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Abstract

We introduce a modular, hybrid coreference
resolution system that extends a rule-based
baseline with three neural classifiers for the
subtasks mention detection, mention attributes
(gender, animacy, number), and pronoun res-
olution. The classifiers substantially increase
coreference performance in our experiments
with Dutch literature across all metrics on
the development set: mention detection, LEA,
CoNLL, and especially pronoun accuracy.
However, on the test set, the best results are
obtained with rule-based pronoun resolution.
This inconsistent result highlights that the rule-
based system is still a strong baseline, andmore
work is needed to improve pronoun resolution
robustly for this dataset. While end-to-end
neural systems require no feature engineering
and achieve excellent performance in standard
benchmarks with large training sets, our sim-
ple hybrid system scales well to long document
coreference (>10k words) and attains superior
results in our experiments on literature.

1 Introduction

This paper reports on a hybrid rule-based and neural
coreference resolution system1 evaluated on Dutch
literary texts. We use neural classifiers for the fol-
lowing three subtasks:

1. Mention span identification;
2. Mention attributes: gender, animacy, number;
3. Pronoun resolution.

These subtasks have been selected based on the
expected return on investment given the particu-
lar weaknesses of the rule-based model (Lee et al.,
2017a) and specific challenges of literary corefer-
ence (Rösiger et al., 2018). To keep the approach as
simple as possible, we implement these classifiers
as independent modules operating in a pipeline.

1Code and models are available at https://github.com/
andreasvc/dutchcoref

The classifiers can be trained on a laptop with-
out GPU in ten minutes, and are therefore substan-
tially less resource-intensive than state-of-the-art
neural models; e.g., SpanBERT (Joshi et al., 2020)
requires pre-training a BERT model with span rep-
resentations on specialized hardware (TPU); more-
over, end-to-end neural coreference resolution sys-
tems are generally memory and CPU intensive, es-
pecially when longer contexts are taken into ac-
count (Toshniwal et al., 2020).
The output of coreference resolution is a set of

mention spans, partitioned into clusters (example
based on Rudinger et al., 2018):

(1) [De chirurg]1 kon [de patiënt]2 niet behande-
len. [Hij]2 was [[haar]1 zoon]2!
[The surgeon]1 couldn’t treat [the patient]2.
[He]2 was [[her]1 son]2!

2 Related Work

Rule-based coreference resolution provides a rea-
sonable baseline (Lee et al., 2011, 2013), and its
advantages are that it can exploit global features
of entities based on the whole document. In con-
trast to end-to-end systems, information from parse
trees and named-entity recognition can be used, as
well as other components from the Natural Lan-
guage Processing (NLP) pipeline. Feature-based
models also use the NLP pipeline, but use ma-
chine learning classifiers that make local decisions
(mention-pair and mention-ranking architectures),
or attempt to take global context into account, but
this runs into computational challenges with long
documents. End-to-end neural systems do not need
the NLP pipeline and are able to optimize all steps
of coreference resolution jointly, which has enabled
large advances in standard benchmarks (Lee et al.,
2017b, 2018; Wu et al., 2020). However, there are
several challenges with end-to-end neural models:
long documents with long coreference chains (Joshi
et al., 2019; Toshniwal et al., 2020), domain and

https://github.com/andreasvc/dutchcoref
https://github.com/andreasvc/dutchcoref
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annotation differences across datasets (Zhu et al.,
2021; Poot and van Cranenburgh, 2020), and need-
ing a large number of training examples (Shalev-
Shwartz and Shashua, 2016; Glasmachers, 2017).
Moreover, gender bias is a general challenge in
coreference resolution systems (Rudinger et al.,
2018; Webster et al., 2018). Each of these areas is
potentially easier to address with a well engineered
rule-based or feature-based approach to coreference
resolution, and we therefore choose to explore this
direction.

Hybrid coreference resolution systems have been
presented before; Lee et al. (2017a) present a system
in which most steps of the rule-based system are
implemented with random forest classifiers. They
obtain improvements in accuracy and efficiency,
but neural systems have since eclipsed these results.
Their classifiers include mention detection and pro-
noun resolution, which we also pursue in this work.

