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Abstract

Speakers are thought to use rational infor-
mation transmission strategies for efficient
communication (Genzel and Charniak, 2002;
Aylett and Turk, 2004; Jaeger and Levy, 2007).
Previous work analysing these strategies in
sentence production has failed to take into
account how the information content of sen-
tences varies as a function of the available
discourse context. In this study, we estimate
sentence information content within discourse
context. We find that speakers transmit in-
formation at a stable rate—i.e., rationally—in
English newspaper articles but that this rate
decreases in spoken open domain and writ-
ten task-oriented dialogues. We also observe
that speakers’ choices are not oriented towards
local uniformity of information, which is an-
other hypothesised rational strategy. We sug-
gest that a more faithful model of communica-
tion should explicitly include production costs
and goal-oriented rewards.

1 Introduction

Linguistic communication can be understood as
information exchange through a noisy channel.
Speakers are sensitive to the properties of the chan-
nel in two ways (Clark and Wilkes-Gibbs, 1986;
Clark and Schaefer, 1989). On the one hand, they
try to reduce the processing effort of the addressee.
For example, in the absence of established dis-
course context, speakers can produce utterances
that are easier to process in order to minimise the
chance of transmission error. On the other hand,
speakers try to reduce their own production effort.
For example, given a fixed amount of information
that they intend to transmit, speakers can take the
risk of producing more concise utterances that are
less costly from the production point of view, and
expect the addressee to exploit the utterance con-
text for interpretation. Effective and efficient infor-
mation exchange under these two competing pres-
sures can be modelled using the tools of Informa-

tion Theory (Shannon, 1948). Indeed, information-
theoretic models have successfully accounted for
surprisal in speech perception (Jelinek et al., 1975;
Clayards et al., 2008), reading (Keller, 2004; Dem-
berg and Keller, 2008; Levy et al., 2009), sentence
interpretation (Levy, 2008; Gibson et al., 2013),
and overlap in turn taking (Dethlefs et al., 2016).

The information content of a sentence H(S)—
i.e., its entropy or the effort it takes to process
it out of context—and the informativeness of its
discourse context I(S;C) are hypothesised to be
related. According to the principle of Entropy Rate
Constancy (ERC; Genzel and Charniak, 2002), as
discourse develops, these two quantities increase at
a similar rate; thus, the difference between them—
i.e., the effort that it takes to process a sentence
in context—remains constant over the course of a
discourse: H(S|C) ≡ H(S) − I(S;C). A slight
relaxation of this prediction is that the informa-
tion content of a sentence in context remains uni-
form, rather than constant. This second prediction
follows from the principle of Uniform Informa-
tion Density (UID; Jaeger and Levy, 2007; Jaeger,
2010), according to which speakers make rational
linguistic choices that avoid peaks in the density of
the information transmitted. Evidence in favour of
these principles has been found in texts (Genzel and
Charniak, 2002, 2003; Qian and Jaeger, 2011) and,
under certain conditions, in conversations (Vega
and Ward, 2009; Doyle and Frank, 2015a,b; Xu
and Reitter, 2018; Giulianelli et al., 2021). How-
ever, these studies base their conclusions only on
estimates of the decontextualised entropy H(S):
under the assumption that a larger context is always
more informative, an increase in H(S) suffices as
an indication that the ERC and UID principles hold.

In this work,1 we dispose of the assumption that
context informativeness increases constantly within
a discourse, and we test whether the ERC and UID

1Code and statistical analysis are available at https://
github.com/dmg-illc/uid-dialogue.

https://github.com/dmg-illc/uid-dialogue
https://github.com/dmg-illc/uid-dialogue
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principles hold using, for the first time, direct es-
timates of the contextualised entropy H(S|C) of
an utterance and thus of the informativity of its
linguistic context I(S;C). Using a pre-trained
Transformer-based language model, which allows
us to obtain more accurate probability estimates
than the n-gram models used in previous studies
and to condition the estimates on discourse context,
we replicate Genzel and Charniak’s (2002; 2003)
seminal experiments on newspaper articles, and in
addition apply the analysis to open domain spoken
dialogues and to written task-oriented dialogues to
test the principles in interactive settings. The pro-
posed operationalisation allows us to test whether
the increase in decontextualised entropy observed
in earlier work corresponds to an increase in con-
text informativeness or whether speakers simply
change their transmission rate over time. Further-
more, this approach allows us to differentiate, for
the first time, between the ERC and the UID pre-
dictions at the level of discourse.

By studying language production using
information-theoretic tools, this paper directly
informs the development of computational models
of utterance generation. Our findings suggest
that architectures and training objectives that
enforce a uniform organisation of information
density (Meister et al., 2020; Wei et al., 2021) are
better suited for reproducing human strategies of
information exchange.

2 Related Work

If speakers were to use rational strategies in lan-
guage production, they would optimise successful
communication by transmitting information at a sta-
ble rate, close to the capacity of the communication
channel (Shannon, 1948). This rational strategy of
information exchange (Genzel and Charniak, 2002;
Aylett and Turk, 2004; Jaeger and Levy, 2007) is
employed at many levels of language production.
For example, speakers tend to reduce the duration
of more predictable sounds (Aylett and Turk, 2004,
2006; Bell et al., 2003; Demberg et al., 2012), they
tend to drop sentential material within more pre-
dictable scenarios (Jaeger and Levy, 2007; Jaeger,
2010; Frank and Jaeger, 2008), and they are more
likely to overlap at turn transitions that are less
information dense (Dethlefs et al., 2016).

