
order predicates and base types, thus enabling
more flexibility for common noun interpreta-
tion. Using this flexibility and linguistic argu-
ments based on negative predications, a subse-
quent proposal is made to interpret nouns as
predicates with refined argument types.

1 Introduction

Any formal semantic framework can be charac-
terised by its underlying type theory. One of
the smallest possible theories for this purpose is
Church’s simple theory of types, built on two base
types e and t for entities and truth values and an
arrow constructor to create function types, which is
characteristic of the grammar of Montague (1973).
Yet the integration of lexical semantics into for-
mal frameworks, motivated by the recognition of
complex phenomena such as polysemy, selection
restrictions and transfers of meaning (see e.g. Nun-
berg, 1979, 1995; Cruse, 1986), resulted in the
use of richer type theories whose typical organisa-
tion consists in a subdivision of the type e into a
hierarchy of subtypes, ordered by a subtyping re-
lation, which intuitively enables the categorisation
of entities according to some of their properties. In
practice however, no consensus has been reached
on what types should inhabit such a hierarchy. As
listed by Retoré (2014), the collections proposed
over the years vary from a set of around ten base
types to a large system of one type for each com-
mon noun in the language.

This last position, initially introduced by Ranta
(1994), have been more recently updated and de-

fended in the works of Luo and Chatzikyriakidis
(Luo, 2012a; Chatzikyriakidis and Luo, 2017), who
argue that this so-called CNs-as-types approach pro-
vides a straightforward and efficient interpretation
of common nouns (CNs). Under this view, the pred-
ication of a noun, e.g. man, on some entity x is rep-
resented as the typing judgement x : man. It is thus
opposed to the more traditional and dominant CNs-
as-predicates approach, which is directly inherited
from Montague grammars and consists in interpret-
ing man as a predicate man : e→ t, in such a way
that the same predication as above is interpreted as
the logical formula man(x). Those alternative pos-
sibilities are actually parts of a larger conceptual
shift from classical predicate calculus to systems
based on Modern Type Theories (MTTs), among
which appear Martin-Löf’s type theory (Martin-
Löf, 1984) and Luo’s unified theory of dependent
types (UTT) (Luo, 1994; Luo et al., 2013)1.

Representing CNs as types rather than predicates
follows the idea of distinguishing between nouns
on the one side, and adjectives and verbs on the
other. Types are thus interpreted as collections of
entities, which then represents ranges of signifi-
ance for propositional functions in a Russellian
sense (see sect. 2.12 of Ranta, 1994). But what if
such types could be defined as ranges of other func-
tions? As suggested by Retoré (2014), some theo-
ries may indeed allow a dual interpretation, that is,
a correspondence between types jugdements such
as x : man and truth on some predicate man(x).
If Retoré is right, it could give access to a large
amount of intermediate positions between CNs-as-
types and CNs-as-predicates. This opens the debate
on which way of interpreting CNs is the best-suited
for natural language semantics, if any one is. An-
swering this question will have consequences on

1The various features that distinguish MTTs from Mon-
tague semantics will not be discussed here, see (Ranta, 1994)
and (Luo, 2012a) for details.
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the composition of the type hierarchy, as it varies in
size and expressiveness depending on the choosen
interpretation for CNs.

The present paper aims at mediating the debate
between types and predicates by showing that, un-
der the right settings, Retoré’s suggestion—call it
CNs-as-both—is an unavoidable property of some
type theories, including UTT in its extension with
coercive subtyping (Luo et al., 2013). As a result,
the way of interpreting CNs and the type hierarchy
are not constrained by the type theory itself, but
would be a matter of lexicon design. We start de-
fending this idea in Sect. 2 by highlighting the fact
that the CNs-as-predicate approach stays relevant
even in presence of subtyping, therefore nuancing
Luo’s position in (Luo, 2012b; Chatzikyriakidis
and Luo, 2017). Then, in Sect. 3 we discuss the
properties of UTT in light of its model in category
theory, and establish that it has access to the CNs-
as-both property. Finally, linguistic arguments to
support an intermediate position between CNs-as-
types and CNs-as-predicates, through the analysis
of negation in sentences, is provided in Sect. 4.