In addition, previous work shows that neural rep-
resentations and surface features have complemen-
tary strengths (Moosavi and Strube, 2017). This is
another sense in which our system is hybrid: we use
both manually selected features as well as contextu-
alized word embeddings. Parts of the neural archi-
tecture and features are inspired by Clark and Man-
ning (2016), but we use BERT (Devlin et al., 2019)
for embedding features instead of static word em-
beddings, since BERT representations have shown
to bring about significant improvements in natural
language tasks that rely on the context.
There has been some work on improving detec-

tion of mention attributes (animacy, gender, num-
ber) using external datasets and machine learning.
Bergsma and Lin (2006) extract attributes from a
large corpus with dependency parses using heuris-
tic patterns. Orasan and Evans (2007) focus on
animacy and use Wordnet and SemCor combined
with machine learning. These methods aim to learn
general patterns for detecting attributes of noun
phrases. In contrast, we will annotate attributes of
the entities in our coreference corpus in context and
train the classifier on those annotations. We hope
to handle more difficult, ambiguous cases which
require context with this approach.
Although most coreference resolution systems

are trained and evaluated on domains contained in
benchmark datasets, such as news texts and phone
conversations in the case of OntoNotes, we train
and evaluate our hybrid system on Dutch litera-
ture. The reason we are interested in the literary

domain is that, while literary texts are increasingly
subject to computational analysis in the field of dig-
ital humanities, there is still a lot of work required
to adapt NLP models to the literary domain, of
which coreference resolution is a particularly chal-
lenging instance. Importantly, the literary domain
contains unique characteristics, such as long coref-
erence chains and dialogue, which do not appear
in typical benchmark data for coreference resolu-
tion (Rösiger et al., 2018; Bamman et al., 2020).

3 Data

We use RiddleCoref (van Cranenburgh, 2019), with
the same train/dev/test splits as used in Poot and van
Cranenburgh (2020). The corpus consists of 162k
tokens of contemporary (2007–2012) bestselling
novels in Dutch (translated and original), with a
total of 33 documents (fragments of novels), and
an average of 4897.4 tokens per document. The
entity coreference annotations follow the dutchcoref
annotation guidelines. The 38,466 mentions in the
corpus have been manually corrected and exclude
non-referring expressions.
We did an additional round of corrections on

the whole corpus, mostly to fix mention bound-
aries to exclude relative clauses and remove non-
referring expressions (idioms, verbal expressions,
negated mentions). We also made small improve-
ments to the mention detection of the rule-based
system: bare nouns in conjunctions are extracted
as mentions, and subordinate clauses are removed
from mention spans, in accordance with the anno-
tation guidelines.
Three mention attributes, namely animacy, gen-

der, and number, have been manually annotated for
each of the 11,684 entities in the training and devel-
opment sets. The gender attribute has four possible
values: f (female), m (male), fm (unknown or mixed
gender), and n (neuter, non-human). Any gender
except neuter implies a human (person) entity; the
animacy attribute is therefore implied. Note that
Dutch has noun classes with grammatically gen-
dered and neuter words; however, our annotations
concern the gender with which individuals are iden-
tified. For example, the noun phrase het meisje
(the girl) is grammatically neuter, but annotated
as female, since it would be referred to by female
pronouns.
The number attribute has two possible values:

sg (singular) and pl (plural; an entity consisting
of multiple individuals/objects). We annotate the
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parse trees BERT embeddings

neural: mention detection

neural: mention attributes

rule-based sieves:
string match, precise
rules, head match

neural: pronoun resolution

Coreference output

Figure 1: An overview of the hybrid system.

semantic number (e.g., “the group” is plural since
it is a collective noun that could be referred to by
“they”), regardless of the syntactic number.

4 Method

The base system is a rule-based coreference resolu-
tion system (van Cranenburgh, 2019) which takes
parse trees as input. We extend this system with
neural classifiers for three subtasks; see Figure 1
for an overview of our hybrid system.