At the level of discourse, it has been shown that
the decontextualised information content H(S) of
sentences increases in written texts with the amount

of relevant discourse (Genzel and Charniak, 2002).
This has been confirmed across document types
and languages (Genzel and Charniak, 2003; Qian
and Jaeger, 2011), and it has been hypothesised
that an increase in H(S) results in a constant level
of information content once the informativeness
of discourse context I(S;C) is taken into account.
This hypothesis has never been tested directly.

In interactive settings, it is as yet empirically
unclear whether speakers use this strategy of infor-
mation transmission. Vega and Ward (2009) and
Xu and Reitter (2018) investigate this in spoken
dialogue and show that H(S) grows throughout
dialogues, too, and that the contribution in infor-
mation content of interlocutors shows converging
patterns (Xu and Reitter, 2018). In contrast, Doyle
and Frank (2015b) fail to find UID effects in Twit-
ter dialogues and multi-party conversations. Again,
these studies focus on out-of-context utterance in-
formation content and do not measure the contri-
bution of the dialogue context. Doyle and Frank
(2015a), in another study with Twitter conversa-
tions, are the first to take the informativeness of
context into account. They focus on non-linguistic
contextual cues (i.e. information about hashtagged
events) and show that they have an effect on the
overall word-level information transmission pro-
files of conversations. In this study, we model the
effect of linguistic context on the information con-
tent of sentences in written monologue as well as
in written and spoken dialogue.

Recent work has extended this view of human
communication to computational models of lan-
guage generation. Meister et al. (2020) show that
the successfulness of many common generation
algorithms is related to their tendency to discard
lexical choices that make the information content
of the words in a sentence less uniform. Wei et al.
(2021) build on this finding and augment the train-
ing objective of language models with various uni-
form information density regularisers, thus consis-
tently improving the models’ perplexity and gener-
ating more lexical diverse texts. This suggests that
more faithful modelling of information transmis-
sion strategies in humans, to which we contribute
in this paper, can inform the development of better
computational models of language generation.

3 Data

We analyse trends of information content of writ-
ten and spoken English, in texts and in dialogue.
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Pos. Sentence H(S) H(S|C)

1 Stanislav Ovcharenko, who
represents the Soviet airline
Aeroflot here, has some vi-
sions that are wild even by
the current standards of per-
estroika.

5.44 5.44

2 In his office overlooking the
runway of Shannon Airport,
Mr. Ovcharenko enthusias-
tically throws out what he
calls "just ideas":

6.53 5.61

3 First, he suggests, GPA
Group Ltd., the interna-
tional aircraft leasing com-
pany based in Ireland, could
lease some of its Boeing jet-
liners to the Soviet airline.

6.10 5.82

Pos. Id. Utterance H(S) H(S|C)

1 B Hi. Two women with
bagels?

5.61 5.61

2 A nope 4.18 4.22
3 A guy with a beard and

big pizza
4.95 4.77

4 B No. A woman and
child in dimly lit
room

5.24 5.02

5 A yep she has a green
jacket on

5.46 5.21

6 A a wood table with
empty beer bottles on
it

4.42 4.55

7 B Yes. 4.86 4.91
8 A ok ready 7.13 7.64
9 B Done 11.85 11.30
10 A k go 10.32 10.57

Table 1: The first three paragraphs of a Penn Treebank article (document id: 36) and the first round of a PhotoBook
dialogue (dialogue id: 2037), annotated with sentence or utterance positions (Pos.), speaker identifier (Id.), and
information content estimates.

Excerpts from our corpus of written texts and from
our written dialogue corpus are shown in Table 1;
further excerpts from all our corpora can be found
in Appendix A.

Penn Treebank The Penn Treebank cor-
pus2 (Mitchell et al., 1999) contains 2,499 English
newspaper articles from the Wall Street Journal.
We follow the data splits used by Genzel and
Charniak (2002, 2003) and divide the corpus into a
training set (sections 0–20) and a test set (sections
21–24).

PhotoBook The PhotoBook corpus3 (Haber
et al., 2019) contains 2,500 English task-oriented
dialogues between two participants who interact
via written chat. The task is set up as game with 5
rounds. In each round, each dialogue participant
is shown a set of six images which partially over-
lap with the set shown to their partner. The goal
of the game is to discover which images are com-
mon to both participants. The images change in
each round, but a subset reappears, which elicits
re-descriptions of images that have already been
referred to in the dialogue. We split these dialogues
into a 70% training set (games 0-1751) and a 30%
test set (games 1752-2501).

Spoken BNC The Spoken British National Cor-
pus4 (Love et al., 2017) contains 1,251 samples

2https://catalog.ldc.upenn.edu/
LDC99T42

3https://dmg-photobook.github.io
4http://www.natcorp.ox.ac.uk

of contemporary British English open-domain dia-
logues, collected in a range of real-life contexts. To
be consistent with PhotoBook and previous work
(Vega and Ward, 2009; Xu and Reitter, 2018), we
select the dialogues that feature only two speakers.
We then randomly split these 622 dialogues into a
70% training set and a 30% test set.