2 Accomodating Predicates with
Subtyping

In order to show that intermediate positions be-
tween types and predicates for CN interpretation
are suitable, it is first necessary to examine the
suitability of the CNs-as-predicate approach in the
kind of type theories we are interested in. Recall
that the type theories considered here are assumed
to use a type hierarchy ordered by a subtyping re-
lation. We will further assume the existence of a
type constructor • to account for inherent polysemy
(Pustejovsky, 1995), such that if a and b are base
types, then the dot type a • b is considered a sub-
type of both a and b2. Hence, a predicate-based
approach must be usable in presence of subtyping
and dot types.

Yet its bad interaction with subtyping is one
of the main criticisms addressed against the CNs-
as-predicates approach, as demonstrated by Luo
(2012b): consider the two types phys and info and
the two words book and heavy, whose semantic
interpretations would be a predicate JbookK =
book : phys • info → t and a second-order predi-
cate JheavyK : (phys → t) → (phys → t). Then,
the application of heavy on book shall raise on the

2Note that this type constructor is definable in UTT with
coercive subtyping as explained in (Luo, 2010).

semantic side the condition that phys must be a
subtype of phys • info, which is the converse of
the natural subtyping relation. Thus a simple ap-
plication of an adjective to a CN in such a setting
seems to be a rather complex task indeed. Luo
concludes therefore that Montagovian grammars
with their traditional CNs-as-predicates approach
are unusable to deal with subtyping.

If the conclusion is right for Montagovian gram-
mars, it has however to be nuanced when consid-
ering other frameworks of Montagovian inspira-
tion, such as the Type Composition Logic (TCL) of
Asher (2011) or the Montagovian Generative Lexi-
con (MGL) proposed by Retoré and his colleagues
(Bassac et al., 2010; Retoré, 2014), as they often
include additional strategies to overcome this sub-
typing problem in compositionality. In particular,
we shall state that the demonstration above relies
upon two hidden assumptions: (i) that direct appli-
cation with subtyping is the only available opera-
tion for term composition, and (ii) that adjectives
are necessarily interpreted as second-order predi-
cates. The next paragraphs illustrate how new com-
positional strategies challenge these assumptions
and enable the construction of subtyping-compliant
frameworks.

Let us start with the functorial strategy proposed
by Asher (2011) for TCL in cases where a dot type
is involved, for instance when applying heavy to
book as above. The intended meaning of the dot
type phys• info is to represent two different aspects
of book: one where the book is seen as a physical
instance with a cover and pages, and another one
involving only its informational contents. When
combining book with heavy, we intend the latter
to select only the physical aspect of the former,
which licenses in a semantic framework a transfor-
mation of either JbookK or JheavyK—depending
on the presuppositions to account for. TCL in-
tegrates these transformations as functors F and
G which override subtyping constraints at appli-
cation time by sending JheavyK to F (JheavyK) :
(phys • info → t) → (phys • info → t) and book
to G(book) : phys→ t respectively, thus enabling
a more flexible account of term composition which
still respects subtyping since the functors are re-
stricted for use with dot types only3.

3Actually, dot types are treated differently than subtyping
in Asher’s framework because the projections from the dot
type to its aspects are not necessarily assimilable to subtyping
relations from a theoretical point of view, see chap. 5 of (Asher,
2011) for discussion.
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The implementation of such a strategy clearly
rules out assumption (i), as it provides an alterna-
tive way of dealing with compositionality in partic-
ular cases. Another kind of compositional strategy,
to be found e.g. in MGL, uses type polymorphism
to get similar flexibility. We shall go further on this
path by examining how polymorphism enables us
to dismiss assumption (ii) as well. This assumption
arises from the Montagovian tradition of seeing
adjectives as noun modifiers, whence the second-
order predicate interpretation given above. The
semantic interpretation of heavy, for instance, is
then obtained by a term of the following shape:

JheavyK = λP x.heavy(x) ∧ P (x) (1)

It involves a predicate heavy : phys → t, which
has the same type structure than the noun argu-
ment, and is embedded in a higher-order term with
a logical conjunction to get the noun-modifier be-
haviour. Compared to other syntactical categories
such as nouns or verbs, this interpretation of ad-
jectives is singularly complex, not forgetting the
difficulties it raises when interacting with subtyp-
ing. The semantic separation between nouns and
adjectives is motivated by linguistic evidence that
only nouns seem to bring support for quantifica-
tion and counting, and the CNs-as-types approach
as introduced by Ranta (1994) follows this idea.
However, many grammarians and linguists have
also pointed out the similitudes between these syn-
tactical categories, thus supporting the possibility
of treating nouns (or more accurately substantives)
and adjectives as a continuum, where they would
ultimately be distinguished by their predispositions
with regard to linguistic functions and meaning
specialisation (Jespersen, 1924; Guillaume, 1973;
Gardelle, 2007).

