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Abstract

Event coreference resolution is critical to un-
derstand events in growing number of online
news with multiple modalities including text,
video, speech, etc. However, the events and
entities depicting in different modalities may
not be perfectly aligned and can be difficult
to annotate, which makes the task especially
challenging with little supervision available.
To address the above issues, we propose a
supervised model based on attention mecha-
nism and an unsupervised model based on sta-
tistical machine translation, capable of learn-
ing the relative importance of modalities for
event coreference resolution. Experiments on
a video multimedia event dataset show that our
multimodal models outperform text-only sys-
tems in the event coreference resolution task.
A careful analysis reveals that the performance
gain of the multimodal model especially un-
der the unsupervised setting comes from better
learning of visually salient events.

1 Introduction

With the advance of Internet, news articles nowa-
days are becoming increasingly multimodal. For
example, news about a recent launch of a SpaceX
rocket may contain the traditional text article, a
drone video of the launch and a narration from the
talking head or reporter. Such a diverse source of
information provides us a multi-faceted understand-
ing of the newsworthy event, and helps us better
follow the content of the article. Event coreference
resolution, the task of resolving whether two words
or phrases called mentions in the article refer to
the same real-world event or not, is the first step
toward such an understanding.

While human can efficiently and accurately iden-
tify the coreference relations when reading an ar-
ticle, this task has shown to be quite challenging
to machines. The state-of-the-art coreference res-
olution system not only accepts textual input, but
typically requires over 4000 annotated articles with

more than 400 words fully annotated with mention
span and coreference relation to train (Lee et al.,
2018). Further, since event coreference resolution
requires careful reading and deep understanding
of the text, it becomes prohibitively expensive to
annotate for low-resource languages.

Another issue with the current system is that
the model lacks a way to incorporate real-world
knowledge typically required for coreference. One
potential way to incorporate such knowledge is to
consider an alternative modality – videos. A fas-
cinating aspect of multimodal event coreference
resolution is that the correlation between the vi-
sual modality and the text can be quite weak, and
the text tends to contain most of the information
for resolving coreference. Nevertheless, the mean-
ings of the event triggers often require additional
information sources to resolve. For example, we
never know an “attack” is a physical one or ver-
bal one without seeing or imagining a particular
scene based on additional contextual constraints,
or it is hard to know whether “chant” and “protest”
co-refer without knowing the event in the text is
a demonstration. But if a video of the relevant
events is played, we can immediately understand
the relations between the trigger words. In this
paper, we answer the following research question:
How to leverage weakly aligned multimodal data
for event coreference resolution system, especially
in an unsupervised setting?

2 Approach

2.1 Notations and Definitions

A multimodal document S = (M,V ) is defined
as the tuple of two sequences: the sequence of
textual event mentions M = (m0, · · · ,mI), in-
cluding the artificial root mention m0, and the se-
quence of visual event mentions V = (v1, · · · , vJ),
i.e., event-level segments from the related video.
Each text mention is represented as a span of con-
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Figure 1: The proposed unsupervised multimodal
coreference resolution model. The bubbles represent
the random variables involved in the generative process,
the squares represent raw feature inputs and arcs repre-
sent the values taken by the antecedent variables

secutive word tokens (xstart(i), · · · , xend(i)), where
start(i) and end(i) are the indices of the start and
end token of the span. The mention spans can be
extracted either using a binary classifier as done in
previous works (Lee et al., 2017, 2018) or by an
end-to-end event extraction system such as OneIE
(Lin et al., 2020) as in this work. Similarly, each
visual mention is a span of consecutive embeddings
of video frames (ystart(j), · · · , yend(j)) extracted by
human annotators. Inspired by (Ma et al., 2016),
the coreference relations between events can be
represented by a sequence of latent antecedent vari-
ables C = (c1, · · · , cI) associated with each event
mentions, where ci = j means that mention i is
the parent of (textual or visual) mention j in the
tree formed by mentions that are coreferent. For
within-text coreference, ci ∈ {0, · · · , i − 1} and
for crossmedia coreference, ci ∈ {1, · · · , J}.

