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Abstract

By the age of two, children tend to assume
that new word categories are based on ob-
jects’ shape, rather than their color or tex-
ture; this assumption is called the shape bias.
They are thought to learn this bias by observ-
ing that their caregiver’s language is biased to-
wards shape based categories. This presents
a chicken and egg problem: if the shape bias
must be present in the language in order for
children to learn it, how did it arise in lan-
guage in the first place? In this paper, we pro-
pose that communicative efficiency explains
both how the shape bias emerged and why it
persists across generations. We model this
process with neural emergent language agents
that learn to communicate about raw pixelated
images. First, we show that the shape bias
emerges as a result of efficient communica-
tion strategies employed by agents. Second,
we show that pressure brought on by commu-
nicative need is also necessary for it to per-
sist across generations; simply having a shape
bias in an agent’s input language is insufficient.
These results suggest that, over and above
the operation of other learning strategies, the
shape bias in human learners may emerge and
be sustained by communicative pressures.

1 Introduction

Learning new words involves inferring what the ref-
erents are in addition to learning a mapping from
these inferred referents to linguistic conventions.
This is a difficult problem, famously illustrated by
Quine’s (1960) problem of referential inscrutabil-
ity. Yet, human children manage just fine. A com-
mon explanation is that they must be using addi-
tional sources of information to learn new words.

∗Corresponding author.
†This project was started during an internship at Mi-

crosoft Research Montreal.

Figure 1: An example experimental trial on novel word
learning. Humans typically choose the right picture.

One such source is inductive word learning biases,
such as the shape bias, which appears in children
around two years of age (Heibeck and Markman,
1987; Landau et al., 1988). This bias can be ob-
served when children and adults are presented with
a novel object and word. They will often assume
that this word refers to a class categorized by the
shape of the novel object. Thus, when they are
presented with more exemplars they will tend to
classify those that share the same shape in the same
lexical category, rather than those which share the
same color or texture, (Figure 1).

In this paper, we endeavor to answer two ques-
tions: how did the shape bias emerge in our lexical
categorization systems? and why does it persist
across generations, languages, and cultures? Us-
ing neural emergent communication agents as our
model of linguistic convention formation, we show
how efficient communication strategies can explain
both the emergence and persistence of this bias.

Languages have been shown to follow principles
of efficient communication for naming systems in
a variety of semantic domains, including kinship
terms (Kemp and Regier, 2012) and color terms
(Zaslavsky et al., 2019). A given naming system
tends to strike a perfect balance between its over-
all informativity and simplicity as a function of
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speakers’ need to distinguish referents in that sys-
tem (Kemp et al., 2018). The effects of efficient
communication strategies in one semantic domain
on other related domains have yet to be consid-
ered. In this paper, we demonstrate how efficient
communication strategies in one semantic domain
– shape – can affect the overall lexicon and lead to
categorical biases, like the shape bias.

Contributions We propose an explanation for
the existence and persistence of the shape bias,
finding that both follow from principles of effi-
cient communication; We develop a formal way
to model the emergence of lexical categories us-
ing neural emergent communication agents1; We
extend the communicative efficiency paradigm to
learning contexts and consider its effects on the
overall lexicon.

2 Previous Work

2.1 The shape bias in children

The shape bias is one of many inductive biases that
help children learn new words (Markman, 1990). It
was initially studied by Landau et al. (1988). They
found that the strength of the bias depended on
the age of the participants and task, generally ap-
pearing around two years old and growing stronger
over time. Its acquisition has been attributed to
two possible learning processes: associative word
learning (Samuelson and Smith, 1999; Samuelson,
2002; Regier, 2003, 2005; Smith and Samuelson,
2006, also known as attentional learning) and con-
ceptual learning (Diesendruck and Bloom, 2003;
Booth et al., 2005; Kemp et al., 2007).

Associative learning accounts argue that children
observe statistical regularities while learning a lan-
guage’s lexical categories and generalize higher or-
der lexical categorical biases – for example, by ob-
serving that all items in categories ‘bowl’, ‘cup’, or
‘spoon’ share a shape, one might hypothesise that
novel lexical categories will also share this property.
Conceptual learning accounts argue that the shape
bias is a conceptual bias learnt by generalizing cat-
egorical features of different kinds, proposing a
more abstract view of this inductive bias, that goes
beyond lexical categories specifically. Importantly,
both of these approaches rely on the existence of
bias towards shape in the lexical or conceptual cat-
egories of the caregivers a child is exposed to in

1All the code and data used for this paper are available at
github.com/evaportelance/emergent-shape-bias.

order for the shape bias to be learnt. Once learnt,
this same bias can be used to form new categories,
creating a chicken-and-egg problem: the shape bias
helps us learn new words and language helps us
learn the shape bias.

2.2 The shape bias in neural networks
Early connectionist models of associative learning
demonstrated how it was possible to learn the shape
bias via statistical regularities in lexical categories
(Samuelson, 2002; Regier, 2003, 2005). As im-
age recognition models developed, the shape bias
peaked interest as a possible behavioral benchmark
for comparing vision model recognition behavior
to human recognition (Ritter et al., 2017; Hosseini
et al., 2018; Geirhos et al., 2019; Tuli et al., 2021;
Bhojanapalli et al., 2021). However, using this bias
as a general behavioral benchmark ignores much of
the work showing that it is contextually modulated
and task dependant in humans; it is not a general
purpose perceptual bias – i.e. we don’t necessar-
ily have a shape bias when categorizing natural
kinds like foods or substances (Imai and Gentner,
1997; Soja et al., 1991; Yoshida and Smith, 2003;
Diesendruck and Bloom, 2003; Booth et al., 2005;
Cimpian and Markman, 2005). With the advent
of situated agents and emergent language agents,
the use of neural networks to study the learning
process for the shape bias reemerged, reproducing
similar results to earlier connectionist models sup-
porting associative learning (Hill et al., 2019) and
demonstrating how existing perceptual biases can
influence lexical category formation (Ohmer et al.,
2021).