If this continuum view is correct, it challenges
the modern perception of adjectives as noun mod-
ifiers, not directly at the syntactic level where it
stays relevant, but at the semantic one. Under the
CNs-as-predicate approach, nouns are predicated
of entities, and so could be adjectives. As a conse-
quence, we could imagine a framework where the
semantic interpretations of nouns and adjectives are
of the same type shape. In the case of heavy, this
means moving from the interpretation given in (1)
above to its predicate component heavy : phys→ t
as the new term for JheavyK. Composition would
then be performed thanks to another polymorphic
term, for instance in MGL or in the framework pro-
posed by Babonnaud and de Groote (2020), which

extends Montagovian grammars with records for
modeling dot types, bounded polymorphism for
composition, and a coercion-inference algorithm to
account for subtyping. Assuming the integration of
the latter framework in a syntax-semantic interface,
the application of heavy to book would require to
treat the deep syntactic relation between the ad-
jective and the noun as the bounded polymorphic
operator given in (2):

Λα.λP Qx.P (x) ∧Q(x) :

∀α < e.(α→ t)→ (α→ t)→ (α→ t) (2)

The application of this operator to both JheavyK
and JbookK would trigger the inference algorithm,
which would obtain a solution to the type con-
straints by unifying α with phys • info and intro-
ducing the coercion c : phys • info < phys to acco-
modate the variable to the predicate heavy. Thus,
the resulting term would be λx.heavy(c(x)) ∧
book(x) : phys • info→ t.4 Here again, the frame-
work seems to be able to deal with subtyping while
applying the CNs-as-predicates approach.

It should be noticed from the discussion in the
two previous paragraphs that dismissing the as-
sumption (ii) necessarily entails dismissing (i) as
well, because traditional Montagovian grammars
cannot support directly the combination of adjec-
tives and nouns if they have the same type shape.
Yet, the examples discussed above show that the
addition of properties and features in frameworks
of Montagovian inspiration enables them to accom-
modate the use of subtyping relation and dot types
with the use of predicates. As a matter of fact,
there is enough theoretical support to cope with
the difficulties between subtyping and the CNs-
as-predicates approach, which means that those
difficulties cannot be an argument to definitively
rule out the predicate view.

3 Theoretical Support to the Duality of
Types and Predicates

3.1 On the Necessity of CNs-as-both
We now turn to the central question of this paper:
is there any theoretical reason to choose one way

4It may be surprising in this approach that the resulting
type is phys • info→ t and not phys→ t, since the former is
not a subtype of the latter. This is not a problem for composi-
tion if we assume that other higher-order predicates also work
with bounded polymorphic operators, as done by Babonnaud
and de Groote (2020). Moreover, we may see such a type
as coherent with the idea that heavy book still provides the
possibility of copredication constructions.
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of interpreting CNs rather than the other? Both
CNs-as-types and CNs-as-predicates approaches
have practical drawbacks—difficulties for model-
ing negation for the former, complex interaction
with subtyping for the latter—and none of them
is characteristic of a particular type theory: the
Dependent Type Semantics of Bekki (2014) is an
example of framework based on a MTT but inter-
preting CNs as predicates, and conversely it is not
hard to conceive a Montagovian-style framework
using types for CNs. The possibilities offered by
the CNs-as-both property may enable the reconcil-
iation of these views under a unified setting. In
this section, we shall highlight that there actually
are theoretical considerations supporting such a
property in many frameworks.