2.2 Supervised model for end-to-end event
coreference resolution

In the setting of supervised coreference resolution,
the model tries to learn the coreference relation be-
tween textual mention pairs (mi,mi′) from labeled
mention pairs {(mi,mi′), y

c
ii′}, where ycii′ = 1 if

mi and mi′ are coreferent and 0 otherwise. In the
multimodal setting, we allow the model to observe
crossmedia coreference labels yvij’s, where yvij = 1
if textual mention mi and visual mention vj are
coreferent.

Our end-to-end model consists of two main
components: a crossmedia coreference resolver
and a text-only coreference resolver. For both re-
solver, embeddings from the RoBERTa-large (Liu

Name Definition

xn n-th token in a document
ft t-th frame in a video
mi i-th text event mention in a document
vj j-th visual event mention in a video
ci the position of antecedent for text mention i
MLP Multi-layer perecptron
Fv(mi, vj) Crossmedia coreference score between textual

mention mi and visual mention vj
Fc(mi,mi′) Textual context score between textual mention

mi and mi′

Fcv(mi,mi′) Visual context score between textual mention
mi and mi′

πi mode of i-th text event mention
µk the centroid of k-th visual cluster
p(mi|mj , πi) probability of features used in mode πi for mi

given mention mj is its antecedent
q(ci|i) probability that the antecedent of mention i is

at position ci in attribute mode

Table 1: Definitions of key notations

et al., 2019) transformer is used as input to the tex-
tual mention encoder, and embeddings from the
penultimate layer of the TSN action recognition
model (Contributors, 2020) is used as input to the
visual mention encoder. The transformer is frozen
during training. To represent the text mentions, in-
stead of concatenating start token, end token and
head word token embeddings as in (Lee et al., 2017,
2018), the textual encoder forms the mention em-
bedding by averaging the embeddings within its
span:

mi =

∑end(i)
n=start(i) xn

end(i)− start(i)
(1)

Similarly, the visual mention encoder compute a
fixed-dimensional embedding for each visual men-
tion by averaging over its frame embeddings ft’s:

vj =

∑end(j)
t=start(j) ft

end(j)− start(j)
. (2)

This saves memory without losing significant
amount of information since most of the triggers
consist of only one token.

To compute the probability that a visual mention
and a textual mention are coreferent, the crossme-
dia resolver first encodes each textual and visual
mention pair (mi, vj) into the common embedding
space as (mC

i , v
C
j ). This is done by two three-layer

bidirectional LSTMs (Hochreiter and Schmidhuber,
1997) (BiLSTMs) as visual and textual crossmedia
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encoder:

mC
i = BiLSTMi(M) (3)

vCj = BiLSTMj(V ). (4)

The crossmedia coreference score is then simply
the dot-product similarity between the embeddings:

Fv(m, v) = mC>vC (5)

To compute the probability that two textual men-
tions are coreferent, we first computed the text-only
coreference score using a multilayer perceptron
(MLP):

Fc(m,m
′) = MLPc([m,m′,m�m′]). (6)

To fuse visual and linguistic information, we use
a special attention mechanism (Bahdanau et al.,
2015) similar to the one proposed in (Yu et al.,
2019). In particular, the model attends over the vi-
sual mention embedding to create a contextualized
embedding as additional feature for each textual
mention:

αmi,vj =
exp(Fv(mi, vj))∑
v exp(Fv(mi, v))

(7)

The text resolver then utilizes the contextualized
embeddings as additional cues to resolve corefer-
ence between the mention pairs:

βmi = max
j
αmi,vj (8)

βmi,mi′ = max
j
αmi,vjαmi′ ,vj (9)

Fcv(mi,mi′) = MLPcv([βmi ;βmi′ ;βmi,mi′ ]).
(10)

Intuitively, the value of βmi’s scores how “visual” a
particular mention is and βmi,mi′ scores how likely
the two mentions refer to the same visual event.
The final text coreference score is then the weighted
sum of the textual and viusal context score:

F (mi,mi′) = λv · Fcv(mi,mi′)+

(1− λv) · Fc(mi,mi′). (11)

The score can be then interpreted as the logit of
the probability p(ycii′ |mi,mi′) and learned by max-
imizing the standard binary cross-entropy loss. We
will refer to this later as the weight fusion model.