4.1 Rule-based system

The rule-based system starts by extracting mention
candidates from parse trees based on rules. Mention
attributes are heuristically assigned based on parse
tree features and lexical resources. Mentions are
then linked into entity clusters using several “sieves”
for linking nominals, names, and finally pronouns.
The pronoun resolution step is an implementation of
the Hobbs (1978) system using heuristics of recency
and syntactic prominence.
We use a feed-forward neural network classifier

for the three subtasks (see Figure 2). The input
consists of BERT token embeddings and several
handpicked features. The network has two dense
hidden layers with 500 and 150 neurons, respec-
tively, both with ReLu activation and batch normal-
ization. The output layer is a sigmoid function with
the respective binary classification for the subtask
and L2 regularization of 0.05. We apply a dropout
of 0.2 to the input layer and 0.5 to each hidden layer
and fit the networks with a batch size of 32 and
Adam with a learning rate of 0.0001. Each subtask
is trained with early stopping until there are 5 suc-
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Figure 2: The mention-pair encoder for the pronoun res-
olution model; the other modules take a single mention
as input; figure from Clark and Manning (2016)

cessive epochs that do not show an improvement
on the validation set.

BERT embeddings are produced using the mono-
lingual, pre-trained BERTje model (de Vries et al.,
2019). We use the BERT token embeddings from
layer 9, since that layer was shown to perform
best for the task of coreference resolution in Dutch
(de Vries et al., 2020). For mentions consisting
of multiple BERT tokens, we use the mean of the
embeddings of all tokens as the mention representa-
tion. While neural systems (e.g., Lee et al., 2017b;
Bamman et al., 2020) often use a recurrent layer
(e.g., LSTM) to obtain contextualized representa-
tions of mentions, we follow Joshi et al. (2019) in
using BERT embeddings directly. Unlike Joshi et al.
(2019), we do not encode BERT embeddings for
segments of multiple sentences, but encode each
sentence independently.

4.2 Mention Span Classifier
To improvemention detection, we implement amen-
tion span classifier that picks the best mention span
from a list of candidates for a given head word (sim-
ilar to Lee et al., 2017a), or classifies the spans
as non-referring if none of them have a probabil-
ity higher than a threshold (set at > 0.3 in our ex-
periments based on experiments with development
data).

Candidates are extracted based on the same syn-
tactic rules as in van Cranenburgh (2019), but in-
clude alternative, shorter spans as candidates as
well. Since mention spans that incorrectly include
an adverb in the first position have been observed
frequently in previous work (van Cranenburgh,
2019), we ensure that for each span (n, m), the span
(n+1, m) is also considered. The system is trained
on gold mention spans annotated in the corpus, as
well as negative examples extracted from the parse
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trees. During evaluation and prediction, only spans
extracted by rules are used as candidates. While
it would be possible to train a classifier that works
with arbitrary spans as candidates, the rest of the
rule-based system depends on parse tree features,
and we therefore stick with candidates extracted by
parse tree queries.

The features presented to the neural network are
as follows:

1. The BERT token embeddings of the first and
last token of the span;

2. Whether the rule-based mention detection
would extract the span as mention;

3. The grammatical function of the constituent
matching the span (subject, object, predicative,
apposition);

4. Whether the span contains another NP;
5. Whether the head word of the span is a named

entity (PER/LOC/ORG/MISC);
6. The POS tag of the head word (noun, name,

pronoun, or verb), the first word (adverb, ad-
jective, punctuation) and the last word (punc-
tuation);

7. The number of words in the mention, his-
togrammed as in Clark and Manning (2016).

Given the input of example (1), the candidates
are (correct mention underlined): {De chirurg,
chirurg}, {de patiënt, patiënt}, . . . , {mijn zoon,
zoon}

We also experimented with adding an anaphoric-
ity classifier (e.g., Clark and Manning, 2016;
Moosavi and Strube, 2017), but initial experiments
did not improve the results, so we leave this for
future work. Moreover, mentions could also be
classified as singleton or coreferent; however, fol-
lowing Lee et al. (2017a), we have not pursued this,
since it is better to leave this decision to later sieves,
at which point more global information is available.

4.3 Mention Attributes Classifier
The rule-based system (van Cranenburgh, 2019)
detects mention attributes heuristically using parse
tree features and several lexicons and lexical re-
sources:

1. Named-entity category and grammatical fea-
tures;

2. a list of the most common Dutch first names
for men and women;

3. gender and animacy attributes for nouns from
the Dutch Wordnet equivalent Cornetto;

4. and heuristic number and gender frequencies
derived from English web text (Bergsma and
Lin, 2006).