4 Method

In this section, we present how we obtain estimates
of the information content of sentences (or utter-
ances), both when considered out of context and
within their discourse context. We define our main
information theoretic measures and describe the
computational models that produce the estimates.

4.1 Measuring information content
Our goal is to identify and describe patterns of
information transmission throughout a discourse.
Following prior work (Genzel and Charniak, 2002,
2003; Doyle and Frank, 2015a,b; Qian and Jaeger,
2011; Xu and Reitter, 2018), we start by taking the
sentence (or utterance) S as the basic unit of infor-
mation transmission,5 and estimate its information
density as the Shannon information content:

H(S)=− log2P (S) [1]

In this formulation, the information content of
a sentence measures how surprising, or unpre-
dictable, the sentence is if taken out of context.

5For convenience, throughout the paper, we may use the
term ‘sentence’ to refer to both sentences in text and utterances
in dialogue.

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://dmg-photobook.github.io
http://www.natcorp.ox.ac.uk
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However, because sentences appear in a discourse,
their true information content is always modulated
by the informativeness of their context. The avail-
ability of contextual cues (e.g., the topic of the text,
references to the main entities in the discourse, the
writing style) alters the expectations of the listener
and, in most cases, it makes new sentences less
surprising and less effortful to process.

The contextualised information content of a sen-
tence can also be estimated as the Shannon informa-
tion content, but using the negative log conditional
probability of the sentence given its context C:

H(S|C)=− log2P (S|C) [2]

Following the classic information-theoretic model
of communication, Genzel and Charniak (2002)
put forward the principle of Entropy Rate Con-
stancy (ERC): they hypothesised that the contex-
tualised information content of sentences remains
constant throughout a discourse. Drawing from
similar ideas, others have hypothesised that speak-
ers make linguistic choices that reduce peaks of
comprehension processing effort, leading to the
formulation of the principle of Uniform Informa-
tion Density (UID; Jaeger and Levy, 2007; Jaeger,
2010), which predicts that the contextualised in-
formation content of sentences remains uniform
throughout a discourse.

Although both principles generate predictions
about contextualised information content, previous
studies have tried to confirm or disprove them by
relying only on estimates of decontextualised in-
formation content, due to the lack of suitable com-
putational models. As we have alluded to earlier,
to make this simplification, they have relied on the
assumption that an increase in the available context
always corresponds to an increase in context in-
formativeness (Genzel and Charniak, 2002, 2003):
three sentences are more informative to predict the
fourth sentence in a text than two sentences are to
predict the third sentence. The operationalisation
of this assumption requires rewriting the contex-
tualised information content of a sentence as the
difference between the decontextualised informa-
tion content and the mutual information between
the next sentence and the context:

H(S|C) ≡ H(S)− I(S;C) [3]

Again, as the relevant context is built up, I(S;C)
is assumed to increase. So for the ERC and UID

principles to hold—i.e., for H(S|C) to remain con-
stant or uniform in Eq. 3—the decontextualised
information content H(S) must increase. In prior
work, an increase in H(S) was therefore consid-
ered sufficient evidence in favour of the principles.

In this paper, we do not assume an increase in
I(S;C) and estimate both the decontextualised and
the contextualised information content of a sen-
tence. This allows us to directly test the ERC and
UID principles and to measure the true informa-
tiveness of context as the reduction in sentence
surprisal contributed by the context.

4.2 Definitions

The decontextualised information content of a sen-
tence is computed by averaging over the negative
logarithms of all word probabilities, conditioned
only on the preceding words:

H(S)=− 1

|S|
∑
wi∈S

log2P (wi|w1, ..., wi−1) [4]

The contextualised information content of a sen-
tence is computed as the average per-word negative
probability, conditioned on the preceding words
in the sentence as well as on the entire relevant
discourse context:

H(S|C)=− 1

|S|
∑
wi∈S

log2P (wi|w1, ..., wi−1, C)

[5]

Context informativeness is computed as the differ-
ence between the previous two quantities:

I(S;C) ≡ H(S)−H(S|C) [6]

4.3 Modelling

We compute the log probabilities in Eq. 4 and 5
using GPT-2 (Radford et al., 2019), a pre-trained
autoregressive Transformer language model, which
allows us to obtain more accurate probability es-
timates than the n-gram models used in previous
work (Genzel and Charniak, 2002, 2003; Doyle
and Frank, 2015a,b; Qian and Jaeger, 2011; Xu
and Reitter, 2018) and to include discourse con-
text in the computation. We rely on HuggingFace’s
implementation of GPT-2 with default tokenizers
and parameters (Wolf et al., 2020) and to adapt the
language model to the idiosyncrasies of different
types of language use, we finetune it separately
on a 70% split of each target corpus. As shown
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in Table 2, finetuning yields a substantial reduc-
tion in the model’s perplexity. More information
on model parameters and the finetuning procedure
can be found in Appendix B. We use the finetuned
language models to estimate decontextualised and
contextualised information content (Eq. 4 and 5) of
the 30% held-out portion of each corpus.6

Fixed context window We use the language
model’s context window up to its maximum size
(1024 tokens). This means that once sentence po-
sition in a document is relatively high, the entire
window is filled and earlier portions of the context
are systematically tossed out. Therefore, the lan-
guage model cannot exploit long-distance relations
involving information present in earlier portions of
the discourse that fall outside this window. To en-
sure that the H(S|C) estimates are not biased for
high sentence positions, we determine, for each cor-
pus c, the first sentence position posc1024 where the
sum of context length’s average and standard devi-
ation across documents is 1024. Our experiments
are then executed on all sentences with position
smaller or equal to posc1024. The average length of
the examined portions of the documents is 15± 11,
54± 4, and 73± 0.5 sentences for Penn Treebank,
PhotoBook, and Spoken BNC, respectively.7.