Recall that having the CNs-as-both property
means that for any entity x, we have for instance
the typing judgement x : man if and only if man(x)
is true. Yet Chatzikyriakidis and Luo (2017) point
out that such a definition in some settings (includ-
ing simple type theory) may threaten the decid-
ability of type checking. The reason lies in the
“if” part of the equivalence: if one assert that the
composition man(x) is well-typed, it results in
x : e, and proving x : man requires to prove
the truth of the predications; but the truth of log-
ical formulae is generally undecidable. However,
Chatzikyriakidis and Luo exploit themselves the
decidable direction of this duality—from types to
predicates—for modeling negation: they introduce
what they call a predicational form of typing judge-
ment, that is, for any type, say man, a correspond-
ing predicate pman : man→ t such that if x : man
then pman(x) = true, where true is a tauto-
logical proposition5. In this case, the problem of
type checking is avoided by the definition, since
the well-typedness of pman(x) necessarily entails
x : man.

The very fact that such a predicational form is
needed even in a framework following the CNs-as-
types approach is indicative of the practical inter-
est that the CNs-as-both property could have. Yet
we do not want to just define for each type a cor-
responding predicate which is true if and only if
its argument is of the right type because it could
threaten the decidability of some parts of a seman-
tic analysis. Moreover, if we want such a property

5For clarity and other reasons which will become clearer
later in this section, we amalgamate the classical type of truth
values and the intuitionistic type of propositions under the
same notation t.

to be usable in a MTT-based framework, it would
be better to provide a constructivist account of this
duality. To establish such a result, we propose here
to take a step forward in the path of type theory
abstraction by studying which model UTT with
coercive subtyping can receive in category theory.

3.2 A Categorical Perspective on UTT

To the best of the author’s knowledge, computa-
tional linguistics have only made a sparse use of
category theory and its results compared to other
domains of computer science6. Through discussing
the acceptability of the CNs-as-both property, we
shall also illustrate how the categorical interpreta-
tion of type theories may help to design a frame-
work suitable for natural language semantics. How-
ever, as the present paper cannot bring a full ac-
count of the definitions and properties useful to
build a categorical model of UTT, we will stick to
the fundamentals of category theory, and the curi-
ous reader is invited to consult other sources such
as (Goldblatt, 1979; MacLane and Moerdijk, 1992;
Johnstone, 2002) for more definitions and results.

A category is a collection of objects and, for
each pair A,B of objects, a set of morphisms from
A to B, obeying two additional laws. The conve-
nient notation f : A → B is used to express the
fact that f is a morphism from A to B; A and B
are then respectively called domain and codomain
of f . The additional laws are the following: first,
there is an operation of composition on morphisms
which sends f : A → B and g : B → C to
the morphism g ◦ f : A → C and is associative;
and second, there is for any object A a morphism
idA : A→ A, called identity ofA, which is neutral
for right and left compositions. Two other categori-
cal notions will be used in the rest of this paper: in
any category, a terminal object is an object 1 such
that for any object A there is a unique morphism
1A : A → 1, and a monomorphism is a monor-
phism f : A→ B such that for any object X and
pair of morphisms g, h : X → A, the equality
f ◦ g = f ◦ h implies g = h. We will use the nota-
tion f : A B to indicate that f is a monomor-
phism from A to B. For illustration, a well-known
example of category is Set, whose objects are all
the possible sets and whose morphisms are func-
tions between them, with the common definitions
of composition and identity function. Furthermore

6Notable exceptions include (La Palme Reyes et al., 1994;
Coecke et al., 2010; Asher, 2011).
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the terminal objects of Set are the singletons, and
its monomorphisms are exactly the injective func-
tions7.

A type theory may be interpreted as a category
whose objects are types and morphisms are map-
pings between the corresponding types, enriched
with additional properties as counterparts to each
constructor or feature of the type system. Thus,
a type a will correspond to an object A, a term
of type a → b will be represented as a morphism
A→ B and, as a special case, an entity x : a will
correspond to a morphism 1 → A, assuming that
a terminal object exists in the category8. Notable
correspondences hold between cartesian closed cat-
egories and typed λ-calculus (Lambek, 1980), and
between locally cartesian closed categories and
Martin-Löf type theories (Seely, 1984)9. As for
Luo’s UTT with coercive subtyping, it can be cap-
tured by another kind of category called topos. In-
deed, as explained by Luo (1994), the underlying
logic of UTT is a higher-order one, and Lambek
and Scott (1986) showed that the categories gen-
erated by such type theories are precisely toposes.
Toposes already emerged in Asher’s (2011) categor-
ical model for TCL as suitable (and even necessary)
for interpreting dot types, and Babonnaud (2019)
further argues that toposes could be the best cate-
gorical models to interpret on a unified basis a large
variety of semantic frameworks with subtyping.