To improve the detected attributes, we train a su-
pervised classifier that predicts these attributes for
a given mention in a sentence. We manually anno-
tated themention attributes for each entity in the cor-
pus based on the whole coreference chain. During
training, we train and predict these entity attributes
for each mention. This means that some data points
will be difficult, e.g., predicting the gender of the
mention “the person” is not possible without fur-
ther context. Similarly, ze is both a third person
singular female pronoun as well as a third person
plural pronoun; when not in subject position, gender
and number are ambiguous. In early experiments,
attributes were only predicted for names and nomi-
nals; however, predicting attributes for all mention
types (i.e., including pronouns) substantially im-
proved performance. Furthermore, annotating and
predicting number, despite being relatively reliably
marked syntactically, also boosts performance.
The task is set up as a multi-label classification

task such that a mention is assigned probabilities
for all possible labels; this multi-task setup means
that attributes are trained and predicted jointly. For
each attribute, we assign all labels with a probabil-
ity > 0.5. Experimenting with different thresholds
did not improve results. Given this setup, it is pos-
sible for the classifier to predict no attributes for a
mention, which is interpreted as the attributes be-
ing unknown by the system; or a combination of
features such as female and neuter, which is not part
of the annotations, this is again interpreted as an
uncertain feature by the rule-based system.

The features from which the neural network pre-
dicts mention attributes are as follows:

1. The averaged BERT token embeddings for the
mention;

2. The heuristically detected attributes for gender,
animacy, and number;

3. Whether the mention is a subject or object;
4. Whether the mention contains another NP.

Given the input of (1), the expected output is: De
chirurg: fm, sg; de patiënt: fm, sg; Hij: m, sg;
haar f, sg; haar zoon: m, sg. However, based on
the context, the predicted gender of the first two
mentions could be more specific.
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recall prec. F1

Rule-based 88.3 84.9 86.6
Classifier 88.8 87.2 88.0

Table 1: Mention span classifier results on dev set
(N=6434 mentions).

4.4 Pronoun Resolution Classifier
We train a binary classifier on predicting whether a
pair of mentions is coreferent; i.e., a mention-pair
architecture (Soon et al., 2001). Pairs consist of a
pronoun and antecedent candidate. The pronoun
is a third person personal, possessive, indefinite,
or demonstrative pronoun. The antecedent candi-
date is a mention within the preceding 22 mentions
words relative to the pronoun (this distance is ap-
plied during both training and prediction). Men-
tions with a grammatical function of appositive or
determiner are not considered as candidates, since
these often lead to incorrect links. We also filter
out mention pairs based on binding constraints (i-
within-i and co-argument restrictions). Mention
pairs are assigned a probability. For each pronoun,
the candidate with the highest probability is selected
as its antecedent, unless the highest probability is
less than a threshold, in which case no antecedent
is selected. Based on experiments with the devel-
opment data, we set the threshold at 0.2.
The features given to the neural network are as

follows:

1. The averaged BERT token embeddings for the
pronoun, and for the candidate;

2. Candidate mention type (pronoun, noun,
name);

3. Whether the grammatical function (subj, obj,
etc.) of the pair is the same;

4. Attribute compatibility (gender, animacy,
number);

5. Person (1, 2, 3) of candidate, if it is a pronoun;
6. Whether pronoun or candidate occurs in

quoted speech;
7. Distance in sentences and words between pro-

noun and candidate; number of words in can-
didate. The distances and lengths are his-
togrammed as in Clark and Manning (2016).

Given the input of (1), the candidates are (correct an-
tecedent underlined): Hij: {de patiënt, De chirurg};
haar: {Hij, de patiënt, De chirurg}.

Unfortunately, several simple features reported to
be useful in previous work (e.g., string match, pro-

RB NEU support

nonhuman 83.3 94.5 3073
human 85.0 95.0 3361

female 59.1 73.4 1347
male 85.8 89.9 3002
neuter 80.1 94.5 3073

singular 96.7 98.6 5224
plural 90.8 93.6 1210

macro avg 83.0 91.3 20290

Table 2: F1-scores for mention attributes on develop-
ment set with rule-based baseline using word lists (RB)
and the neural classifier (NEU).

noun type, position in sentence) actually decreased
development scores in our experiments, which is
why we end up with this relatively small list of fea-
tures. We also considered frequency features: how
frequent is the candidate entity in the preceding
context or whole document. We have not pursued
this since it complicates the implementation as it
makes predictions dependent on previous predic-
tions. Another feature which is left for future work
is incorporating external knowledge on selectional
preferences, as used successfully by Zhang et al.
(2019).