Control runs Deep learning models are known
to exploit peculiarities of the data distribution that
humans would not find relevant. In this case, we
are concerned that our language model may be able
to make use of irrelevant contextual features to
produce more accurate P (S|C) predictions. This
would lead to an artificial decrease in H(S|C). To
control for this eventuality, we obtain H(S|C) esti-
mates for a given sentence using 3 control contexts,
following the same procedure described previously
for the true context.8 We randomly sample one con-
trol context from the target corpus and two from a
corpus with the same modality (i.e., never mixing
monologue and dialogue). This ensures that the
control contexts are truly independent with respect

6The held-out corpora, annotated with information con-
tent estimates, are provided in the supplementary material.
Excerpts can be found in Appendix A.

7We have tried to substitute GPT-2 with the Transformer-
XL language model (Dai et al., 2019) because of its unlimited
context window size. In spite of its larger window, however,
Transformer-XL yields higher perplexity than GPT-2 on all
corpora, hence we sticked to GPT-2. Further reasons to discard
Transformer-XL are discussed in Appendix B.1

8The length of the control contexts is always equal to the
number of tokens in the true context.

GPT-2 pre-trained GPT-2 finetuned

Penn Treebank 28.03 21.89
PhotoBook 43.42 14.93
BNC Spoken 66.47 8.69

Table 2: Word-level perplexity of the GPT-2 models on
30% held-out portions of the corpora.

to the target sentence (e.g., with respect to topic,
referents, and style).

5 Analysis of Language Model Estimates

In this section, we report the estimates and patterns
of sentence information content directly computed
with the finetuned GPT-2 language models for our
three corpora. Recall that we are directly estimat-
ing both H(S) and H(S|C) from data, in contrast
to previous work, where H(S|C) is never com-
puted empirically. Before using the H(S|C) esti-
mates to test the ERC and UID hypotheses, we vali-
date them by comparison with those obtained using
random control contexts (see Section 4.3). If the
language model relies on irrelevant contextual fea-
tures, we would expect the estimates obtained with
the true context to be virtually indistinguishable
from those obtained with random contexts. This
would mean that our H(S|C) estimates are not re-
liable. In contrast, if the model does effectively
exploit the actual context to estimate a sentence’s
entropy, we should see a clear difference between
the true H(S|C) estimate and the control runs.

As can be seen in Figure 1, true and control
trends start diverging from sentence position 2.
Control contexts produce a positive shift in the
magnitude of H(S|C) in all corpora: processing
a sentence S in a random context is always harder
than processing it in its true context. Moreover,
because the control contexts are incoherent with
respect to S, they cause H(S|C) to be higher than
H(S): processing a sentence S in an incoherent
context is harder than processing it with no con-
text.9 We also notice that while the magnitude of
H(S|C) depends on the veracity of the contexts,
its fluctuations are largely determined by H(S).
This is particularly true for the control trends of
H(S|C), whose slope, too, is determined byH(S).

In sum, the H(S|C) trends computed with the

9In Figure 1a and, partially, in 1c, we can see that one of
the control runs is closer to H(S); for this run the contexts are
sampled from the target corpus (see Section 4.3) and appear
to be less harmful for the language model estimates.
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Figure 1: Contextualised information estimates with true and random control contexts. Bootstrapped 95% confi-
dence bands. We also show the mean H(S) values for reference; confidence bands are visible in Figure 2.

true data differ from the trends obtained with con-
trol runs according to reasonable expectations: the
true H(S|C) estimates are lower, and the control
estimates higher, than the H(S) estimates. This
provides evidence that our empirical estimates of
sentence information content for the three corpora
are solid. We can now use these validated estimates
to test the ERC and UID hypotheses.

6 Experiments

Taking the values for H(S) (Eq. 4) and H(S|C)
(Eq. 5) estimated with the language model, we use
Eq. 6 to compute context informativeness I(S;C)
for all sentences in our datasets within a fixed initial
context window, as explained in Section 4.

Recall that the ERC and UID principles hypothe-
sise that both H(S) and I(S;C) will increase with
the position of S within a discourse, and that as a re-
sult, H(S|C) will remain stable. This is expressed
in Eq. 3, repeated here for convenience:

H(S|C) ≡ H(S)− I(S;C) [7]

In the following experiments we investigate
whether this is indeed the case.