2.3 Communicative efficiency
Communicative efficiency is an information the-
oretic approach for explaining both semantic and
syntactic linguistic typological observations (for
review see Kirby et al. (2015); Kemp et al. (2018);
Gibson et al. (2019)). Here, we focus on semantic
domains. Languages must be informative, which
means that they must allow a speaker to accurately
convey intended meaning to a listener. There is
a ‘communicative cost’ associated with informa-
tion loss. Languages must also be simple since
we have a limited amount of cognitive resources
which must be properly utilized. There is a ‘cog-
nitive cost’ associated with language with higher
complexity. A language is considered to respect
communicative efficiency if it follows the optimal
trade-off between informativity and complexity;

https://github.com/evaportelance/emergent-shape-bias
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natural languages have been found to do so for
a number of structured semantic domains (Gib-
son et al., 2017; Zaslavsky et al., 2019; Kemp and
Regier, 2012; Xu et al., 2020). This trade-off is
obtained because both informativity and complex-
ity are modulated by the likelihood of needing to
communicate a given semantic distinction, which
we refer to as communicative need.

Neural emergent communication agents have
been shown to learn efficient linguistic mappings
from structured semantic space, specifically for
color naming systems (Chaabouni et al., 2021).

2.4 Neural emergent communication agents

Neural emergent communication agents have been
used to study the emergence of structural linguistic
properties (Andreas and Klein, 2016; Lazaridou
et al., 2017; Havrylov and Titov, 2017; Kottur et al.,
2017). They have also been used to model the
emergence of the mutual exclusivity bias – another
child word learning bias (Ohmer et al., 2020).

Initially, agents performed communication tasks
that used structured input, where optimal parti-
tion were given by symbolic inputs or by using
encodings from pretrained supervised vision mod-
els. These tasks only required that agents develop
a coherent mapping between these features and
their messages. Tasks that require simultaneously
learning visual and linguistic representations – by
starting from unstructured input that does not ex-
plicitly define the meanings agents must use, like
pixelated images – have been found to be very dif-
ficult; agents often failed to learn any meaningful
representations (Lazaridou et al., 2018; Boucha-
court and Baroni, 2018). Steels and Belpaeme
(2005) and Chaabouni et al. (2021) have looked
at the emergence of lexical categories using struc-
tured input, but to the best of our knowledge it has
yet to be done using unstructured input.

3 A Model of Lexical Category Learning

In order to model the problem of language learn-
ing we first need a task, agent architecture, and
learning procedure that allow us to simultaneously
learn visual and linguistic representations. Then,
we can ask how visual and lexical categorization
systems biased towards shape can both (1) arise
in a language, and furthermore, (2) persist across
generations of language learners.

3.1 Data and task

We generated a dataset of single object images
based on the CLEVR Dataset generator (Johnson
et al., 2017). Objects can vary in color, shape, ma-
terial and size. In addition to the existing CLEVR
object features, we added 7 additional shapes, for
a total of 10 possible shapes (cube, sphere, cylin-
der, cone, tetrahedron, torus, icosahedron, 6-sided
symmetric cross, 3D L-shape, tetrahedral sphere
form), 8 colors (gray, red, blue, green, brown, pur-
ple, cyan, yellow), 2 materials (metal, rubber), and
2 sizes (small, large), totalling 320 possible com-
binations as objects.2 We randomly varied object
and lighting position on a 3D gray background to
generate 33,000 images, 22,000 for train set and
11,000 for test set. All objects appear in both test
and train but the images and perspectives of these
objects vary across sets.

We use the images in our train and test sets to
design communication games. Agents play a varia-
tion on the classic Lewis signalling game (Lewis,
1969) designed to study how communicative part-
ners converge on a system of linguistic conventions
referring to these objects.3 The game is played by a
speaker (sender) and a listener (receiver). Speaker
S is given an image of the target object i and pro-
duces a message m = [m1, ...,mn] which is then
transmitted to the listener L. Using this message,
the listener must then try to correctly identify this
target object from a set of images I which con-
tains a different perspective of the target object
and additional distractor images.4 Thus, agents
are maximally cooperative with one another. The
images for each game are sampled from the pre-
viously described dataset; an exemplary game is
available in Figure 2. In the following experiments,
each game consists of one target object and three
distractors.

3.2 Agent architecture

We describe how the vision and language compo-
nents of each agent model interact (see Figure 2)5.

2Refer to Appendix A for additional exemplary images.
3Similar variations on Lewis signalling games have been

used to study the dynamics of category formation (Jäger, 2007;
O’Connor, 2014).

4When given identical target images agents tend to refer
to the position of object in the images rather than its color or
shape because coordinates are in continuous space and thus
more distinctive, while color and shape are not. We avoid this
problem by having agents see different perspectives of the
same object.

5Refer to Appendix B for full implementation details.
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Figure 2: Task and agent architecture design. The AGENT box contains modules that update during learning.