5 Results

We first report the results for each module on the
development set, and then report the results for the
system in various configurations on the develop-
ment and test sets.
The results for the mention span classifier are

shown in Table 1. We obtain a decent improvement
over the rule-based method: a difference of 1.4%
F1 points for mentions, mainly due to higher preci-
sion. The mention recall is limited by the rules for
mention candidate extraction and parse tree errors.
The results for the mention attributes classifier

are shown in Table 2. We obtain a solid improve-
ment over the baseline, with a macro averaged F1
improvement of 8.3% points and consistent im-
provement for each label. Female mentions show
the largest improvement, but also remain the most
difficult to detect. There is a striking contrast
with male and neuter mentions, which show higher
scores. Animacy detection is also improved sub-
stantially, and number to a lesser extent, since the
baseline is already high for this attribute.
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For coreference evaluation, we use the averaged
CoNLL score (Pradhan et al., 2011) and the LEA
coreference metric (Moosavi and Strube, 2016;
Moosavi et al., 2019). In addition we report men-
tion scores and pronoun accuracy. Pronoun ac-
curacy includes demonstrative and indefinite pro-
nouns in addition to third person personal and pos-
sessive pronouns.
See Table 3 for the main coreference results,

presented incrementally. The original rule-based
model is listed as “dutchcoref”, with the modules
proposed in this paper listed as span (mention span
classifier), attr (mention attributes classifier), and
pron (pronoun resolution), respectively. The line
“dutchcoref+span”means that themention span clas-
sifier is used, but the rest of the system remains rule-
based. For transparency, we report results both on
the development and test sets; the parameters and
models were tuned only on the development set.
Since the annotations and the rule-based system
were improved, we report results from Poot and van
Cranenburgh (2020) for comparison. Each neural
module improves performance scores on the devel-
opment set, across all metrics. Unfortunately, on
the test set the results are less consistent. On sev-
eral metrics, the rule-based “dutchcoref” performs
best, while the pronoun resolution classifier does
not improve the pronoun accuracy with respect to
the previous line “dutchcoref+span,attr” with re-
sults for the rule-based model with neural mention
detection and mention attributes, but rule-based
pronoun resolution; however, the mention span and
attributes modules perform well.

In order to isolate the effect of mention detection
(which is known to introduce pipeline errors), we
also perform an evaluation on the test set with gold
mentions, see Table 4. Here we find that the men-
tion attribute classifier improves the performance
across the board. Again the pronoun resolution
module does not improve the results compared to
the result for ‘dutchcoref+attr’. (it does improve
the results compared with the purely rule-based
system).
All our evaluations include singletons; evaluat-

ing without singletons does not change the ranking
of the systems on each metric. We conclude that
the mention attribute classifier robustly improves
the performance, but that the pronoun resolution
classifier yields inconsistent results. Finally, while
the result is puzzling, a similar result was reported
by Poot and van Cranenburgh (2020), where the

rule-based system performed better on the test set
than on the development set, while the end-to-end
neural system showed the opposite effect (better on
development set than on test set).

6 Analysis

6.1 Analysis of Differences
It could be that the development and test set dif-
fer in difficulty. We consider several basic statis-
tics to compare the two sets. We first consider dif-
ferences in the out-of-vocabulary (OOV) rate and
word frequencies with the Jensen-Shannon distance.
We find that the development set actually has a
lower OOV rate than the test set, with respect to
the training set (16.3% and 13.3%, respectively).
The Jensen-Shannon distance shows the same pat-
tern (0.307 vs 0.290, respectively). Moreover, the
average sentence length is similar between the de-
velopment and test sets (18.39 and 18.26, respec-
tively), but higher than the train set (15.51). The
development set does have a lower number of men-
tions (6548 vs 6869) and entities (2643 vs 3008).
Finally, the development set has a higher percentage
of names (14.9 vs 9.1).
Genre is another potential explanation for the

