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Abstract
What is the first word that comes to your mind
when you hear giraffe, or damsel, or freedom?
Such free associations contain a huge amount
of information on the mental representations
of the corresponding concepts, and are thus an
extremely valuable testbed for the evaluation
of semantic representations extracted from cor-
pora. In this paper, we present FAST (Free AS-
sociation Tasks), a free association dataset for
English rigorously sampled from two standard
free association norms collections (the Edin-
burgh Associative Thesaurus and the University
of South Florida Free Association Norms), dis-
cuss two evaluation tasks, and provide baseline
results. In parallel, we discuss methodological
considerations concerning the desiderata for a
proper evaluation of semantic representations.

1 Introduction

Assessing the performance of a distributional se-
mantic model (DSM), be it a count model or one
of the numerous and popular neural embeddings,
has never been a straightforward endeavour. It is
becoming an increasingly pressing issue due to the
‘black box’ nature of word embeddings and their
aleatoric, often irreproducible training. We witness
a proliferation of tasks and a growing dissatisfac-
tion within the community: what are we modeling,
really? Are models learning to handle a specific
dataset, or a task, or do they really abstract seman-
tic knowledge from text? This has lead to a shift
towards evaluation methods capable of capturing
human-like generalization (Linzen, 2020).

DSM evaluation with standard datasets is af-
fected by two major problems. The first issue is the
possibility that DSMs may just exploit contingent
properties of a task. For example, they could be
learning to identify random controls instead of cap-
turing the intended semantic relation (Evert, 2016).
Even with carefully chosen distractors, models may
just be picking up contingent features of the exper-
imental items: Levy et al. (2015b) observe that

many hypernym classifiers merely learn to recog-
nize words that are ‘typical’ hypernyms, indepen-
dently of the stimulus items (i.e. corresponding
hyponyms). The second issue is dataset size, since
small test sets inevitably lead to overfitting if many
different model architectures or parameter settings
are evaluated. Take the TOEFL synonym task,
where a single item is worth 0.8 accuracy points,
as an extreme example: Bullinaria and Levy (2012)
achieve 100% accuracy after testing a wide range
of DSM parameters. It is also true, however, that
large datasets often lack in design quality (e.g. by
using random controls, cf. above).

In this paper, we present Free ASsociation Tasks
(FAST), a new evaluation dataset for English lex-
ical semantics designed to satisfy the desiderata
highlighted above: (a) compatibility with human-
like generalization, (b) quality of distractors, and
(c) dataset size. We address (a) by focussing on a
cognitive modeling task, namely free associations
(which word comes to your mind when you hear gi-
raffe?). Free association norms are cognitively mo-
tivated (hence semantically plausible) and usually
very large, covering thousands of stimuli. This al-
lows for a better selection of distractor items (which
makes the task more difficult but also more enlight-
ening), addressing both (b) and (c). As a bonus, we
do not collect yet another dataset; instead, we care-
fully sample from existing collections and define
two different evaluation tasks, providing extensive
baseline results for both.

The first task we propose is a multiple-choice
task:given a stimulus (e.g., giraffe) decide which
of three candidates (neck, apple, wine) is its most
frequent associate. It is in this task that we exploit
the size of the underlying collection to collect bet-
ter distractors: we don’t sample them randomly, but
rely on frequency criteria instead. Distractors are
selected to match the frequency band of the correct
candidate (neck), in order to prevent the models
from relying on frequency effects. The second task
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we propose is an open-vocabulary lexical access
task: given a stimulus word (e.g., giraffe), select
its most frequent associate from a large vocabulary
of candidate words (consisting of the top associates
for all stimuli in the data set). Advantages of the
multiple-choice task are that it is easier to imple-
ment, less computationally expensive, lends itself
to the application of machine-learning techniques
as a straightforward classification problem, and has
an obvious evaluation metric (accuracy). The open
vocabulary task is cognitively more realistic and
matches the experimental setting underlying free
association norms, but it is computationally expen-
sive (because of the larger number of candidates
to be considered), poses a harder machine-learning
problem (learning to rank), and suitable evaluation
metrics are less obvious (see Sec. 4.1).