6.1 Is information content constant?

In Experiment 1, we test whether the positive effect
of sentence position on decontextualised informa-
tion content observed in earlier work (e.g., Genzel
and Charniak, 2002, 2003; Xu and Reitter, 2018)
corresponds to a comparable increase in context
informativeness. Following Qian and Jaeger (2011)
and Xu and Reitter (2018), we fit linear mixed-
effect models using the logarithm of the decontex-
tualised information content H(S) as our response
variable and the logarithm of sentence position
as predictor, with a random intercept grouped by
distinct documents/dialogues. Because we do not
use Xu and Reitter’s length-normalised metric, and

length is known to have an effect on information
content estimates (Keller, 2004), we include the
logarithm of sentence length as an additional pre-
dictor. Our models also have a document-specific
random slope for sentence position and sentence
length to capture cross-document variation (Barr
et al., 2013). We repeat the same procedure to also
fit models using the logarithm of the contextualised
information content H(S|C), and the mutual infor-
mation I(S;C) as response variables.

The results of the linear mixed-effect models are
summarised in Table 3; a full report of the results
is shown in Table 7 (Appendix C). We now discuss
each of the measures in turn.

Decontextualised information content (H(S))
Decontextualised information content significantly
increases with sentence position in Penn Treebank
and in PhotoBook. Its rate of increase is relatively
low, as indicated by the coefficients of our linear
mixed-effect model. In Spoken BNC, there is no
effect of sentence position on H(S).

Context informativeness (I(S;C)) Context in-
formativeness increases with sentence position in
all corpora. Its rate of increase is higher than that
of H(S) (recall that these two quantities must in-
crease at a similar rate for H(S|C) to remain con-
stant). In Penn Treebank and Spoken BNC, I(S;C)
increases very rapidly in the initial positions; in
PhotoBook, the rate of increase is more regular and
yields the strongest effect in our statistical models.

Contextualised information content (H(S|C))
We find no significant effect of sentence position on
contextualised information content in Penn Tree-
bank: H(S|C) remains constant as predicted by
the ERC principle. However, we observe a signifi-
cant negative effect in both dialogue corpora.

Summary The results of Experiment 1 empir-
ically confirm Genzel and Charniak’s assump-
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H(S) H(S|C) I(S;C)

Penn Treebank β = 2.94e−2, p < 0.001 β = 0.23e−2, p > 0.05 β = 12.08e−2, p < 0.001
PhotoBook β = 4.07e−2, p < 0.001 β = −1.63e−2, p < 0.001 β = 27.94e−2, p < 0.001
Spoken BNC β = −0.05e−2, p > 0.05 β = −2.89e−2, p < 0.001 β = 6.31e−2, p < 0.001

Table 3: Coefficients of linear mixed-effect models using 1) the logarithm of H(S), 2) the logarithm of H(S|C),
and 3) I(S;C) as response variables. The logarithms of sentence position and sentence length are the predictors
and they are both assigned a per-document random slope; the models also include a per-document random intercept.
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Figure 2: Decontextualised information content H(S), contextualised information content H(S|C), and context
informativeness I(S;C) against sentence position. Bootstrapped 95% confidence intervals.

tion (2002) that context informativeness increases
throughout discourse. H(S) and I(S;C), however,
do not always increase together, and when they do,
they grow at a different rate. In Penn Treebank,
the difference in rate is sufficiently low to keep
H(S|C) constant but this is not the case in the di-
alogue corpora: in PhotoBook I(S;C) increases
much faster thanH(S), and in Spoken BNC,H(S)
does not increase at all. The regression coefficients
are rather small but comparable to those found in
prior work (Qian and Jaeger, 2011; Xu and Reitter,
2018; Giulianelli et al., 2021). In sum, we find that
the ERC principle holds in our corpus of written
monologue, but it incorrectly predicts the rate of
information in our two dialogue corpora.

6.2 Is information content uniform?

Experiment 1 suggests that constancy may not be
the best descriptor for patterns of contextualised
information content, particularly in dialogue. In
Experiment 2, we test whether these patterns can be
described as uniform. Collins (2014) proposes two
criteria to assess uniformity: local predictability
and global centrality. Local predictability measures
whether information content changes in a slow and
predictable way from one linguistic unit to the next,
as this is expected to reduced the addressee’s pro-
cessing effort and the chances of miscommunica-
tion. Global centrality measures to what extent

the information estimates cluster around a fixed
value; this criterion is directly derived from the
noisy channel model, predicting that language is
transmitted at a stable rate, close to the channel
capacity (Shannon, 1948). These measures were
originally defined by Collins (2014) to test for uni-
formity of word-level information content within a
sentence; here, we apply them at the sentence level
within a discourse. Since they assess uniformity ac-
cording to different criteria, it is sufficient for one
of them to hold to consider information profiles
uniform.

We measure global centrality and local pre-
dictability of H(S|C) within each document of a
corpus. In particular, we calculate local predictabil-
ity as the (negative) mean squared difference in
H(S|C) between two consecutive sentences:

LP = − 1

N

N∑
i=2

(H (Si|Ci)−H (Si−1|Ci−1))
2

[8]

where N is the number of sentences in a docu-
ment. We also compute local predictability on 100
randomly shuffled versions of a document, and
compare the true and control scores. If local unifor-
mity of information has an influence on speakers’
choices, we should find a significant difference be-
tween true and control local predictability scores.
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Figure 3: Per-document uniformity of contextualised
information content H(S|C). Bootstrapped 95% confi-
dence intervals.