2.3 Amodal SMT: Unsupervised model for
multimodal event coreference resolution

The supervised multimodal model requires a large
amount of labeled training data, which makes it
unsuitable for real-world multimodal documents
where coreference labels are mostly unavailable.
Therefore, it is desirable to design an unsupervised
coreference resolution algorithm to learn corefer-
ence relations without of the need of such labels.
Instead of maximizing the likelihood of the coref-
erence labels as in the supervised case, our unsu-
pervised multimodal coreference resolution model
instead tries to maximize the conditional likelihood
p(M |V ), with independence assumptions based on
(Ma et al., 2016):

p(M |V ) =

I∏
i=1

p(πi|i)p(ci|i, πi)·

p(mi|vci ,mci , πi), (12)

where Π = (π1, · · · , πI) are discrete variables
called mode variables. This likelihood resembles
that of the classical statistical machine translation
(SMT) model (Brown et al., 1993) where the text
mentions form the source language sentence the
entire multimoal document is the target language
sentence. Therefore, we call the model amodal
SMT. In each mode, the model will resolve the
current mention with a different subset of linguis-
tic features. This is motivated by the observation
that while resolving proper-nominal mention pairs
such as “the Great War” and “World War I” mostly
requires semantic features such as embedding sim-
ilarity, resolving pronoun-nominal mention pairs
such as “the Great War” and “it” relies more on syn-
tactic and discourse features such as part-of-speech
tags, parse trees and sentence distance. The need
of distinct features for different coreferent types
is also demonstrated in previous works (Haghighi
and Klein, 2009; Ratinov and Roth, 2012; Lee et al.,
2013; Ma et al., 2016).

The overview of our unsupervised model is
shown in Fig. 1. Our unsupervised model has three
modes, one visual mode and two textual modes,
one called trigger-matching mode and the other
called attribute-matching mode. In visual mode,
πi = visual, the antecedent of mention i is re-
stricted to only visual event mentions. In textual
modes, the antecedent of event mention i is re-
stricted to only previous textual event mentions as
in (Ma et al., 2016). Further, in trigger-matching
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Mode Feature Description

trigger
Head Lemma lemmatized head word extracted using

NLTK and AllenNLP
Number consider only mention pairs with the

same number
Event Type consider only mention pairs with differ-

ent types
GloVe consider only mention pairs with cosine

similarity ≥ 0.5
String Match consider mention pair if normalized edit

distance ≥ 0.5

attribute

Mention Type same as in (Ma et al., 2016)
Number same as in (Ma et al., 2016)

Event Type same as in trigger mode
Arguments consider only events with non-

overlapping argument entity types or
sharing argument of the same type

Sentence distance same as in (Ma et al., 2016)

visual
Head Lemma same as in trigger mode

Number consider only pairs with the same num-
ber

Event Type consider only mention pairs with differ-
ent types

Is Visual consider mention whose type of event
appears in at least one video

Table 2: Features for different modes of amodal SMT

mode with πi = trigger, the model will use pri-
marily semantic features such as the embedding
of the trigger. Finally, in attribute-matching mode
with πi = attribute, it will use mostly syntactic and
discourse features. More details about the features
can be found in Table. 2. Therefore, we have:

p(mi|vci ,mci , πi)

=:

{
p(mi|mci , πi), if πi ∈ {trigger, attribute}
p(mi|vci), if πi = visual

(13)

In textual mode, two textual event mentions
(mi,mi′) are coreferent if they belong to the same
text coreference chain specified by the antecedent
variables ci’s; in visual mode, however, they are
coreferent only if they refer to the same visual men-
tion, i.e., ci = ci′ . Further, the modes are assumed
to be equally likely and the prior of antecedent is
learnable in the attribute-matching mode to model
the discourse structure of the document:

p(ci|i, πi) =


q(ci|i), if πi = attribute,
1
i , if πi = trigger,
1
J , if πi = visual

(14)

Since the representation of a visual event is contin-
uous, we assume that the visual features of similar
events tend to cluster together and can be well mod-
eled by a Gaussian distribution with mean µk and
variance σk for each event type k. However, the

type of a visual event mention is ambiguous given
the visual feature alone because events like “at-
tack” and “protest” tend to co-occur in the video,
leading to overlapping visual mentions and similar
visual features. To model this, we allow each vi-
sual mention j to represent a different event type
for each text mention i it refers to with cluster vari-
ables zji, i = 1, · · · , I, j = 1, · · · , J . With such a
multi-label assumption, the probabilities p(mi|vj)
become:

p(mi|vj) =
K∑

zji=1

p(zji|vj)p(mi|zji, πi)