difference. There are four different genres in the
RiddleCoref dataset: (Literary) Fiction, Suspense,
Romance, and Other. The development set con-
tains 4 Fiction and 1 Other novel, while the test
set contains 3 Fiction, 1 Romance, and 1 Suspense
novel. We now take a closer look at the difficulty
of these genres using an out-of-domain training set.
We evaluate the pronoun resolution module on each
genre in RiddleCoref; the results are in Table 5. We
evaluate on two novels for each genre. The two
documents of the Other genre are three chapters
from Harry Potter and The Hunger Games, and are
therefore considerably longer than the other docu-
ments. Since these documents from varying genres
all originate from the RiddleCoref training set, we
train the pronoun resolution model on a different
corpus: SoNar-1 (Schuurman et al., 2010). This
model achieved a CoNLL score of 70.76 on the
RiddleCoref test set, which is comparable to that of
the model trained on RiddleCoref. This is in line
with our expectations: on the one hand, SoNaR-
1 is much larger with 1 million tokens, providing
more training data, but on the other hand, there
is a difference in domain. Moreover, as noted by
van Cranenburgh (2019) and Poot and van Cranen-
burgh (2020), there are differences in the annotation
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System set Mentions LEA CoNLL Pron

R P F1 R P F1 Acc

Poot and van Cranenburgh (2020):
e2e-Dutch dev 83.12 87.65 85.33 48.37 50.99 49.65 64.81
dutchcoref dev 86.85 85.84 86.34 49.18 58.03 53.24 65.91

This work:
dutchcoref dev 88.34 84.87 86.57 50.60 58.06 54.07 66.55 52.16
dutchcoref+span dev 88.76 87.23 87.99 50.54 59.33 54.58 67.32 53.37
dutchcoref+span,attr dev 88.76 87.23 87.99 52.27 60.98 56.29 68.80 61.30
dutchcoref+span,attr,pron dev 88.76 87.23 87.99 53.68 61.27 57.23 69.37 65.38

Poot and van Cranenburgh (2020):
e2e-Dutch test 81.95 89.00 85.33 44.82 50.48 47.48 63.55
dutchcoref test 87.65 90.80 89.20 50.83 64.78 56.97 69.86

This work:
dutchcoref test 89.41 90.35 89.88 52.90 64.93 58.30 70.90 62.82
dutchcoref+span test 89.71 90.47 90.09 52.02 63.10 57.03 70.07 64.96
dutchcoref+span,attr test 89.71 90.47 90.09 53.46 63.39 58.00 71.00 68.73
dutchcoref+span,attr,pron test 89.71 90.47 90.09 54.29 61.34 57.60 70.90 67.81

Table 3: Coreference results on the RiddleCoref dataset (predicted mentions, including singletons).

System set Mentions LEA CoNLL Pron

R P F1 R P F1 Acc

dutchcoref test 100 100 100 59.55 69.70 64.22 77.75 69.59
dutchcoref+attr test 100 100 100 61.16 70.69 65.58 78.88 74.07
dutchcoref+attr,pron test 100 100 100 61.87 67.08 64.37 78.44 71.44

Table 4: Coreference results on the RiddleCoref dataset (gold mentions, including singletons).

Fiction Romance Suspense Other

tokens 9664 4046 4533 34,354
avg sent len 15.5 14.9 17.5 16.1
ment. / ent. 3.0 2.6 2.2 3.5
ent. / tok. 0.08 0.10 0.11 0.07
% pronoun 35.1 42.6 37.9 42.0
% nominals 54.8 45.1 50.2 41.2
% names 10.2 12.2 11.9 16.8
CoNLL score 67.76 71.30 72.45 70.22

Table 5: Evaluation of the pronoun resolution module
trained on SoNaR-1, evaluated on different genres with
two documents per genre.

scheme of RiddleCoref and SoNaR-1; however, for
pronoun resolution, these differences do not prevent
the model from achieving a decent score. Compar-
ing the results for the different genres in Table 5
reveals that the genre Fiction resulted in the low-
est scores and Suspense resulted in the best scores,
the difference being 4.69 percentage points in the