The definition of a topos includes several key
properties that will not be exhaustively listed here10.
For our purposes, it is enough to know that the rel-
evance of toposes for semantic models comes from
the existence in these categories of a particular ob-
ject Ω called subobject classifier, which can be
interpreted as the categorical counterpart for the
type t of truth values or propositions—depending
on the underlying logic of the chosen type system.
The subobject classifier is characterised by a spe-

7Note that not all categories may have terminal objects and
monomorphisms. Moreover, this example shows that terminal
objects are defined up to isomophism, so that the notation 1
and reference to the terminal object of a category are valid by
misuse of language.

8The type-theoretical counterpart of the terminal object 1
is generally the unit type.

9The reader may consult (Bell, 2012) among others for
history and details on categories and their equivalence with
type theories.

10While not directly linked to the present discussion, it may
be worth noticing at least that toposes have all the properties
of the kinds of categories mentioned above, that is, cartesian
closed and locally cartesian closed categories. As a conse-
quence, a topos is also acceptable as a model for simple type
and Martin-Löf’s theories.

cific morphism > : 1 → Ω which represent the
value true (or the tautological proposition true),
and a universal property which binds it to the ex-
istence of monomorphisms which, as argued by
Babonnaud (2019), can interpret subtyping rela-
tions. This property is formally embodied into the
following Ω-axiom (Goldblatt, 1979):

Ω-axiom. For every monomorphism f : B A
there is a unique morphism χf : A→ Ω such that:

(i) χf ◦ f = > ◦ 1B; and

(ii) for any object C and morphism g : C → A
such that χf ◦ g = > ◦ 1C , there is a unique
morphism h : C → B such that f ◦ h = g.11

This axiom, conjointly with the property of
toposes to have all finite limits (see Goldblatt, 1979;
MacLane and Moerdijk, 1992; Johnstone, 2002),
have an important consequence once transposed in
a semantic type system. Assume a topos T with
a distinguished object E corresponding to e. A
first-order predicate such as man : e → t is in-
terpreted as a morphism man : E → Ω. The
properties of T ensure that there exists an object M
along with a monomorphism c : M E12 such
that man ◦ c = > ◦ 1M, that is, there exists a
type man in the system such that x : man entails
man(c(x)) = true. Conversely, one can also
prove that if y : e is such that man(y) = true,
then there is an x : man such that y = c(x)13.
As a result, the Ω-axiom is a theoretical support
in toposes for the duality between predicates and
types, and as the categorical model generated by
UTT is a topos, we conclude that this axiom and
its consequences are also part of UTT.

3.3 Translation of Topos Properties into UTT
To know that the Ω-axiom exists in UTT is one
thing, but understanding how this axiom manifests
itself is another one which shall be clarified here.
But before exploring in more details its practical
consequences in the theory, let us give a few words
about the predicational form of typing judgement
proposed by Chatzikyriakidis and Luo (2017). It is

11This also entails 1B ◦ h = 1C , but it is already true
by definition of the terminal object. Category theorists shall
recognise in this property the defintion of B as the pullback
of χf and >.

12The object M is then said to be a subobject of E, whence
the name of subobject classifier given to Ω.

13It is so because variables of type e are interpreted as mor-
phisms 1→ E. The result then comes from direct application
of property (ii) of the Ω-axiom
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not hard to see that the corresponding morphism of
pa in the topos model T of UTT is>◦1A : A→ Ω:
not only this morphism has the expected domain
and codomain, but if we take a morphism x : 1→
A corresponding to an entity of type a, we can also
prove that > ◦ 1A ◦ x = >, which is the desired
property14. Then we notice that this morphism
>◦1A is exactly the kind of morphism that appears
in the right-hand side of the equalities in the Ω-
axiom. As a consequence, an interpretation of the
axiom is the following: if we are given a subtyping
coercion c : a ≤ b, then we can find a predicate
χc : b→ t such that χc ◦ c = pa.