This paper makes the following contributions:
we release FAST and propose two new evaluation
tasks based on it; we report preliminary modelling
results as a baseline for further work.

2 Related work

Evaluation in terms of cognitive modeling is chal-
lenging from many points of view. First, the mod-
eled data are typically continuous (reaction times or
EEG signal, see Mandera et al. (2017) and Hollen-
stein et al. (2019) for an overview) or, when categor-
ical (free association norms), much less constrained
compared to the data used in standard DSM eval-
uation tasks because the models have to handle a
large and diverse vocabulary. Second, a speaker’s
behaviour results from the interplay of many fac-
tors, some of which we expect to be conflated in
distributional meaning representations and inter-
twined with ‘true’ lexical semantics (e.g, ambigu-
ity, culture-specific information), others to be com-
pletely absent (e.g., individual differences between
speakers). Third, cognitive modeling datasets typ-
ically have not been designed to evaluate corpus-
based models and thus need to be further manip-
ulated (annotated, adapted, sampled), bringing in
additional design assumptions. To sum up, while
quantifying DSM performance is straightforward
in standard tasks, it is less so in the case of cogni-
tive modeling tasks.

2.1 Free Associations

Free associations (“the first word that comes to
mind when you hear . . . ”), are considered to be
a cue into the organization of the mental lexicon.

The nature of the involved cognitive processes has
always been debated: while earlier theories consid-
ered free associations as the result of learning by
contiguity (James, 1890), later theories accounted
for them in terms of symbolic processes and com-
plex semantic structures (Clark, 1970). Annotation
studies resulted in the characterization of free asso-
ciates as a mixture of syntagmatic relations, which
hold between contiguous word, and paradigmatic
relations, which hold between semantically related
words (Brown and Berko, 1960; Fitzpatrick, 2007).

In particular, Brown and Berko (1960) observed
that in a typical free association setup, 74% of the
responses of adults are paradigmatic while 72%
of the responses of first grade children are syntag-
matic. Fitzpatrick (2007) conducted a free associa-
tion experiment on 100 stimuli and 60 subjects and
manually classified the associates, identifying the
following categories: Consecutive xy collocations:
significant–other; Defining synonyms: significant–
important; Conceptual associations: coordination–
driving; Consecutive yz collocations: instance–
first; Context-dependent synonyms: label–name;
Lexical set: pet–dog.

2.2 Corpus-based modeling

Based on a free association dataset, two types of
evaluation tasks can be designed: in the ‘forward’
task, the corpus-based model has to generate the
first free associate (i.e. the one produced by the
highest number of subjects) for a specific stimulus
(cat→?, significant→?); in the ‘reverse’ task, the
model is shown a number of response words and
has to guess the corresponding stimulus (?→away,
minded, gone, present, ill). A problem of this eval-
uation setup is the unrestricted set of possible re-
sponses in combination with a discrete association
task, which requires the algorithm to pick exactly
the right answer out of tens of thousands of possible
responses. This feature makes the task much more
difficult than the multiple-choice tasks often used
to evaluate DSMs. Additionally, free association
datasets have been employed in a multiple-choice
setting, in which the model has to pick the first
associate to a stimulus word given a small number
of candidate responses.