(15)

p(zji = s|vj) :=
exp(

−‖vj−µs‖2
2σ2

s
)∑K

k=1 exp(
−‖vj−µk‖2

2σ2
k

)
(16)

2.4 Antecedent prediction
We can use the maximum a posteriori (MAP) esti-
mator to find the optimal antecedent for each men-
tion separately as:

arg max
ci

q(ci|i)p(mi|mci , vci , πi). (17)

This approach, however, is less robust when the
visual event boundaries are noisy or overlapping,
as in our case. Therefore, we instead marginalize
out all possible alignments for each mention pairs
to obtain the pairwise score as in the textual mode:

arg max
j
p(ci = cj |mi,mj , V, πi = visual)

= arg max
j

J∑
c=1

p(mi|vc)p(mj |vc) (18)

2.5 Training
The whole model can be trained using EM algo-
rithm (Dempster et al., 1977) with more details in
Algorithm 1. We initialized the visual centroids
using K-means algorithm and the other parameters
uniformly on their supports. The model is then
trained for 10 EM iterations. We experimented
with various number of visual clusters, and the re-
sult is shown in Figure 2. The subsequent results
are all obtained with 15 clusters.

3 Experiments and Results

3.1 Data and Experiments Setup
The video M2E2 dataset (Anonymous, 2021), in-
spired by the image M2E2 dataset (Li et al., 2020),



136

Algorithm 1: Learning with EM
Initialization: initialize t0, q0,M0

for τ = 1 to T do
for each document D do

for i = 1 to I do
Update counts for p(m′|m,π)
and q(c|i) as in (Ma et al.,
2016);

for c = 1 to J do
Licz = p(zci|vc)p(mi|zci)∑

j p(zji|vj)p(mi|zji)

c(mi, z) + =
∑J

c=1 Licz
∆µz + =
(Licz − p(zci|vc))vc−µzσz

Update p(m′|m,π) and q(c|i)
parameters as in (Ma et al., 2016);
µz = µz + η∆µz

Figure 2: Coreference scores vs. number of visual clus-
ters used by amodal SMT

consists of 860 manually annotated documents,
each paired with a 1-2 minutes video released by
authentic news outlets such as British Broadcasting
Company (BBC), Voice of American (VoA) and
Reuters. The videos are found from Youtube chan-
nel with event types as searching keywords such as
“attack” and “elect”. The textual coreference labels
are annotated by two annotators with three rounds
of adjudication using the Brat interface (Stenetorp
et al., 2011) following ACE2005 guideline. More
details about this dataset are available in Table 3
as well as (Anonymous, 2021). We follow the 3:1
random split of training/test sets by (Anonymous,
2021). Three standard metrics for coreference reso-
lution are used to evaluate the models at the cluster
level: the MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), Entity-based CEAFe (Luo, 2005).

Video M2E2

# Train/Test 645/215
# Event mentions 4158
# Event clusters 647

Table 3: Dataset statistics. Only non-singleton clusters
are counted

The CoNLL score is calculated as the average of
these three scores and we used the CoNLL 2012
scorer (Pradhan et al., 2014). We also used the
more straightforward pairwise F1 score and mean
average precision (mAP) score, which score the
overlap between the set of predicted coreference
links and the gold links.

3.2 Baselines

We used the following supervised coreference reso-
lution model as baseline, namely,

• Text-only model: an implementation of the
state-of-the-art neural coreference resolution
model (Lee et al., 2018) by (Cattan et al., 2020),
which uses RoBERTa (Liu et al., 2019) to extract
contextualized word embeddings. All parameter
and optimization settings are made the same as
the multimodal supervised model described in
Section 2.2. We used ground truth mention spans
and within-document antecedent prediction in-
stead of using their cross-document hierarchical
clustering algorithm.

In addition, we used the following unsupervised
models as baselines, including

• HDP-LF: re-implementation of (Bejan and
Harabagiu, 2010) with a rich set of semantic and
syntactic features;

• DD-CRP: re-implementation of (Yang et al.,
2015) with additional pairwise features compared
to HDP-LF;

• Text-only SMT: proposed in (Ma et al., 2016)
with features adapted to event coreference resolu-
tion for each textual mode described in Section
2.