Vision Training agents directly on pixelated im-
ages as input is very difficult: often they are un-
able to learn a meaningful communication system
(Lazaridou et al., 2018; Bouchacourt and Baroni,
2018). We offer a solution to this problem by tak-
ing inspiration from humans. We separate image
processing into two steps: (1) image perception,
and (2) image representation.

For humans, perception is dependent on physio-
logical constraints and perceptive predispositions
which are independent from language – for exam-
ple newborns’ predispositions towards detecting
faces (Simion and Giorgio, 2015) – while represen-
tation is intertwined with language. The distinctive
features we choose to describe in an image are de-
pendent on the tools we have to communicate them.
Thus, in our agents, we adopt the approach that the
perception of an image is independent of how the
agents choose to represent and describe it.

For perception, we use a fixed pretrained model.
Crucially, this model should not be trained using su-
pervision to recognize specific features. We choose
to use AMDIM (Bachman et al., 2019), a self-
supervised learning model for image encodings.
We pretrained this model on our images using its
default hyperparameter settings.6

As for representation, each agent is equipped
with their own representation encoder that updates
during learning. For each image, the encoder takes
the output of the perception module and selectively
reduces it to a smaller feature vector before passing
it to a language module.7

6It should be noted that this model does not have ‘innate’
perceptual shape bias; though it may encode shape features, as
we will see in experiment 1, it in fact has a tendency towards
primarily encoding more localized features like color.

7For additional motivation for the use of this dual vision

Language When the agent is assigned the
speaker role, they receive an image of the target
object i and must produce a descriptive message
m for the listener. This image goes through the
vision modules and the output of the represen-
tation encoder acts as the initial hidden state of
the production module, a single layered LSTM.
The LSTM sequentially generates the speaker’s
message. At each state we sample the next char-
acter from a categorical distribution over the vo-
cabulary. This character is then used as the in-
put of the subsequent state to generate the next
character. The cycle continues until an end-of-
string character is produced or the max message
length is reached. So for Speaker S, we say that
pS(mn) = pS(·|m1, ...,mn−1, i) for each charac-
ter mn in a message m. The probability of the
full message given the image of the target i is
pS(m|i) =

∏
n pS(mn).

If the agent is the listener, the message m gen-
erated by the speaker is used as the input of the
comprehension module, here again an LSTM. The
final state of the LSTM is combined by a dot prod-
uct with the output of the representation encoder
for each image in the set of images I of a given
game. The listener receives a different image of
the target object as well as 3 distractor images. The
combined message and image interpretation vec-
tors are then used to predict which image contains
the target object. The listener’s guess i′ is sam-
pled from the predicted target distribution over the
images in I: i′ ∼ pL(·|m, I).

Our agents are symmetric (Cao et al., 2018;
Bouchacourt and Baroni, 2019; Harding Graesser
et al., 2019). This means they can alternate between

module approach over previous approaches see Appendix D.
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being speaker or listener. This approach allows us
to use a shared set of embeddings for the production
and comprehension modules within each individual
agent in order to represent messages. Additionally,
having symmetric agents allows us to distinguish
between two types of learning phases, selfplay and
play with other agents as described in §3.3.

3.3 Learning functions
In experiment 1, which addresses our first research
question on the emergence of the shape bias, agents
go through two learning phases: a selfplay phase
and then a regular play phase between two dis-
tinct agents.8 In the initial selfplay phase each
agent plays games alone, enacting both the role
of speaker and listener. We allow backpropaga-
tion of gradients through the message channel from
end to end during this phase, since they happen
within a single agent. In order to backpropagate
through the discrete communication channel, we
use the Gumbel-Softmax gradient estimator (Jang
et al., 2017) similarly to previous work on selfplay
(Foerster et al., 2016; Havrylov and Titov, 2017;
Mordatch and Abbeel, 2018; Lowe et al., 2020).

Selfplay loss `SP: we use the cross-entropy loss
on the final prediction:

`SP := − log pSL(i|i, I) (1)

where pSL(·|i, I) is the prediction made by the
speaker-listener chain.

Next, agents play together in a community play
phase. Since our agents are symmetric, they take
turns being either the speaker or the listener; this is
randomly assigned with each batch of games. As
they are separate agents, we do not allow gradients
to pass through the message channel during this
phase; instead we rely on reinforcement learning.

Community loss `C: The community loss is the
joint speaker S (2) and listener L (4) losses. S
updates using the accuracy reward signal given by
r := I[i = i′] ∈ {1, 0}, where i′ is the listener’s
best guess and i is the ground truth target9. The
speaker loss `S is:

`S := −(r − b) log pS(m|i) + `H (2)

`H := − c

|m|

|m|∑
n=1

∑
mn∈V

pS(mn) log
1

pS(mn)
, (3)

8We motivate this two phase approach in Appendix D.
9Note that the speaker does not have access to the listener’s

beliefs in the form of cross-entropy rewards, but instead learns
using accuracy rewards, since the speaker should not observe
the internal states of the listener.

where b is the baseline representing the mean re-
ward across previous batches. We add the speaker’s
entropy `H as a regularizer, here c = 0.01.

The listener learns using cross-entropy. The lis-
tener loss `L is:

`L := − log pL(i|m, I) (4)

In experiment 2, which addresses our second
research question on the persistence of the shape
bias, we use an iterated learning paradigm which is
designed to study language evolution across gener-
ations of learners (Kirby, 2001; Kirby et al., 2014;
Li and Bowling, 2019; Cogswell et al., 2020; Ren
et al., 2020; Lu et al., 2020; Dagan et al., 2020).
For iterated learning, we introduce an additional
student-teacher play phase to those previously de-
scribed. During this phase, a student – an agent
from the current generation – and a teacher – an
agent from the previous generation – play together
like regular community play except that the teacher
agent does not update, only the student. They take
turns being the speaker and the listener. Thus, the
loss in student-teacher play either consists of the
speaker loss `S (2) or the listener loss `L (4) de-
pending on the role played by the student.