A multiple-choice task derived from Edinburgh
Associative Thesaurus (EAT) appeared in the ESS-
LLI 2008 shared task.1 Predictions based on first-
order co-occurrence turned out to be much better

1wordspace.collocations.de/fa2008.html

http://wordspace.collocations.de/fa2008.html
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than those from second-order DSMs, in line with
previous findings by Rapp (2002) and Wettler et al.
(2005). A similar picture emerges from studies
on the reverse (or “multiword”) free association
task: models based on first-order co-occurrence
outperform models based on vector similarity. This
superiority, however, has not been demonstrated
in a direct comparison. Results were obtained by
studies with different features and goals (see Rapp
(2014) for a review; see Griffiths et al. (2007) for
an evaluation of models based on Latent Semantic
Analysis). Successful studies on the reverse asso-
ciation task include Rapp (2013, 2014), as well as
the CogALex 2014 shared task (Rapp and Zock,
2014) on 2000 stimuli from EAT. This task proved
to be very challenging: the winner, which used
first-order statistics to re-rank the output of a DSM,
only achieved 35% accuracy (Ghosh et al., 2015).

3 Dataset

The starting point for FAST are the two largest col-
lections of free association norms available: the Ed-
inburgh Associative Thesaurus (EAT, 8210 stimuli,
100 subjects; Kiss et al., 1973) and the University
of South Florida Free Association Norms (USF,
5019 stimuli, 6000 subjects; Nelson et al., 2004).

Pre-processing All items in EAT and USF were
POS-tagged using frequency information from the
large, publicly available Web corpus ENCOW
20142 to guess the most probable POS tag for each
word form out of context. POS tags are not em-
ployed in the evaluation experiments conducted in
this paper, but we believe that guessing POS based
on frequency is cognitively plausible for out-of-
context tasks and distribute POS annotation with
the official release, to support further evaluation
with POS-disambiguated DSM representations (e.g.
Baroni and Lenci, 2010). We chose ENCOW be-
cause it is publicly available, large (10 bln words)
and thus suitable for the extraction of reliable co-
occurrence estimates and vector representations.

FAST contains lemmatized items. This choice
has practical reasons – many DSMs and other eval-
uation datasets are also lemmatized – and is sup-
ported by the literature. Bullinaria and Levy (2012)
compare DSMs built from raw, stemmed and lem-
matized data. In a selection of semantic similarity
tasks, a slight advantage is found for the lemma-
tized and stemmed models over the raw ones (with
variations due to the different tasks, and to the in-

2corporafromtheweb.org/encow14/

teraction with other parameters). For a different
selection of tasks, Kiela and Clark (2014) report
best performance for stemmed data vs. inflected,
lemmatized, POS- and CCG-tagged.3 Lapesa and
Evert (2013) obtain similar results for modeling se-
mantic priming. We carried out lemmatization with
morpha, a robust morphological analyzer.4 Un-
known words were lemmatized based on their POS
tag. All items in USF and EAT were annotated
with their ENCOW lemma frequency (using the
same lemmatization), as a basis for our sampling
procedure.

Dataset compilation The compilation procedure
of the FAST dataset is based on the following as-
sumptions: (a) words that were produced only by a
single subject in response to a stimulus can be used
as plausible distractors in a multiple-choice task;
(b) first responses to other stimuli (i.e. typical first
associates) are good ‘implausible’ distractors; (c)
the large pool of filler candidates allows controlling
for frequency (as DSM similarities often show fre-
quency bias). Multiwords,5 numbers, closed-class
words, and words not occurring in ENCOW were
discarded. For each remaining stimulus in EAT and
USF we selected:

• FIRST: the most frequent associate response;

• HAPAX: a response generated only once for
the stimulus (twice for USF, which omits re-
sponses with f = 1);6 among several HAPAX

candidates, we picked the one whose lemma
frequency was closest to that of FIRST;

• RANDOM: a randomly selected response from
the top 25% associates of another stimulus
(and produced ≥ 5 times); if possible we

– matched lemma frequency of RANDOM

and FIRST, and
– used each RANDOM only once.

3CCG tags contain lexical categories based on the Combi-
natory Categorial Grammar (Steedman, 2000) which can be
thought of as finer-grained POS-tags.