But what kind of predicate would be χc? Can
we define it in a constructivist way? Given that
UTT, as shown by Luo (1994), allows for building
higher-order propositions, we can answer by the
affirmative. Assume a constant c : a → b corre-
sponding to the coercive subtyping a ≤ b. Then,
pose the following:

χc := λy : b.∃x : a. (c(x) = y) : b→ t (3)

The existentially quantified part of this term is a
definable proposition in UTT. Thus χc is defined
as the “characteristic” of a in b, such that χc is true
on y if and only if y is in the image of the coercion
function c. This shows how the conversion from
type to predicate works in such type theories. As
for the reverse direction of the type-predicate dual-
ity, if we are given any predicate P : b → t, then
following Seely (1984) the corresponding type may
be defined as:

a := Σx : b. (P (x) = true) (4)

where Σ denotes a dependent sum15. In other
words, a as defined in (4) is the type of pairs (x, p)
where x : b and p is a proof that P (x) is true. As
declared by Luo (2010), the first projection π1 of
such a sum is indeed a subtyping coercion, that is,
π1 : a ≤ b as required.

The formulations in (3) and (4) are sound in the
sense that if c : a ≤ b is a coercion then we have
a proof of x : a if and only if we have a proof of

14The complete proof runs as follows: by associativity of
the composition, (> ◦ 1A) ◦ x = > ◦ (1A ◦ x), and 1A ◦ x
is a morphism 1 → 1. Yet, by definition of 1, there can be
only one morphism 1→ 1, which is its identity id1. Hence,
> ◦ (1A ◦ x) = > ◦ id1 = > because the identity is neutral
for composition.

15As mentioned in footnote 11, this works because by Ω-
axiom the object A corresponding to a is the pullback of
P : B → Ω and >.

x : Σy : b.(χc(y) = true), and if P : b → t is
a predicate and π : (Σx : b.P (x) = true) → b
is the corresponding subtype coercion, we have a
proof of P (x) = true if and only if we have a
proof of χπ(x) = true. Hence there is a way
to move from types to predicates: for instance, if
x : man and c : man ≤ e, it suffices to define
man = λx.∃y.(c(y) = x) : e → t to have a
corresponding predicate with man(x) = true.

We should however point out that the categor-
ical model presented in this paper, as well as the
properties described, do not suffice to ensure that
the corresponding type theory has key properties
such as normalisation and decidability, nor that its
implementation would be easier16. Moreover, as
Chatzikyriakidis and Luo (2017) warned, we still
have a threat to type-checking decidability when
trying to move from predicates to types since prov-
ing P (x) = true in a MTT may be as hard as
proving the truth of P (x) in classical predicate cal-
culus. To overcome this difficulty, a solution could
be to adapt the type system so that the types of
predicate arguments are themselves subtypes of e
in order to make type checking more precise, as
shall be discussed in the next section.

4 A Linguistic Perspective on Base Types

4.1 Type Theory and the Lexicon

Let us start with the following observation: if a is
the type interpretation of some CN, then any b such
that a ≤ b ≤ e defines a possible predicational in-
terpretation of this CN, the extreme cases being
respectively Chatzikyriakidis and Luo’s predica-
tional form pa : a → t, and regular Montagovian
predicates e → t. A topos type theory therefore
provides a full range of predicate interpretations for
CNs which only depends on the types we accept
in the hierarchy between their direct type interpre-
tations and the greatest base type e. Besides, we
shall notice that the Ω-axiom applies to any pred-
icate, which may include for instance adjectives
and intransitive verbs: we may then obtain some
unexpected types such as the type heavy of heavy
entities. Hence we may end up with an unreason-
able amount of types and a large variety of possible
interpretations for predicates—on top of the type
checking difficulty.

16As an anonymous rewiever rightly highlighted, the cat-
egorical interpretation of dependent types of Seely (1984)
suffered from coherence issues that may be treated by a care-
ful work on models, has discussed e.g. in (Curien et al., 2014).
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We claim that the key solution for this issue is a
proper definition of the lexicon, whose idea follows
the lines of Pustejovsky and Batiukova (2019): a
mapping between linguistic lemmas and their se-
mantic representation, along with all relevant data
for compositionality. It manifested earlier in this
paper as the bracket application J.K sending a word
to its typed interpretation. Facing the profusion of
possible interpretations of a word in our type the-
ory, a carefully-designed lexicon behaves as a filter
which selects one (sometimes two) interpretation
to be used. Thus we are not committed to use all
the theoretically possible types and predicates, but
only a proper subset thereof—without ruling out
the properties of the type system. In other words,
the lexicon may provide the basis to define a decid-
able fragment of a type theory by restriction to the
terms using the constants it carries, without need
to apply the type-predicate duality anymore within
that fragment.