Global centrality is the (negative) variance of con-
textualised information content of all sentences in
a document:

GC = − 1

N

N∑
i=1

(H (Si|Ci)− µ)2 [9]

where µ is the mean information content over the
sentences in a document.

Our key results are visualised in Figure 3. We
now discuss the two measures of uniformity in turn.

Local predictability We find the highest degree
of local predictability in the Penn Treebank arti-
cles;H(S|C) estimates for PhotoBook and Spoken
BNC show much lower levels of uniformity accord-
ing to this criterion (see Fig. 3a). Surprisingly, for
all three corpora, the local predictability of the true
documents is not significantly different from that
of shuffled documents: this suggests that, within
discourse, the pressure for maintaining the levels
of information content locally similar is not as pro-
nounced as it is within a sentence (e.g., Jaeger and
Levy, 2007; Collins, 2014).

Global centrality The written texts of the Penn
Treebank exhibit a higher degree of global central-
ity than both written and spoken dialogues (see Fig.
3b). This is in line with our findings for Exper-
iment 1. As reported in Section 6.1, we find no
effect of sentence position on H(S|C) in the Penn
Treebank, and indeed now we observe that all infor-
mation estimates in the Penn Treebank documents
tend to cluster around a fixed value: in this corpus,
information is transmitted at a constant and uni-
form rate. In the dialogue corpora, where the rate
of increase of H(S) and I(S;C) is significantly
different, H(S|C) values are less uniformly dis-
tributed according to the global centrality criterion.

Summary Experiment 2 shows that sentence in-
formation content is significantly more uniform

in written monologue than in written and spoken
dialogue, both at a local and at a global level. A
possible explanation for this may be the fact that,
whereas in newspaper articles uniformity depends
on the linguistic choices of a single speaker, dia-
logue utterances are produced online by two speak-
ers, which makes it harder to keep levels of informa-
tion content locally and globally predictable. Fur-
thermore, comparing the local predictability scores
of original and shuffled documents, we find that
local predictability is not a good predictor of infor-
mation transmission patterns in discourse.

7 Discussion and Conclusions

In this study, we have examined some central tenets
of the classic information-theoretic model of com-
munication. In contrast to previous work, we have
used language models to obtain information con-
tent estimates (H(S|C)) for sentences within their
discourse context, and we have measured context
informativeness (I(S;C)) as the reduction in sen-
tence surprisal contributed by discourse with re-
spect to out-of-context estimates (H(S)). This has
allowed us to directly model the information trans-
mission profiles of written texts and written and
spoken dialogues and, thereby, to test whether they
follow the rational communicative strategies pre-
dicted by the theory.

We have found that in American English news-
paper articles, H(S|C) remains stable as predicted
by the theory. This is not the case, however, for
spoken British English open domain dialogues, nor
for written English task-oriented dialogues: here,
H(S|C) decreases, albeit moderately, as sentence
position grows. We suggest that this is the result
of the uneven rates of increase measured for H(S)
and I(S;C)—the latter increases faster than the
former in all corpora under examination. We find
the strongest I(S;C) increase in the PhotoBook
dialogues, where topic is determined by a game’s
image domain (see Section 3) and, by task design,
participants produce multiple subsequent sentences
to describe the same images over game rounds. Cor-
rect interpretation of subsequent references (Mc-
Donald, 1978) requires indeed access to the shared
knowledge accumulated by speakers during dia-
logue. We observe the second strongest I(S;C) in-
crease in the Penn Treebank articles, where topic is
consistent throughout the text but new information
keeps being conveyed from the beginning to the
end of the discourse. The weakest increase takes
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place in the Spoken BNC: topic is more likely to
change during the course of an open domain dia-
logue and, with topic shifts, the previously estab-
lished common ground becomes less relevant for
the prediction of new linguistic material.

The lower rates of increase ofH(S), on the other
hand, can be due to the limits imposed on lexi-
cal choice by grammar and style. In PhotoBook,
where participants write freely in a chat interface,
the increase is stronger than in the more formal
newspaper articles of the Penn Treebank. How-
ever, the stable H(S) trends in the Spoken BNC
suggest that this is only one side of the coin. The
theory predicts that when context is more infor-
mative, speakers will increase the density of their
sentences to be more efficient, but speakers do not
need to be always efficient in open domain conver-
sations, where the pure information transmission
goal is perhaps overweighted by more social goals
that are not taken into account by the theory.

Another empirical finding that is not in line with
the analysed theoretical framework is that unifor-
mity of information content across consecutive sen-
tences (local predictability) is not a good predictor
of the information transmission profiles of the texts
and dialogues we analysed. Local uniformity may
be more relevant for lower-level linguistic signals
as they come in a much faster succession: speak-
ers want to avoid sudden changes in information
density to reduce comprehension effort; yet, at the
discourse level, changes in surprisal are less abrupt
as they are spread throughout an entire sentence,
thus giving the addressee time to adapt gradually to
the higher information content of the larger trans-
mission unit. Global centrality seems to be a more
faithful criterion of uniformity, in particular for
the articles of the Penn Treebank. In other words,
sentences are not so much produced to limit the
difference in information content with respect to
the previous sentence, but rather to maintain the
overall transmission rate stable in the articles. Both
dialogue corpora show a significantly lower degree
of uniformity than the Penn Treebank, measured
both as local predictability and global centrality:
in dialogue, an efficient strategy of information
exchange needs to be coordinated between two
speakers, which can make it more difficult to ob-
tain uniform information profiles.