4users.sussex.ac.uk/~johnca/morph.html
5This choice is due to practical reasons: most pre-compiled

DSMs and off-the-shelf embeddings do not cover multiwords.
Since there are very few such entries in USF (and a moderate
number in EAT), the additional pre-processing steps needed
for including them in our baseline experiments would have
been unjustified.

6Nelson et al. (2004) argue in their introductory essay that
“idiosyncratic responses given by a single participant would
tend to be ‘off the wall’.”

http://corporafromtheweb.org/encow14/
http://users.sussex.ac.uk/~johnca/morph.html


591

These items were randomly divided into training
and test sets, resulting in 3774 + 3836 items for
EAT and 2360 + 2359 items for USF.

FAST has been publicly released in the Open Sci-
ence Framework, along with complete RMarkdown
replication scripts for the baseline experiments. It
is available from https://osf.io/cd8ar/.

4 Experimental setup

4.1 Tasks
We propose two evaluation tasks and present base-
line results for the EAT and USF test subsets.

The first is a multiple-choice task. Given a stim-
ulus and a <FIRST, HAPAX, RANDOM> triple (e.g.,
from FAST, the triple <receive, love, soul> for the
stimulus accept), the goal is to determine which of
the candidates is FIRST. Performance is quantified
as percent accuracy, and with three candidates the
random baseline is 33.3%.

The second task is an open-vocabulary lexical
access task: given a stimulus (e.g., accept), predict
the FIRST associate (receive) out of a set of candi-
dates which consists of all FIRST responses in the
respective subset (USF or EAT). This task is opera-
tionalised as a ranking of the entire candidate set
for each stimulus (candidate set size: USF=1197;
EAT=1633).7

For the open-vocabulary lexical access task, we
propose two evaluation metrics: Soft accuracy and
Log rank. Soft accuracy averages over reciprocal
rank (1/r) of the true FIRST associate in the can-
didate set, expressed as a percentage. This metric
corresponds to a ‘soft’ version of accuracy that
awards partial points if the correct choice is not
in first rank, but close. Log rank computes the ge-
ometric mean of rank (r) across all stimuli. It is
more informative than soft accuracy for task items
that the models don’t solve well, because it distin-
guishes more clearly between a correct answer at
rank 50 or rank 500. Since the arithmetic mean
would penalize single items with poor ranks (e.g.
one at rank 1000) too much, we compute the ge-
ometric mean of the ranks. We refer to this as
log rank (log r) because it corresponds to averag-
ing ranks on a logarithmic scale; but note that the
values reported are not logarithms. This metric is
more suitable for models that perform reasonably
well (with correct response often among first 100
ranks), but rarely get the correct answer (and hence
score low on (soft) accuracy).

7NB: Some words are first responses for multiple stimuli.

In the open-vocabulary task, the baseline corre-
sponds to a random ranking of the candidate vocab-
ulary. Mathematically, we compute the expected
values of soft accuracy and log rank for a uniform
distribution over the possible ranks of the correct
choice, and we are aware that this is a weak base-
line.

Baselines depend on the size of the candidate
vocabulary and are thus different for USF and EAT:
soft accuracy: USF=0.64% and EAT=0.49%; log
rank: USF=442.0 and EAT=602.4.

4.2 Models

We experimented with the following models, cre-
ated from 8.5G tokens of the ENCOW 2014 Web
corpus unless otherwise specified:

First order co-occurrence (collocations), based
on a symmetric span of 2 vs. 10 words and quan-
tified by conditional probability (P (w2|w1)), log-
transformed G2, PPMI, and MI2 (Evert, 2008).