This puts a new highlight on the question of what
types inhabit the hierarchy: the problem does not
lie in the type theory proper, but rather at the inter-
face between language and semantic representation,
that is, in the lexicon. The main concern of lexi-
con design is therefore to choose types and predi-
cates that are relevant for distinguishing between
straightforward cases of semantic composition and
other phenomena such as coercions, and this choice
should obey the following criterion: types must be
precise enough to distinguish the various cases of
composition, but not too precise if this precision
is not relevant for compositional matters. As such,
we intend to separate the notion of type from the
notion of meaning to the extent that the involve-
ment of types in a semantic analysis is narrowed to
the compositional behaviour of words, abstracting
upon the other dissimilarities they may have.

4.2 Types in Compositionality and Negative
Predications

To explain this latter idea, consider for instance the
words cat and dog and their corresponding inter-
pretations under the CNs-as-types approach. What
does distinguish them from a compositional point
of view? As a matter of fact, both words are very
similar to that extent: lots of predicates which are
meaningful on one are also meaningful on the other,
as to be seen with physical descriptions, actions or
even moods. Only a few words seem to resist such
an analysis, among which the verbs corresponding

to their respective cries, meow and bark. Yet even
the compositional power of these predicates w.r.t.
cat and dog is questionable: how meaningless is it
to apply e.g. meow to dog? We are prone to think
that a meowing dog is an absurdity, and that meow
should be only employed with cats, hence a typing
restriction meow : cat→ t. Let however constrast
this view with the sentences in (1) below:

(1) a. Dogs do not meow but bark.
b. #Tables do not meow but bark.

The sentence (1a) is obviously true, while (1b)
is anomalous. Now, if we forget about the second
verb in both sentences, we have to admit that the
resulting ones should still differ in meaning, since
tables and dogs fail to meow for different reasons.
Moreover, reversing the verbs would turn (1a) to
falsity but would keep (1b) anomalous, which hints
that a meaningful predication of meow to dog could
be possible. As a consequence, we shall recognise
that the negative predications in (1a) and (1b) have
different underlying logics.

Actually, as discussed by Horn (1989), many
philosophers have recognised at least two forms
of negation which, following the terminology of
Sommers (1965, 1971), will be called here negation
and denial. The subtle difference between them
can be illustrated by the sentences in (2), where it is
integrated in the distinction between the use of not
for negation versus the prefix un- for denial, and
results in a divergence in semantic acceptability:

(2) a. Triangles are not intelligent.
b. #Triangles are unintelligent.

Their distinction is a matter of application level and
presupposition: denial applies to predicates so that
in a meaningful predication either the predicate or
its denial is true on the argument, while negation
applies directly to propositions and do not obey
this excluded middle clause. Thus (2b) is anoma-
lous because triangles can be neither intelligent
nor unintelligent, hence a meaningless predication.
By constrast, (2a) is acceptable under the reading
which states precisely that intelligent (or its denial)
cannot apply to triangles.

However, for predicates like bark and meow both
negation and denial are rendered by the particle not,
leading to an ambiguity in the negative predications
in (1). Yet those sentences show that these predi-
cates belong to the same “meaning scale” where
they contrast each other, similarly to the opposi-
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tion between intelligent and unintelligent. We may
reasonably assume that all predicates from such
a meaning scale are meaningful on the same ar-
guments; from which we may conclude that (1a)
contains a denial, while (1b) contains a pure nega-
tion. As a result, meow applies meaningfully to
dog and meaninglessly to table, a distinction cap-
turable with semantic types by extending the span
of meow from cat to a greater argument type which
includes dog and cat, but excludes table. If the type
animate fits such a role, then we end up with a new
interpretation JmeowK = meow : animate → t in
the lexicon.