4 Measuring Efficiency in Neural Agents

In order to determine if agents are efficient com-
municators and whether the shape bias follows the
communicative efficiency trade-off, we first define
the metrics we will use to estimate communicative
need, information loss, and complexity.

There are some differences between our ap-
proach from previous metrics that should be noted
(Kemp et al., 2018). First, we do not assume that
communication between a speaker and a listener is
always successful; we are in a language learning
context where learners make mistakes. For this
reason, our informativity measure is based on com-
municative success rate, rather than the expected
cost of needing to refer to an explicit shape. Sec-
ond, we do not assume that the naming systems
these agents learn have perfect coverage. Thus, we
cannot define an explicit generative model for lexi-
cal categories and count the minimum number of
rules necessary to describe a semantic system as a
complexity measure, but instead we must rely on es-
timates of mutual information (MI) between agents’
linguistic representations and the available shape
classes in our dataset. MI between linguistic repre-
sentations (words) and semantic classes (meaning)
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has in fact previously been used to estimate com-
plexity of color naming systems (Zaslavsky et al.,
2019; Chaabouni et al., 2021).

Communicative need is defined as the propor-
tion of ‘shape games’ played during training. A
shape game is a game where the distractors and
the target only differ in terms of shape (but share
the same color, texture, and size), so it is necessary
for the speaker’s message to encode information
about shape distinction to successfully communi-
cate the target to the listener (The same applies to
color games, where the target and distractor objects
only differ in terms is color). Agents trained with
a higher proportion of shape games have a higher
communicative need to distinguish shape classes.

Information loss is defined as the proportion
of test games where the listener fails to identify
the correct target given the speaker’s message, or
(1 − accuracy). For example, higher accuracy
on shape games means smaller information loss
about shape in agents’ lexical categories.

Complexity is defined as the MI between class
labels (the 10 shape and 8 color classes in our
dataset) and agents’ language embeddings. In or-
der to obtain the distributions over embeddings and
class labels, we take the embedding of the first char-
acter of a message generated by speakers for all
11,000 test images, as well as the shape/color label
for those same images. We chose to use only the
first embedding as it is a good baseline for agents’
linguistic representations10. Given that each em-
bedding contains multiple features (the embedding
size is 64), we sum the MI estimates between each
feature and the labels to get the estimated MI be-
tween the whole embeddings and labels. In this
case, we use the method from Ross (2014) for es-
timating MI between a continuous and a discrete
distribution. Higher MI indicates more similar-
ity between linguistic representations and a given
meaning space. Thus, for example, higher MI be-
tween agents’ embeddings and test image shape
labels indicates a more complex set of shape dis-
tinctions in agents’ lexical categories.

5 Experiment 1: The Emergence of a
Shape Bias

Our first research question asks how a bias towards
shape can emerge simultaneously in both linguis-

10We considered MI between more complex representa-
tions and class labels; all show the same result pattern as this
baseline (see Appendix E).

tic and visual representations without conditioning
learning on an existing language. We hypothesise
that the shape bias emerges due to communicative
need and that agents use efficient communication
systems when referring to complex referents.

5.1 Setup
We have two agents play the signalling games de-
tailed in the previous section, first in selfplay and
then in community play. They play 896,000 games
total in each phase. Across all runs, the agent and
learning hyperparameters are fixed, we only vary
our independent variable, communicative need –
the proportion of shape games seen during training
(the non-shape games are randomly generated by
sampling the target and distractors from a uniform
distribution over objects). We measure information
loss and complexity using agents’ final state after
training. For all measures, we report mean and
standard deviation across 5 random seed runs.

5.2 Results and Analysis
First, let us consider only the lexical categoriza-
tion system that agents learn for shape. Figure 3.A
shows us that accuracy on shape games is modu-
lated by communicative need. As communicative
need increases so does accuracy, in other words, in-
formation loss decreases. Figure 3.B shows us that
complexity is also modulated by communicative
need. As the proportion of shape games increases
so does MI between shape labels and the first em-
bedding of speaker messages. Figure 3.C shows
us that agents develop communication systems for
shape that are efficient, trading off between infor-
mation loss and complexity as a function of com-
municative need for shape.

Second, now that we have established that agents
develop efficient semantic categorization systems
for shape, let us consider what happens to other
semantic domains, such as color, as we increase
the communicative need for shape. In Figure 3.A,
we see that as we increase the communicative need
for shape, the accuracy on color games decreases,
showing the opposite relation to shape game accu-
racy. In Figure 3.B, we see the same opposite effect
where as communicative need for shape increases,
MI between color labels and the first embedding of
speaker messages decreases. When communicative
need is at 0.0 and all games are randomly sampled,
agents have a strong color bias – higher accuracy on
color games than shape games and higher complex-
ity for color labels than shape labels indicate that
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Figure 3: A. Listener accuracy on test games. 0.25 is chance performance. The dotted line represents overall
test accuracy. There is a slight drop in overall accuracy as the number of shape games increases since learning
to visually recognize and distinguish shape is harder than more localized visual features like color or texture. B.
Complexity, or mutual information between the first embedding of messages and class labels. C. Optimal trade-off
between information loss and complexity in agents shape distinction systems. Colored points are single runs with
different random seeds and communicative need for shape seen during learning. Gray points are random languages
generated by permuting the order of agents’ language embeddings.

agents use a convention system that categorizes ref-
erent objects based on their color rather than their
shape. However, as we increase communicative
need for shape, performance on color games and
MI between embeddings and color labels both drop
and agents develop a strong shape bias.