Count DSMs (second order), based on a symmet-
ric span of 2 vs. 10 words and SVD dimensional-
ity reduction, with other parameter settings as in
Lapesa and Evert (2014).8 We experimented with
one further parameter, Caron P (Bullinaria and
Levy, 2012; Levy et al., 2015a). Standard SVD-
reduced models were compared with their P = 0
counterpart; this operation has the effect of scaling
down the prominence of the first SVD dimensions
in the semantic representation and tailoring them
towards paradigmatic relations.9

8Target terms: All POS-disambiguated lemmas from the
FAST data set combined with a standard vocabulary of fre-
quent words, 58k terms in total. Context dimensions: same
58k POS-disambiguated lemmas as target terms. Feature
scoring: sparse simple-log likelihood with an additional log
transformation. Similarity computation: cosine similarity (us-
ing angle as a distance metric). SVD-reduced to 1000 latent
dimensions (note that the general settings in Lapesa and Evert
(2014) would recommend to discard the first 50 dimensions,
but we experiment with Caron P instead; also note that they
recommend 500 SVD dimensions, but their experiments also
show that increasing SVD dimensions is always advantageous
and never detrimental).

9Singular value decomposition (SVD) factorizes the co-
occurrence matrix M = UΣVT , where Σ is a diagonal
matrix of ordered singular values σ1 ≥ σ2 ≥ . . . showing
how much of the variance is captured by each latent dimension.
The dimensionality-reduced representation is thus obtained by
truncating the factorization to the first r (i.e. most important)
components: UrΣr . Caron (2001) found out that raising the
singular values to a power P < 1 and thus reducing the promi-
nence of the first components improved the effect of SVD on
LSA representations. This result was later replicated for term-
term models (Bullinaria and Levy, 2012; Levy et al., 2015a).
Optimal results are often obtained for P = 0 (i.e. using Ur as
the dimensionality-reduced representation), which equalizes
the contributions of all dimensions. The effect is comparable

https://osf.io/cd8ar/
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Combined first- and second-order, based on the
harmonic mean of neighbour ranks. Since cosine
similarity (second-order) and association measures
(first-order) are on entirely different scales, it would
be difficult to combine them into a single compos-
ite score for a given word pair (A,B). We there-
fore use neighour rank, i.e. the rank of B among
the nearest neighbours of A, as an index of dis-
tributional relatednes, following Lapesa and Evert
(2014). For the first-order data, we order all words
in the vocabulary by decreasing association score
and take the rank of B in this ordering as its neigh-
bour rank (Michelbacher et al., 2011). We consider
the harmonic mean a better strategy for combin-
ing ranks than average, minimum or maximum
because it is not dominated by extreme values. To
exploit complementarity between different DSMs
we a) combine a DSM known to perform well in
paradigmatic tasks (with P = 0) with a first-order
association known to perform well in collocation
extraction (MI2), even if they are not the best in-
dividual models, and b) in addition to the span
size of 2 vs. 10 words, we also experiment with a
mixed span of size 2 for the DSM and of size 10
for first-order collocations (span mix in the result
tables).

Embeddings: word2vec (Mikolov et al., 2013)
trained on 100G tokens of Google News data,10

GloVe (Pennington et al., 2014) trained on 6G to-
kens of wikipedia + newspapers or 42G tokens of
Common Crawl (CC) Web data,11 and FastText
(Joulin et al., 2017) trained on 600G tokens of CC.

We did not include contextualized embeddings
because free associations are inherently an out-of-
context task. We are aware that type-level rep-
resentations can be obtained (Bommasani et al.,
2020), but this is not the primary purpose of con-
textualised models and it would imply a number of
design choices without clear guidelines. Given that
the purpose of this paper is to release the dataset
and provide baselines, we decided to stick to well-
established type-level models.

5 Results

Tables 1 and 2 report evaluation results on the
multiple-choice and lexical access task, respec-

to discarding the first SVD dimensions, which Lapesa et al.
(2014) found beneficial for modeling paradigmatic relations.