3.3 Results

The overall results on video M2E2 are shown in Ta-
ble. 4 respectively. We make the following claims:
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Effect of Visual Supervision The supervised
multimodal model outperforms the text-only model
by 2% in pairwise F1 and 3% in CoNLL (average
of the last three metrics), demonstrating the effec-
tiveness of multimodal data for coreference resolu-
tion. Further, amodal SMT achieves 3.5% and 2.4%
improvement in pairwise and CoNLL score respec-
tively over its text-only counterpart, 5.8% and 7.7%
improvement over the HDP-LF method, indicating
that video features contain additional information
to the text features and can benefit unsupervised
coreference resolution. Further, the amodal SMT
also outperforms the text-only supervised baselines,
though with the help of event type information.
However, it does not outperform the DD-CRP ap-
proach, possibly due to the lack of global cluster-
ing mechanism. A breakdown of pairwise coref-
erence scores across event types is shown in Ta-
ble 6. We found that the amodal SMT performs
significantly better than the text-only approach in
visually salient event types such as Demonstrate,
TransportPerson and Meet, but perform worse on
rare events such as ArrestJail and ReleaseParole or
non-visual events such as Die. The amodal SMT
also performs worse in visual event such as Attack
and Broadcast, probably because the model is con-
fused its visual representation with those of other
event types such as Demonstrate as the two events
often co-occur in the video. Although the amodal
SMT approach underperforms in 7 out of 10 most
frequent event types, we found its overall perfor-
mance superior to the text-only approach because
the large improvement in events such as Demon-
strate, TransportPerson and Meet (about 18% ab-
solute in average) outweighs the performance drop.
On the other hand, for the supervised event corefer-
ence, we found a reverse trend that the multimodal
model performs superior to the text-only model in
7 out of the 10 most frequent event types, though
the improvements are minor for types such as At-
tack and Broadcast. Furthermore, all the improved
event types in the unsupervised setting suffer from
performance drop in the supervised setting except
Meet event, and all events except Elect that suffer
from performance drop in the supervised setting
enjoy a performance gain in the supervised setting.
This suggests that different aspects of the visual
feature is used for the two settings.

Effect of Multi-mode mechanism From Table
4 and Table 5, removing any mode leads to degra-
dation to the model, suggesting the importance of

Video M2E2 Pairwise F1 MUC B3 CEAFe

(Cattan et al., 2020) 61.0±0.7 66.4±1.0 63.6±0.9 64.3±0.8
Weight Fusion (Ours) 61.6±0.5 67.0±1.0 64.4±1.2 64.7±1.8

HDP-LF 51.9±0.0 55.2±0.0 53.7±0.0 54.2±0.0
DD-CRP 56.4±1.7 62.3±0.6 60.7±0.8 63.3±1.2
Text-only SMT 54.1±0.0 60.3±0.0 58.7±0.0 59.8±0.0
Amodal SMT (Ours) 57.7±0.7 62.8±0.4 60.8±0.5 62.5±0.4

Table 4: Event coreference resolution performance of
all systems on the video M2E2 dataset. Models above
the line are supervised models while models below are
unsupervised. All results are averages of 4 runs. Note
that the confidence interval of text-only SMT is 0.0
since the model is initialized and trained deterministi-
cally.

using multi-mode mechanism. In particular, the
most performance degradation results from remov-
ing trigger mode, followed by removing both tex-
tual modes, then by removing visual mode and
finally by removing attribute mode. This suggests
that semantic information in video is less important
than semantic information in text, but more impor-
tant than discourse information. We also found
that HDP does not perform as well as the text and
amodal SMTs on video M2E2, probably because
of the lack of multi-mode mechanism in the model.

Qualitative analysis To better understand the
performance gain of using videos, we look at two
typical examples in Fig. 3. we can see that the text-
only SMT fails to cluster the trigger word “blew
out” with the word “explosion” and “blast”, proba-
bly because the word embeddings of multi-phrase
expressions such as “blew out” and of“explosion”
are quite different. However, thanks to the context
provided by the video, the amodal SMT is able
to identify the two triggers as coreferent, improv-
ing the recall of the system. Similarly, we found
that while “killed” and “assassination” have similar
meaning, the similarity score of their word embed-
dings is below the threshold we use (0.5), resulting
in a miss detection of the coreferent pair. However,
with the help of video, the amodal SMT is able
to resolve the coreference using their correlations
with similar type of videos in the visual mode. Nev-
ertheless, we observe that introducing the visual
mode can sometimes lead to false positives.