As we increase communicative need for shape,
we are consequently decreasing the need to distin-
guish color. This happens for two reasons. First,
both shape and color are properties of the same
set of 320 objects agents are developing a nam-
ing convention system for. If they develop a nam-
ing system that categorizes objects based on their
shape, they can still use this naming system in most
randomly generated games and be successful 9/10
times, without ever needing to reference color. Sec-
ond, as we increase the number of shape games
while holding the number of total games fixed, we
are consequently decreasing the number of random
games and therefore decreasing the number of color
games, since about 0.001% of randomly sampled
games are color games.

This suggests that higher communicative need
for shape may lead to lower need to communicate
other types of distinctions about referent objects,
leading to the emergence of a bias towards shape
in our lexical categories.

6 Experiment 2: The Persistence of a
Shape Bias

Our second research question asks whether the ex-
istence of a bias towards shape in a parent’s lexical
categorization system is enough to maintain that
bias in new generations of learners. We hypothe-

sise that it is not, and furthermore, propose that a
constant external pressure originating from com-
municative need for shape is necessary in order
to maintain a shape bias in lexical categorization
systems across generations.

6.1 Iterated learning
We use an iterated learning paradigm that allows
us to explore how agent languages shift across gen-
erations (Kirby, 2001; Kirby et al., 2014, 2015).
Iterated learning involves having multiple genera-
tions of learners where each generation learns from
the previous one. These paradigms usually involve
some kind of ‘information bottleneck’ that forces
language to evolve over time by not allowing per-
fect noiseless transmission of information between
generations.

Different versions of iterated learning have been
used with neural agents to consider how structural
properties of language can evolve with cultural
evolution (Cogswell et al., 2020; Li and Bowling,
2019; Ren et al., 2020; Lu et al., 2020; Dagan et al.,
2020). Here, we instead consider how lexical cate-
gorization biases can evolve in agents over time.

6.2 Setup
The original generation will be composed of the
agents with the strongest shape bias from experi-
ment 1: those trained with 40% shape games. The
following generations are trained in one of two
condition: with 40% shape games (high commu-
nicative need for shape) or only on random games
(low communicative need for shape). This setup
will allow us to determine if communicative need
must be maintained in order for the shape bias to
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Figure 4: Listener accuracy on shape and color test
games at each generation. 0.25 is chance performance.

be maintained as well. At each generation, after
an initial selfplay phase, agents play games with
a teacher agent sampled from the previous genera-
tion before playing with each other in community
play. Agents play 896,000 games per phase. We
train a total of 14 generations per training condition
and report mean and standard deviation across 5
random seed runs for all measures.

6.3 Results and Analysis

In the ‘high communicative need’ condition a bias
towards shape is maintained across all generations
(see Figure 4). Here, higher accuracy on test shape
games than color games indicates that agents are
using a lexical categorization system that makes
more shape distinctions than color distinctions. In
the ‘low communicative need’ condition, we in-
stead observe that the shape bias disappears after
14 generations and that color game accuracy is
trending upward. This suggests that given enough
generations agents will eventually return to lexi-
cal categorization systems that reflect their innate
color bias, observed in experiment 1. Unless the
shape bias is an innate inductive bias, we expect
it to disappear over time if there is little external
pressure from communicative need to keep it.

7 Discussion

We have shown that a shape bias can emerge and
persist across generations of emergent communica-
tion agents if there is a high enough communicative
need for shape. In this final section, we address
what our results may teach us about the shape bias
in human learners and neural networks.

Previous work considered the lexicon one seman-
tic domain at a time, but our simulations demon-
strate that communicative need affects the structure
of the lexicon as a whole. Experiment 1 showed

us how the need for distinction in one semantic do-
main may inadvertently affect another domain and
lead to categorization biases, such as the shape bias.
Human learners may also experience this need for
discriminating shapes in communicative contexts,
which could help them learn this bias. Experiment
2 showed that without external pressures we expect
that, as language evolves, learners will eventually
fall back to using their innate inductive biases to
form lexical categories. There is evidence that the
shape bias in humans is not innate, but learnt, as it
starts around two years old and grows stronger over
time (Landau et al., 1988). These results suggest
that the shape bias in human learners may be sus-
tained by communicative need for shape in addition
to the learning mechanisms which ensure its trans-
mission from a caregivers’ lexical categorizations
to children’s.

There are several reasons we might expect peo-
ple to have a high communicative need for shape
in the real world. Most importantly, there are func-
tional reasons that motivate the use of shape dis-
tinction. In the case of artifacts, shape is often
related to an affordance (e.g. ‘hammer’ refers to a
class of objects which share the same shape, and
that shape is what determines its use). We may
often be trying to refer to objects’ functions during
communication. The shape bias is in fact strongest
in contexts where the referents are assumed to be
artifacts rather than natural kinds, often even dis-
appearing in the latter context (Imai and Gentner,
1997; Soja et al., 1991; Yoshida and Smith, 2003;
Diesendruck and Bloom, 2003; Booth et al., 2005;
Cimpian and Markman, 2005). We would predict
this to be the case, since we do not expect a shape
bias in contexts with low communicative need for
shape.