10https://code.google.com/archive/p/
word2vec/

11https://nlp.stanford.edu/projects/
glove/

tively. Items not covered by a model (miss) are
ignored for the evaluation metrics, so as not to give
an unfair advantage to models built specifically for
the task vocabulary.12

Overall, first-order models outperform DSMs in
the multiple-choice task, while DSMs are better in
the lexical access task, achieving optimal perfor-
mance with larger spans (known to introduce some
first-order information into the DSMs). Setting
P = 0 improves lexical access only slightly, and it
has a detrimental effect on the multiple-choice task
(presumably as it discards first-order information,
see also Lapesa and Evert, 2014).

Combining first-order (collocations) and second-
order (DSMs) information results in a further im-
provement, and a mixed span yelds the best per-
formance in the multiple choice task on EAT. For
the lexical access task, the combined model with
a mixed span consistenly outperforms both the 2-
word and 10-word combinations, even though the
improvement over the 10-word span is small, show-
ing that our assumptions regarding the complemen-
tarity of the two models may not entirely be justi-
fied.

To further explore the complementarity between
first-order (collocations) and second-order (DSMs),
we visualize the correlation between neighbour
ranks of the two individual models in Figures 1
(USF) and 2 (EAT). Each point corresponds to a
test item, i.e. a pair of stimulus and FIRST response,
with DSM (2-word window, P = 0) neighbour
rank on the x-axis and first-order (10-word win-
dow MI2) neighbour rank on the y-axis. Note that
both axes are logarithmic and jitter has been added
to visualize the large number of items where both
ranks are 1 (etc.). The plots show that the two
models are often in agreement, i.e. both the DSM
and the first-order model put the FIRST response
among the top 5 ranks. Indeed, there seems less
complementarity to be exploited than we would
have assumed, i.e. points in the bottom right or top
left quadrants of the plot, for which the two models
disagree substantially.

For both tasks and both subsets, the best com-

12In the multiple-choice task, an item is considered “miss-
ing” if either the stimulus is not included in the model or none
of the three candidate responses is. In the open-vocabulary
task, an item is considered “missing” if either the stimulus or
the correct response is not included in the model. The DSMs
and first-order data were specifically compiled for the FAST
data set, so they achieve full coverage. The FastText model
uses subword embeddings to approximate unknown words,
also resulting in full coverage.

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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n = 2359 n = 3836

USF EAT
model span acc acc

DSM 2 76.01% 81.78%
DSMP=0 2 74.31% 78.62%
DSM 10 76.98% 82.46%
DSMP=0 10 76.39% 79.30%

P (w2|w1) 2 73.76% 80.29%
logG2 2 71.98% 78.28%
PPMI 2 68.80% 76.12%
MI2 2 73.51% 79.87%
P (w2|w1) 10 77.58% 84.02%
logG2 10 77.83% 83.00%
PPMI 10 73.80% 81.18%
MI2 2 78.64% 83.92%

Combined 2 77.66% 85.01%
Combined 10 80.58% 85.74%
Combined mix 80.46% 86.03%

miss: 7 miss: 119
word2vec – 76.11% 77.78%

miss: 2 miss: 44
GloVe – 76.71% 79.80%

miss: 7
GloVe CC – 80.12% 81.72%
FastText – 82.24% 83.97%

miss: 7 miss: 116
word2vec wf – 76.53% 79.25%

miss: 2 miss: 38
GloVe wf – 77.17% 81.07%

miss: 2
GloVe CC wf – 80.75% 83.07%
FastText CC wf – 83.21% 85.58%

Table 1: Multiple choice task (baseline: 33.33%). 1st
block: DSMs; 2nd: first-order; 3rd: combined first-
order and DSM; 4th/5th: embeddings (lemmatized vs.
wordform). Bold: best model per block.

bined model is only outperformed by pre-trained
FastText embeddings, which achieve best results in
all tasks except multiple choice on EAT. However,
these embeddings were trained on 600G tokens
of data, whereas the DSMs and collocations are
based on only 8.5G tokens (and outperform other
embeddings trained on similar-sized or larger cor-
pora). Another highly speculative explanation for
the better performance of FastText is its use of sub-
word embeddings, which may be sensitive to some
rhyming effects that are are known to be present in
free associations (Nelson et al., 2004).