4 Related Work

Motivated by event coreference resolution for
low-resource languages, unsupervised event coref-
erence resolution algorithms have been pro-
posed (Haghighi and Klein, 2007, 2010; Bejan
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(a) Text SMT (b) Text SMT

Document

A powerful explosion and fire appar-
ently caused by a gas leak at a Paris
bakery Saturday injured several people ,
blew out windows and overturned cars
... Witnesses described the overwhelm-
ingly sound of the blast and people
trapped inside nearby buildings.

Text SMT (explosion, blast)

Amodal SMT (explosion, blew out,
blast)

(c) Amodal SMT

Document

Hundreds of thousands of mourners
have turned out in Iran to receive home
the remains of Qasem Soleimani, the
general killed by a US drone strike in
Iraq ... His assassination marked a sig-
nificant escalation between Iran and the
US. Iran ’s Supreme Leader Ayatollah
Khamenei, ...

Text SMT ()

Amodal SMT (killed, assasination)

(d) Amodal SMT

Figure 3: Coreference examples when adding a video as an additional modality helps. Only relevant event of the
video is shown. Green color denotes true positives detected by the amodal SMT but not by the text-only SMT. The
grid plots shows the posterior distribution p(ci|M,V ), i = 1, · · · , I , where the x-axis are the text mentions and
y-axis are their antecedent candidates.

Video M2E2 Pairwise F1 MUC B3 CEAFe

Full model 57.7±0.7 62.8±0.4 60.8±0.5 62.5±0.4
-textual mode 50.7±0.2 53.0±0.2 54.0±0.1 55.2±0.1
∆ -7.0 -9.8 -6.8 -7.3
-trigger mode 47.7±1.5 53.4±0.8 51.5±0.7 53.0±0.8
∆ -10.0 -9.4 -9.3 -9.5
-attribute mode 55.1±0.4 61.3±0.3 59.5±0.4 61.7±0.3
∆ -2.6 -1.5 -1.3 -0.8

Table 5: Ablation study on the effect of removing dif-
ferent modes on amodal SMT. “-textual” means using
visual mode only

and Harabagiu, 2010; Yang et al., 2015; Ma et al.,
2016). Notably, (Bejan and Harabagiu, 2010) pro-
posed a hierarchical Dirichlet process (HDP) to
capture recurring surface patterns on the global
cluster level such as matching trigger lemma, ar-
guments, neighboring events, etc, with a rich-get-
richer mechanism. (Yang et al., 2015) developed
a probabilistic model to combine global features
with rich pairwise features by learning a distance
metric between mentions. (Ma et al., 2016) refor-
mulated text-only coreference resolution as a trans-
lation process from each mention to its antecedent
with different resolution modes. Previous works

Event type Frequency Text SMT Amodal SMT
Supervised
(Text Only)

Supervised
(Multimodal)

Attack 2389 59.0±0.0 58.1±1.3 65.3±1.1 65.7±1.0
Die 1148 39.3±0.0 37.6±1.4 39.9±3.8 47.6±4.2
Demonstrate 874 55.0±0.0 73.6±0.2 69.8±2.1 69.5±2.2
Injure 348 75.0±0.0 70.6±0.0 35.3±11.2 48.5±17.3
TransportPerson 325 32.4±0.0 52.4±1.6 30.7±4.8 25.4±4.5
Broadcast 319 46.2±0.0 43.5±2.4 18.2±0.6 19.3±1.1
Elect 238 50.0±0.0 7.9±0.3 46.4±1.7 45.5±7.6
Meet 214 27.3±0.0 45.6±3.9 21.1±2.4 23.4±2.1
ArrestJail 165 80.0±0.0 38.5±5.2 0.0±0.0 0.0±0.0
ReleaseParole 139 100.0±0.0 66.7±0.0 25.0±0.0 33.7±15.2

Table 6: Pairwise F1 breakdown across the 10 most fre-
quent event types for the text and amodal models. Num-
bers colored in green denote improvement over the text-
only baseline and those in red denote degradation. Fre-
quency for each event type is the number of distinct
mention pairs that have at least one of the mention be-
longing to that event type.