Other types of neural networks have been shown
to develop a shape bias (1) by increasing the size
of models or (2) by augmenting their input data
(Hosseini et al., 2018; Geirhos et al., 2019; Hill
et al., 2019; Bhojanapalli et al., 2021; Tuli et al.,
2021). Note that neither of these approaches can
account for the bias being contextually modulated
the way it is in humans. When it comes to making
models larger (1), we show that it is possible for
relatively small models to learn a shape bias, and
furthermore, we do not find that the size of agent
models affected our experiment 1 results (see Ap-
pendix G). As for using augmented input data (2),
this is done by increasing the number of distinct
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shapes versus other features in a dataset such that
objects differ more in terms of shape than other
features, for example by having fewer colors, like
using black and white images. The reason these
data augmentations increase shape bias is in fact be-
cause they increase the need to distinguish shapes
during training instances when each training image
is seen an even number of times. We show that
these artificial data augmentations are not neces-
sary if you increase the model’s need to distinguish
shape through how it interacts with the data dur-
ing training (see Appendix F). Thus, considering
the shape distinction need probability during learn-
ing rather than using augmented data may help us
develop models with a stronger shape bias while
maintaining representative datasets.

In future work, we hope to address the context
specificity of the shape bias and consider whether
neural agents can learn to have a shape bias in some
referential spaces but not others as a function of
communicative need across different contexts.
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A Exemplar Images from Dataset

Figure 5: All colors: blue, red, green, yellow, gray, pur-
ple, cyan, brown.

Figure 6: All shapes: cube, cylinder, sphere, tetrahedral
sphere form, cone, torus, tetrahedron, icosahedron, 6-
sided symmetric cross, 3D L-shape.

Figure 7: All materials: metal, rubber.

Figure 8: All sizes: small, large.

B Hyperparameters

Here are the hyperparameters tested, bolded ones
are the settings we used for the experiments re-
ported in the main paper.

Game hyperparameters:
number of distractors: 3
number of games per epoch: 6,400 / 32,000 /
64,000 / 96,000

Learning hyperparameters:
number of epochs per phase: 10 / 12 / 14 / 15
learning rate: 0.001 / 0.0001 / 0.00001
batch size: 32 / 128 / 512 / 1024 / 2048

Population hyperparameters:
population size: 2
number of pairs: 1 (since population size is 2, only
pair (0,1) is possible)
number of generations: 0 (for experiment 1); 7, 14
(for experiment 2)
random seed: [1:5]

Agent vision hyperparameters:
image size: 128 (for image resizing)
compression size: 256, 512, 768

Agent language hyperparameters:
hidden size: 128, 256, 512
hidden mlp size: 128, 256, 512
embedding size: 64
message length: 7
vocabulary size: 60

C Model Specification

Perception module: AMDIM model
cloned from https://github.com/
Philip-Bachman/amdim-public and
trained on our whole dataset for 500 epochs with
200 images per batch. We consider the ‘rkhs_1’
output layer of size 1024. This part of the model
does not update during learning.

Representation module: An encoder composed
of: a linear transformation from size 1024
(AMDIM default output size) to compression size,
a non-linear Tanh transformation, a linear transfor-
mation from compression size to hidden size.

Production module: An LSTM Cell with input
embedding size and output hidden size; A linear
transformation layer from hidden size to vocabu-
lary size. We consider the output at each state for
message length states.

https://github.com/Philip-Bachman/amdim-public
https://github.com/Philip-Bachman/amdim-public
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Comprehension module: An LSTM with input
embedding size and output hidden size; An MLP
consisting of a linear transformation from hidden
size to hidden mlp size, a non-linear ReLU trans-
formation, a linear transformation from hidden mlp
size to hidden size. We consider the final state after
message length states.

Message classifier: This is not part of the agents,
but the classifier we used to evaluate complexity
of different agent languages. It is composed of
a single linear layer of input size message length
and of output size number of shape(10)/color(8)
categories.

Simple CNN vision module: This module is not
contained in our regular agents but used in our ex-
periment in appendix C where we compare our vi-
sion setup to this simple CNN setup. This module
can replace the perception and representation mod-
ules defined above. It is composed of: A Conv2D
layer with 3 input channels, 20 output channels, a
kernel size 5 and stride of 1; A ReLU non linear
transformation; A max pool 2D layer with kernel
size 2 and stride of 2; Another Conv2D layer with
20 input channels, 50 output, kernel of 5 and stride
of 1; A ReLU non linear transformation; A max
pool 2D layer with kernel size 2 and stride of 2;
A batchnorm2D layer; a two layered MLP with
dropout at 0.7 that reduces the output to hidden
size.

Optimizer: We used an Adam optimizer across
all models during training (Kingma and Ba, 2014).

D Model and Learning Procedure
Development

The developmental experiments reported in this
section were completed using an earlier version of
our dataset which only contained 10,000 images
that varied in shape (3 possible shape), color (8),
material (2), and size (2). The following experi-
ments were also conducted using slightly different
hyperparameters from those used in the main paper.

D.1 Vision Module Comparison

We compare our vision module approach to previ-
ous ones which involved training a simple multi-
layered CNN type architecture that processes the
images while also learning to communicate about
them (Lazaridou et al., 2018). This previous ap-
proach was notoriously difficult to train and could

Figure 9: Mean accuracy on test across 5 runs with
different random seeds. Lines represent mean and rib-
bons represent standard deviation. Both models trained
using 10,000 steps of 32 selfplay games followed by
10,000 steps of 32 community play games.

not guarantee that agents would manage to con-
verge on any communication system at all. We find
that using our perception/representation split with
pretrained AMDIM allows us to guarantee quick
convergence on a successful language, while we
could not manage to converge on any successful
communication system with the simple CNN setup
in so few games, see Figure 9.