CoNLL score. It is quite noticeable that the gen-
res with more tokens in this experiment performed
worse. This is in line with the performance of the
end-to-end neural model from Poot and van Cra-
nenburgh (2020) where a similar effect was noticed.
Furthermore there does not seem to be a clear corre-
lation between the percentage of pronouns and the
CoNLL score in this experiment. As some of the
most common link errors involve pronouns, genres
with more pronouns were expected to result in lower
scores. This, however, does not seem to be the case
in this sample, as the second best performing genre
contained the highest percentage of pronouns and
the worst performing genre contained the lowest
percentage of pronouns. Lastly, the length of a sen-
tence does not seem to have a substantial effect on
the scores. A longer sentence could possibly be
more complex with more mentions and therefore
create more room for mistakes for the model, how-
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Figure 3: A training curve showing the effect of varying
the amount of training data.

ever this does not seem to be the case here. The
genre with the highest number of tokens per sen-
tence actually performed the best.
Figure 3 shows training curves for the pronoun

resolution model (i.e., these results do not include
the mention span and attribute modules), with pre-
dicted mentions. From the curve we see the benefit
of more training data for pronoun resolution accu-
racy (and to a lesser extent for the overall CoNLL
score). Since the training curve keeps rising with-
out reaching a plateau, we expect that adding more
training data will improve pronoun resolution more.
Still, since the curve gradually becomes less steep
with supplying more data, we expect that there will
be diminishing returns as more annotated training
data is added.

6.2 Probing for gender bias

The results for the mention attribute classifier show
that recognizing female mentions is most difficult.
We suspect that the difficulty may lie in mentions
that can be both male or female, in which the system
may assume male as the most likely label. As a
simple probe for gender bias, we experiment with
the running example (1) which is a Winogender
sentence (Rudinger et al., 2018).
Interestingly, the rule-based system correctly

identifies De chirurg (the surgeon) as male or fe-
male (based on the Cornetto lexical resource), while
the neural mention attribute classifier predicts it as
male. How did this gender bias get introduced?
The training data contains only one instance of
chirurg, which is correctly annotated as male or
female, since the context does not identify the sur-
geon’s gender. Another potential source of gender

bias is the BERT embeddings. If we present BERT
with the following sentence:

(2) De chirurg kon [MASK] patiënt niet behande-
len.
The surgeon couldn’t treat [MASK] patient.

We find that BERT considers de, zijn (the, his) as
overwhelmingly most probable, with een, deze, die
(a, this, that) as distant runner ups, but no female
possessive pronoun in the top 5. We therefore con-
clude that the pre-trained BERTje model has in-
troduced a source of gender bias, which is in line
with previous results for Dutch (Chávez Mulsa and
Spanakis, 2020). Unless an effective bias mitiga-
tion technique is applied, this presents a dilemma:
the goal is either to maximize overall accuracy, in
which case for example the gender most commonly
associated with an occupation is assumed, or gender
bias is removed using constraints that lower overall
performance.
Moreover, while the mention attribute classifier

mistakenly classifies De chirurg (the surgeon) as
male, the neural pronoun resolution module ignores
this misclassification, and correctly links haar. This
demonstrates the advantage of the neural classifiers
which exploit mention attributes as features, but do
not treat them as hard constraints, as the rule-based
pronoun resolution sieve does.

7 Discussion and Conclusion

We have presented a hybrid coreference resolution
system that extends a rule-based baseline with three
simple neural classifiers. The classifiers substan-
tially increase the coreference performance in our
experiments on Dutch literature, except for pronoun
resolution on the test set. The strongest improve-
ments is on pronoun accuracy, which is especially
important in longform narrative text.
There are several areas in which the system can

be improved. In our approach we erred on the side
of simplicity, but in the case of pronoun resolution
the approach was too simple, leading to an improve-
ment on the development set but not on the test set.
The simplicity can be relaxed in several ways. The
modules are trained with gold standard input, but
using predictions of previous modules may give
better results. If possible, the modules should be
trained jointly. Adding more and more varied train-
ing data, such as from SoNaR-1 can be expected to
yield better results. BERT performs better when
finetuned and when encoding segments of 128 to-
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kens, as reported by Joshi et al. (2019). Finally,
other modules could be added. Anaphoricity clas-
sifiers are used in most state-of-the-art systems. In
literature, dialogue is particularly important; anno-
tating and predicting speakers of direct speech will
help in resolving first and second person pronouns.
Future work should investigate in more detail

the trade-offs between rule-based systems using
an NLP pipeline and modern end-to-end neural
models, especially in the challenging case of long-
document coreference in narrative text.
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