on multimodal event coreference resolution focus
on the supervised setting with specialized datasets.
(Zhang et al., 2015) proposed a pipeline approach
based on a pretrained text-only coreference sys-
tem with additional aligned videos for each event
and their visual similarity as visual features for
cross-document coreference. However, their cross-
document model is not applicable to our within-
document coreference setting. (Yu et al., 2019)
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proposed a supervised end-to-end model to resolve
pronouns in short conversational texts, which uses
an attention mechanism (Bahdanau et al., 2015)
to control the tradeoff between cross-modal and
within-modal coreference resolution. Instead of di-
rectly applying their model, which is tailored to en-
tity pronoun resolution with images and dialogues
and may not be applicable to event coreference res-
olution with weakly correlated news articles and
videos, we adapt their attention mechanism and use
crossmedia coreference instead of object detection
result as additional supervision. (Li et al., 2020)
employed an multimoda event extraction system to
perform cross-modal coreference.

5 Conclusions

In this work, we proposed one supervised and one
unsupervised model for multimodal event coref-
erence resolution, which outperform the text-only
baselines on a realistic multimedia event dataset.

References
Anonymous. 2021. Joint multimedia event extraction

from video and article. Under review.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In In The First Interna-
tional Conference on Language Resources and Eval-
uation Workshop on Linguistics Coreference, pages
563–566.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Cosmin Bejan and Sanda Harabagiu. 2010. Unsuper-
vised event coreference resolution with rich linguis-
tic features. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1412–1422, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: pa-
rameter estimation. Computational Linguistics,
19(2):263 – 311.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Man-
dar Joshi, and I. Dagan. 2020. Streamlining cross-
document coreference resolution: Evaluation and
modeling. ArXiv, abs/2009.11032.

MMAction2 Contributors. 2020. Openmmlab’s next
generation video understanding toolbox and bench-
mark. https://github.com/open-mmlab/
mmaction2.

Arthur Dempster, Nan Laird, and Donald Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Soci-
ety, 39:1–38.

Aria Haghighi and Dan Klein. 2007. Unsupervised
coreference resolution in a nonparametric Bayesian
model. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 848–855, Prague, Czech Republic. Associa-
tion for Computational Linguistics.

Aria Haghighi and Dan Klein. 2009. Simple corefer-
ence resolution with rich syntactic and semantic fea-
tures. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
pages 1152–1161, Singapore. Association for Com-
putational Linguistics.

Aria Haghighi and Dan Klein. 2010. Coreference res-
olution in a modular, entity-centered model. In Hu-
man Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, pages 385–393,
Los Angeles, California. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4):885–916.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Manling Li, Alireza Zareian, Qi Zeng, Spencer White-
head, Di Lu, Heng Ji, and Shih-Fu Chang. 2020.
Cross-media structured common space for multime-
dia event extraction. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of The 58th Annual
Meeting of the Association for Computational Lin-
guistics.

https://www.aclweb.org/anthology/P10-1143
https://www.aclweb.org/anthology/P10-1143
https://www.aclweb.org/anthology/P10-1143
https://github.com/open-mmlab/mmaction2
https://github.com/open-mmlab/mmaction2
https://www.aclweb.org/anthology/P07-1107
https://www.aclweb.org/anthology/P07-1107
https://www.aclweb.org/anthology/P07-1107
https://www.aclweb.org/anthology/D09-1120
https://www.aclweb.org/anthology/D09-1120
https://www.aclweb.org/anthology/D09-1120
https://www.aclweb.org/anthology/N10-1061
https://www.aclweb.org/anthology/N10-1061
https://doi.org/10.1162/COLI_a_00152
https://doi.org/10.1162/COLI_a_00152
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108


140

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Xuezhe Ma, Zhengzhong Liu, and Eduard Hovy. 2016.
Unsupervised ranking model for entity coreference
resolution. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1012–1018, San Diego, Califor-
nia. Association for Computational Linguistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 30–35, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Lev Ratinov and Dan Roth. 2012. Learning-based
multi-sieve co-reference resolution with knowledge.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 1234–1244, Jeju Island, Korea. Association
for Computational Linguistics.

Pontus Stenetorp, Goran Topić, Sampo Pyysalo,
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