D.2 Learning functions comparison

We explore the effects of different learning func-
tions and play phases on agents’ capacity to learn
to communicate successfully to find effective and
efficient learning approaches. Within a single gen-
eration, we consider two types of play: regular
game play between two agents – called commu-
nity play (§D.3) – and a form of single-agent play
– selfplay (§D.4). In iterated learning across mul-
tiple generations, we consider different forms of
student-teacher interactions, aka intergenerational
play phases (§D.5), in addition to regular intragen-
erational community play. For each of these phases
– community play, selfplay, intergenerational play –
we define a set of possible learning functions.

D.3 Community play

We test two different learning functions in § D.6.

Accuracy loss `ACC: The first loss jointly up-
dates the speaker S in (5) and the listener L in
(7) using the accuracy reward signal given by
r := I[i = i′] ∈ {1, 0}, where i′ is the listener’s
best guess and i is the ground truth target. This
strategy is standard and has previously been used
in both the single generation and iterated learning
contexts (Lazaridou et al., 2018; Li and Bowling,
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2019). We start with the speaker-accuracy loss `SA:

`SA := −(r − b) log pS(m|i) + `H (5)

`H := − c

|m|

|m|∑
n=1

∑
mn∈V

pS(mn) log
1

pS(mn)
,

(6)

where b is the baseline representing the mean re-
ward across previous batches. We add the speaker’s
entropy as a regularizer: `H, where c is a coefficient
between 0.1 and 0.01 that varies based on the re-
ward c = 0.1− 0.1|r − b|. We follow up with the
listener-accuracy loss `LA:

`LA := −(r − b) log pL(i
′|m, I) (7)

The accuracy loss is obtained by summing
the speaker-accuracy and listener-accuracy losses:
`ACC := `SA + `LA.

Cross-entropy loss `CE: The second approach
allows the listener to learn using cross-entropy (8),
while still using the accuracy-reward based updates
for the speaker (5). We now define the listener-
cross-entropy loss `LC:

`LC := − log pL(i|m, I) (8)

Cross-entropy loss is the sum of the speaker-
accuracy loss and the listener-cross-entropy loss:
`CE := `SA + `LC.

D.4 Selfplay

Unlike in community play, selfplay only involves a
single agent that plays both the role of the speaker
and the listener. We allow backpropagation of gra-
dients through the message channel from end to
end. In order to backpropagate through the dis-
crete communication channel, we use the Gumbel-
Softmax gradient estimator (Jang et al., 2017).

Selfplay loss `SP: we simply use the cross-
entropy loss on the final prediction:

`SP := − log pSL(i|i, I) (9)

where pSL(·|i, I) is the prediction made by the
speaker-listener chain.

D.5 Intergenerational play

We compare three types of student-teacher learning
interactions.

Student-teacher play: Student-teacher play is
like community play except one of the agents is
from the previous generation, while the other is
from the current one. The teacher agent does not
update, only the student can learn. They take turns
being the speaker and the listener. Thus, the loss in
student-teacher play either consists of the speaker-
accuracy loss `SA (5) or the listener-cross-entropy
loss `LC (8) depending on the role played by the
student.

Imitation-selfplay loss `ISP: Here we combine
selfplay with teacher message imitation. We intro-
duce a reward if the student produces a message
that is similar to what a teacher would produce
given the input image. This similarity reward is
given by taking the normalized Levenshtein dis-
tance (Levenshtein, 1966) between the student mes-
sage ms and the teacher message mt.

σ(ms,mt) := 1− lev(ms,mt)

|ms|
(10)

We use this similarity reward to motivate the stu-
dent to speak in a fashion similar to the teacher.
This leads to the student-teacher-similarity loss
`STS:

`STS := −(σ(ms,mt)− b) log pS(m
s|i) + `H.

(11)

The student-teacher-similarity loss is added to the
selfplay loss (9) to build the imitation-selfplay loss:
`ISP := `STS + `SP.

Imitation-KD loss `IKD: Knowledge distillation
is a form of selfplay where the student tries to learn
from its mistakes using the teacher’s feedback. In-
stead of trying to fit its predictions to the ground-
truth label of the game i, the student tries to fit them
to the predicted choices of the teacher given the
student’s messages, it, where it ∼ (ptL(·|ms, I))
. Like selfplay, this method involves a single stu-
dent agent playing both the speaker and the listener
and is therefore differentiable end to end. The
knowledge-distillation loss `KD is the cross-entropy
loss with it as our target image:

`KD := − log pSL(i
t|i, I) (12)

The student imitates the teacher’s listening capabili-
ties but also has to imitate its speaking abilities, and
thus, the imitation-KD loss `IKD combines both the
knowledge-distillation loss and the student-teacher-
similarity loss (11): `IKD := `STS + `KD.
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Figure 10: Accuracy on the test set over the number
of games played during training. Lines represent mean
across 5 random seed runs and the ribbons are standard
deviation. Chance performance is 0.25. We compare
agents with and without a selfplay phase before com-
munity play using accuracy loss `ACC or cross-entropy
loss `CE.