In conclusion, our study suggests that the classi-
cal model of communication may be too simplistic
for discourse, where the units of information are

more complex. A first issue has to do with identi-
fying the relevant contextual components, which
are determined, at least, by the internal structure
of the discourse (Genzel and Charniak, 2003) and
by topic shifts (Qian and Jaeger, 2011; Xu and
Reitter, 2018). We have indeed shown in related
work (Giulianelli et al., 2021) that theoretically mo-
tivated contextual units exhibit clearer UID trends
in task-oriented dialogue.

Second, the predictions made by this model rely
on estimates of comprehension effort of a static
addressee whereas true addressees adapt on-the-fly:
e.g., van Schijndel and Linzen (2018) show that
endowing a language model with a simple adap-
tation mechanism improves predictions of human
reading times compared to a non-adaptive model.
Moreover, the classic framework assumes a single
addressee across documents while, especially for
dialogue, communication is shaped by the iden-
tity and the characteristics of multiple addressees
(Brennan and Clark, 1996; Brown-Schmidt et al.,
2015).

Finally, the framework condenses production
and comprehension effort in a single estimate. Fu-
ture work should study strategies of information
transmission in discourse using a model of commu-
nication, such as the Rational Speech Act model
(Frank and Goodman, 2012), that includes produc-
tion costs more explicitly and that allows accompa-
nying cognitive costs with social costs—e.g., those
related to the goal of the linguistic interaction. Za-
slavsky et al. (2021) recently showed that the RSA
model optimises the trade-off between expected
utility and communicative effort, and that it is di-
rectly related to Rate-Distortion theory (Shannon,
1948)—the branch of information theory that for-
malises the effect of limited transmission resources
on communicative success.
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Appendix

A Corpus Excerpts

Tables 4, 5, and 6 show excerpts of a Penn Tree-
bank article, a PhotoBook dialogue, and a Spoken
BNC dialogue. The article (Table 4) is annotated
with sentence positions and information content
estimates. The dialogues (Tables 5 and 6) are anno-
tated with utterance positions, speaker identifiers,
and information content estimates.

B Language Models

We experiment with GPT-2 (Radford et al., 2019),
an autoregressive Transformer-based (Vaswani
et al., 2017) language model, and we rely on Hug-
gingFace’s implementation with default tokenizers
and default parameters (Wolf et al., 2020).10 We

10The pre-trained model is named gpt2 in HuggingFace.
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Position Sentence H(S) H(S|C)

1 Storage Technology Corp. said it signed a letter of intent
to acquire M4 Data Inc. of Britain.

3.89 3.89

2 Terms weren’t disclosed. 2.26 2.11
3 Storage Technology said M4’s magnetic tape storage

equipment will complement its tape cartridge products.
7.64 6.55

4 M4 sells to the original equipment manufacturer market
world-wide and has about $20 million in annual sales.

5.75 5.50

5 A Storage Technology spokesman said the transaction
should be completed in one to two months.

4.45 3.81

Table 4: An annotated Penn Treebank article (document id: 15).

Position Speaker Utterance H(S) H(S|C)

1 A Do you have a boy in an orange shirt jump-
ing near a boat ?

3.64 3.64

2 B Yes. 4.86 5.12
3 A do you have a miltary boat that shows a

man climbing a ladder?
4.25 4.03

4 B I don’t have that one. 1.28 1.47
5 B I have a woman in a white hat, red boat

and blue life vest.
3.62 3.29

6 A I dont have that 2.69 2.87
7 A do you have a man in a vest and tie at night

against the railing
4.64 4.30

8 B Yes. 4.86 5.20
9 A any other questions? 4.05 3.84

10 A do you see two ladies with a panda bear
doll on a boat ?

4.87 4.82

11 B Yes. 4.86 3.85
12 A do you see the military man climbing the

ladder from the raft in a helmet
4.85 4.42

13 B Yep. I have that one, too. 2.77 2.32
14 A do you see a lady in kayak and whit hat

red kayak?
4.31 3.97

15 B I don’t have that one this time. 1.51 1.33
16 A do you have questions? 4.14 4.52
17 B I have an Asian sitting near several stacks

of wood.
6.08 5.63

18 A no i dont have that 2.78 2.70

Table 5: The first two rounds of a PhotoBook dialogue (dialogue id: 1861).
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Position Speaker Utterance H(S) H(S|C)

1 S0018 so how come you’re back so early? I
thought you had a tennis lesson

3.50 3.50

2 S0019 oh well so did I 5.75 5.74
3 S0019 and having made the arrangement with last

Tuesday carefully explaining to him that
I couldn’t do tomorrow because of the fu-
neral he said well okay I can do twelve
o’clock on Monday fine so I toddles along
at twelve o’clock today to be told that ’s
on a course at