The analysis above, if correct, should be repro-
duceable on any predicate which seems to distin-
guish cat and dog from a compositional point of
view, including the nouns themselves in their pred-
icative use if we accept that sentences in the sort
of “cats are not dogs” are actually denials. From
this generalisation, we conclude that the types cat
and dog are not needed in our lexicon, since all
predicates are blind to the distinction they intro-
duce w.r.t. compositionality. Their interpretations,
instead of relying on those types, would use the
supertype animate in predicates cat : animate→ t
and dog : animate → t, in such a way that any
entity determined to be a dog or a cat would re-
ceive by type-checking the type animate in ques-
tion, which is sufficient for further predications.
Any other kind of difference between cats and dogs
is not a matter of compositionality anymore, and
should rather be accounted for in deeper semantic
or pragmatic analyses.

4.3 Interpreting Negation in Type Theories

The previous discussion raises the issue of interpret-
ing negation in semantic type theories. Chatzikyri-
akidis and Luo (2017) propose a polymorphic op-
erator NOT rather than the usual connective ¬ to
ensure consistency with their predicational forms17,
since well-typedness of ¬pman(x) enforces the con-
tradictory condition x : man whereas NOT(pman, x)
does not. However, this interpretation is not suffi-
cient to distinguish negation from denial because
predicational forms are too restrictive: in particular,

17In UTT, the operator NOT has the polymorphic type
Πα : CN.(α→ t)→ (e→ t) (by assimilating propositions to
t and objects to e), where CN is the type universe of CN types.
Note that this universe seems to correspond conceptually to
the collections of subtypes of e. As a consequence, types of
the form Πα : CN.τ and of the bounded polymorphic form
∀α < e.τ from (Babonnaud and de Groote, 2020), as used in
Sect. 2, may be seen as equivalent.

NOT(pdog, x) has the same meaning regardless of
x being of type cat or table.

Taking a broader predicate interpretation for
dog may solve this problem as well-typedness of
¬dog(x) holds for x : animate, and cat < animate.
We may thus interpret denials using ¬, and keep the
operator NOT for negations, so that NOT(dog, x)
would mean that the type of x is uncompatible
with the argument type of dog. It appears then
that NOT enables us to transpose the type-theoretic
property of type incompatibility into a logical for-
mula. Another option for negation could be to use
the most general predicate dog′ : e → t while us-
ing dog only for denials, replacing NOT(dog, x)
by ¬dog′(k(x)) with k an adequate coercion to e,
but that would require an additional mechanism to
introduce such a predicate when needed, for we
cannot be committed to have this general interpre-
tation available in the lexicon.

5 Conclusion

A first observation about the interpretation of CNs
is the fact that neither types nor predicates seem to
offer a greater practical advantage: in both cases,
adding little theoretical machinery into the frame-
work enables their interaction with subtyping and
dot types in a fairly straightforward way. In the
case of predicates however, this interaction comes
at the cost of reconsidering composition, as it gen-
erally requires new mechanisms that go beyond
direct application. Nevertheless, such a revision
in compositionality may be an unavoidable step
towards better interpretations of complex semantic
phenomena anyways.

Yet the main observation of the present paper is
the fact that any type theory with enough assump-
tions can actually model both views of interpreting
CNs in a equivalent way, by establishing a bijective
correspondence between predicates of type e→ t
and subtypes of e. Theories with this property in-
clude MTTs such as Martin-Löf type theory and
Luo’s UTT, and further considerations show that
many other type-theoretical frameworks can be ex-
tended to get access to this property as well. The
discussion in Sect. 3 shows how abstracting type
theories through the perspective of category theory
helps in identifying and establishing their key prop-
erties. The present paper particularly highlighted
the correspondence between the expected duality
of interpretations and a general property of the cat-
egorical class of toposes.
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This duality gives access to intermediate choices
of interpretation for CNs which blur the lines be-
tween the strict applications of each view. In
Sect. 4, we proposed an interpretation of CNs
as predicates with refined argument types, whose
choice relies on their compositional abilities with
other predicates from the language, and the pos-
sible arguments thereof. This refinement requires
to determine on which entities it is meaningful to
assert or deny the given predicate, thus excluding
the entities on which the predication is absurd. In
negative sentences, this amounts to be able to disso-
ciate pure negation and denials. Generalising such
a reasoning on a natural language should eventu-
ally lead to the construction of a lexicon using a
proper sub-hierarchy of the possible types, each
type corresponding to some cluster of CNs with the
same compositional behaviour.
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