Since all pre-trained embeddings are based on
surface forms, we also evaluate them in the non-
lemmatized task (wf in the tables). These results
are reported for completeness, but are not directly
comparable to the DSMs and collocations. It is not
clear yet whether the better results in this setting
are a feature of the embeddings (because the un-
inflected form might not reflect the typical usage

n = 2359 n = 3836

USF EAT
model span soft acc. lrank soft acc. lrank

DSM 2 41.54% 6.6 34.53% 9.9
DSMP=0 2 42.12% 7.6 34.67% 12.1
DSM 10 42.01% 6.0 35.93% 9.1
DSMP=0 10 42.86% 7.1 35.68% 11.6

P (w2|w1) 2 23.30% 15.4 14.77% 22.8
logG2 2 30.22% 10.7 28.25% 13.3
PPMI 2 31.48% 11.5 27.08% 15.5
MI2 2 32.79% 9.1 29.97% 11.6
P (w2|w1) 10 22.34% 17.0 11.27% 27.1
logG2 10 37.63% 6.6 34.13% 8.8
PPMI 10 35.34% 8.2 29.29% 12.2
MI2 10 39.73% 6.2 34.01% 8.7

Comb. 2 42.29% 5.5 37.54% 7.0
Comb. 10 44.99% 4.8 39.48% 6.5
Comb. mix 45.36% 4.8 39.48% 6.4

miss: 7 miss: 119
w2v – 38.98% 7.7 30.51% 14.8

miss: 2 miss: 44
GloVe – 39.22% 7.6 30.19% 13.8

miss: 7
GloVe CC – 44.01% 5.7 34.26% 10.5
FastText CC – 51.00% 4.1 40.34% 7.2

miss: 7 miss: 116
w2v wf – 39.60% 7.4 31.29% 13.5

miss: 2 miss: 38
GloVe wf – 39.74% 7.3 31.07% 12.5

miss: 2
GloVe CC wf – 44.50% 5.5 34.91% 9.7
FastText CC wf – 51.43% 3.9 41.30% 6.4

Table 2: Open-vocabulary lexical access task. 1st block:
DSMs; 2nd: first-order; 3rd: combined first-order and
DSM; 4th/5th: embeddings (lemmatized vs. wordform).
Bold: best model per block.

of the lemma in corpora) or of the free association
task (because human subjects may have different
associations for different inflected forms).

6 Conclusion

This paper introduced the FAST dataset and dis-
cussed extensive baseline results in two carefully
designed tasks.

The results on the multiple-choice task showed
that first-order co-occurrence models outperform
count-based DSMs, due to the known prevalence
of syntagmatic relations in free associations. Com-
bining the predictions of co-occurrence models and
DSMs turned out to be particularly advantageous,
with results competitive to those achieved by the
neural embeddings in particular for EAT.

In the lexical access task, DSMs are slightly
superior to co-occurrence models, and the combi-
nation of first-order and second-order data again
leads to a substantial improvement. Here, Fast-
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Figure 1: Correlation between first-order and DSM
neighbour ranks for pairs of stimulus and FIRST asso-
ciate in the USF test set.

Text embeddings achieve the best results, but our
combined model still outperforms all other neural
embeddings.

Besides the integration of more recent datasets
(De Deyne et al., 2018), future work should target
more sophisticated methods for the combination of
different models, e.g., using machine learning tech-
niques rather than just taking the harmonic mean
as in our baseline experiments, and should also ex-
plore type-level representations derived from con-
textualized embeddings.

As far as the interpretation of model predictions
is concerned, FAST lends itself to a multifactorial
meta-analysis based on, e.g., abstractness ratings,
semantic classes and ortographic properties of the
stimulus. Such rich information sources could also
be integrated in the prediction step (e.g., constrain
the system to predict associates at a similar level of
abstractness to the stimulus).
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