3.64 3.79

4 S0018 oh no 5.28 5.22
5 S0019 but had obviously not bothered to write it

down
6.08 5.83

6 S0018 so he’d just completely forgotten you? 5.72 5.13
7 S0019 yes in a word 7.36 6.48
8 S0018 Did you phone him? 6.05 6.36
9 S0019 no I didn’t I allowed myself a little bit of

time to not be quite so cross and I had er
half an hour with well more than half an
hour three-quarters of an hour with one of
the other coaches there

3.95 3.71

10 S0018 what he just happened to be free? 5.71 6.06

Table 6: The first ten turns of a Spoken BNC dialogue (dialogue id: SVNL).

use the model’s maximum sequence length, 1024.
As the pre-trained model yields relatively high per-
plexity on the target corpora, we finetune11 it on
70% of each target corpus and leave out 30% of
the dataset to compute the model’s evaluation per-
plexity and to conduct our statistical analysis. The
training and held-out portions of the corpora are
specified in the main paper. GPT-2 is finetuned
for 20 epochs with a learning rate of 1e− 04 and
batches of size 8. Because 20 epochs do not yield
a substantial perplexity reduction for the Spoken
BNC dialogues, we finetuned the model for 20 addi-
tional epochs. The perplexity of the pre-trained and
finetuned models on the target corpora is reported
in the main paper.

For our estimates of information content, we
include sentence beginning symbols as contextual
cues but their information content is not computed.

11We use HuggingFace’s finetuning script
https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/language-modeling/run_clm.py.

B.1 Transformer-XL

Although excluding high sentence positions is in
line with prior work measuring decontextualised in-
formation content (e.g., Genzel and Charniak, 2002,
2003; Xu and Reitter, 2018), we have tried to sub-
stitute GPT-2 with the Transformer-XL language
model (Dai et al., 2019) because of its unlimited
context window size. In spite of its larger window,
however, Transformer-XL yields higher perplexity
than GPT-2 on all corpora. Moreover, to make fine-
tuning computationally feasible, we had to limit
the context window size to values close to 1024;
this is likely to make the model unable to use very
long-distance dependencies at inference time, mak-
ing it more similar but less performant than GPT-2.
Indeed, Transformer-XL models finetuned with a
fixed context size of 1024 yield higher perplexity
than the corresponding finetuned GPT-2 models.

C Experimental Results

Table 7 summarises the results of our statistical
analysis, as introduced in Section 6.1. Our lin-
ear mixed-effect models include the logarithm of
the information theoretic estimate of interest (con-

https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py
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Fixed effects Random effects (Std. Dev.)

Estimate Std. Error Pr(>|t|) Coeff. Residual

PTB: H(S)
Intercept 1.966 0.025 <0.001 0.332

0.186Position 0.029 0.004 <0.001 0.043
Length -0.125 0.006 <0.001 0.076

PTB: H(S|C)
Intercept 1.878 0.026 <0.001 0.320

0.204Position 0.002 0.004 0.545 0.037
Length -0.107 0.007 <0.001 0.076

PTB: I(S;C)
Intercept 0.711 0.048 <0.001 0.587

0.397Position 0.121 0.007 <0.001 0.058
Length -0.173 0.013 <0.001 0.164

PB: H(S)
Intercept 1.786 0.010 <0.001 0.183

0.337Position 0.041 0.002 <0.001 0.042
Length -0.181 0.003 <0.001 0.056

PB: H(S|C)
Intercept 1.986 0.010 <0.001 0.190

0.397Position -0.016 0.003 <0.001 0.039
Length -0.250 0.003 <0.001 0.065

PB: I(S;C)
Intercept -1.089 0.027 <0.001 0.559

0.846Position 0.279 0.007 <0.001 0.134
Length 0.355 0.009 <0.001 0.199

BNC: H(S)
Intercept 1.813 0.015 <0.001 0.144

0.287Position -0.001 0.003 0.875 0.027
Length -0.080 0.004 <0.001 0.038

BNC: H(S|C)
Intercept 1.729 0.025 <0.001 0.241

0.492Position -0.029 0.006 <0.001 0.060
Length -0.051 0.006 <0.001 0.065

BNC: I(S;C)
Intercept 0.446 0.049 <0.001 0.351

1.154Position 0.063 0.012 <0.001 0.075
Length -0.104 0.011 <0.001 0.087

Table 7: Results of linear mixed-effect models on the Penn Treebank articles (PTB), the PhotoBook written dia-
logues (PB), and the Spoken BNC dialogues (BNC).

textualised information content H(S), decontex-
tualised information content H(S|C), or context
informativeness I(S;C)) as the response variable;
the logarithm of sentence position and the loga-
rithm of sentence length as predictors; a random
intercept grouped by distinct documents/dialogues;
and a document-specific random slope for sentence
position and sentence length. The Random effects
columns show the standard deviation of the random
effects (Coeff.) and the residual standard deviation.

D Computing Infrastructure

The models were trained and evaluated on a com-
puter cluster with Debian Linux OS. Parallelization
over four GPUs was implemented for the finetuning
of GPT-2. All information content computations
were executed using used a single GPU. The GPU
nodes are GPU GeForce 1080Ti, 11GB GDDR5X,
with NVIDIA driver version 418.56 and CUDA
version 10.1.