D.6 Training generation zero

Our goal in this experiment is to compare the two
learning functions defined for community play in
D.3, the accuracy loss `ACC and the cross-entropy
loss `CD, in addition to the effect of introducing an
initial selfplay phase prior to community play. We
compare four different learning strategies: commu-
nity play with the accuracy loss, community play
with the cross-entropy loss, and then each of these
again with an initial phase of selfplay. Within each
setup the population, or pair of agents, is trained for
20,000 steps, each with 32 games. In the selfplay
case, the first 10,000 steps are dedicated to selfplay
and the rest to community play.

Results: We ran each learning strategy 5 times
with different random seeds. We report mean per-
formance and the standard deviation across runs.
Figure 10 illustrates game accuracy on the test set
of unseen combinations in community play based
on the number of games played during training.
Models with selfplay start halfway as they have
spent the first 320,000 games in a selfplay phase
(Figure 11). We find that using the cross-entropy
loss during community play leads to much higher
accuracy and less variance between runs than using
the accuracy loss. Additionally we find that having
an initial phase of selfplay ultimately leads to more
effective communication during community play.

Figure 11: Accuracy on the test set for the first 320,000
games of selfplay using the selfplay loss `SP.

D.7 Iterated learning

In iterated learning we consider learning across
multiple generation. In this experiment we test the
effect of the different learning functions defined in
D.5 during intergenerational play on eventual in-
tragenerational community play. We consider three
different intergenerational learning strategies: (1)
student-teacher play phase using the cross-entropy
loss `CE ; (2) imitation-selfplay using the imitation-
selfplay loss `ISP ; (3) knowledge distillation using
the imitation-KD loss `IKD. We follow each inter-
generational play phase by intragenerational com-
munity play where we use cross-entropy loss `CE.
The initial generation of teachers for all models
is trained using an initial selfplay phase followed
by the community play phase. At each subsequent
generation, student agents are randomly initialized
while the teacher agent is randomly sampled from
the previous generation. We train each model for a
total of 8 generations (generation zero + 7 student-
teacher generations). Each generation was trained
for an initial 2,000 steps of 32 games of their re-
spective form of intergenerational play followed by
2,000 steps of community play.

Results: We ran each setup 5 times with differ-
ent random seeds. We report the mean perfor-
mance and standard deviation across runs. Fig-
ure 12 shows mean accuracy on community play
across all generations, while Figure 13 zooms in
on generation 7. In Figure 12 compares each inter-
generational learning strategy’s effect on the sub-
sequent phase of community play at each genera-
tion. we see that, as expected, performance drops
at each new generation before climbing back up.
Between each of these generation ‘drops’, we train
the models for a phase of intergenerational learning
using their respective learning function. The most
effective learning approach seems to be imitation-
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selfplay loss `ISP. However, a closer look at Figure
13 shows that it is also worth considering simply
using student-teacher play since there is no sig-
nificant difference between imitation-selfplay and
student-teacher play. Furthermore, we find that
agents trained with student-teacher play have an
initial advantage when they start their community
play phase, starting above chance, around 0.45.

Figure 12: Mean accuracy on test during community
play across all seven generation. Chance performance
is 0.25. Standard deviation is not reported here for clar-
ity.

Figure 13: Accuracy on test during generation 7’s com-
munity play.

E Mutual Information Estimates

We want to measure mutual information (MI) be-
tween linguistic representations and meanings as
an estimate of complexity. It is clear that we can
consider the color/shape label of the images in our
dataset as the intended meanings, however it was
less clear what level of linguistic representation we
should consider. We decided to test multiple: (1)
the embedding of the first character generated by a

speaker for each image, (2) the predicted class of
a linear classifier trained on the embedding of the
first character generated by a speaker for each im-
age, (3) the whole message generated by a speaker
for each image (using the character with highest
probability at each step), and (4) the predicted class
of a linear classifier trained on the whole message
generated by a speaker for each image.

Figure 14: MI between (1) first character embeddings
and labels.

Figure 15: MI between (2) predictions of probe trained
on first character embeddings and labels.

Figure 16: MI between (3) whole messages and labels.
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Figure 17: MI between (4) predictions of probe trained
on whole messages and labels.

All of these linguistic representations had the
same mutual information result pattern, so we
chose to report the simplest of these measures in
the main paper.

F Experiment 1B: More Shapes

Figure 18: Accuracy on test shape games for agents
trained on games sampled from a dataset containing ei-
ther 4 or 8 distinct color categories. Both the left most
and center models were trained on randomly sample
games from a uniform distribution over images. The
right most played color games 10% of the time.

We test whether increasing the difference in num-
ber of shapes versus colors overall in the image
dataset leads to higher shape game accuracy (see
Figure 18). We find that it does. We check whether
this advantage disappears if we control for shape in-
formativity by increasing the communicative need
for color to 10% to counterbalance the increased
number of shapes. We find that the increase in
shape game performance disappears, suggesting
that data augmentations, in the form of more shape
classes, to induce shape bias, lead to a bias not

because of increased number, but because the in-
creased number of shape classes leads to higher
need to distinguish shape categories. We ran 3
random seed runs for each and report mean and
standard deviation.

G Experiment 1C: Model Size

Figure 19: Accuracy on test games for 3 different
model sizes as a function of communicative need.

We compare three different agent model sizes
(see Figure 19. The middle size, with 256 as its
hidden size, is the model size used in the main
paper experiments. The smaller model, with hid-
den size 128, is half the overall size of the middle
one, an the larger model, with hidden size 512, is
about twice the size of the middle model. We ran
2 random seeds for each and report the mean. We
found that the emergence of a shape bias was modu-
lated by communicative need for shape in all cases,
regardless of the model size.


