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Abstract

In this paper, we revisit the task of negation
resolution, which includes the subtasks of cue
detection (e.g. “not”, “never”) and scope reso-
lution. In the context of previous shared tasks,
a variety of evaluation metrics have been pro-
posed. Subsequent works usually use differ-
ent subsets of these, including variations and
custom implementations, rendering meaning-
ful comparisons between systems difficult. Ex-
amining the problem both from a linguistic per-
spective and from a downstream viewpoint, we
here argue for a negation-instance based ap-
proach to evaluating negation resolution. Our
proposed metrics correspond to expectations
over per-instance scores and hence are intu-
itively interpretable. To render research com-
parable and to foster future work, we provide
results for a set of current state-of-the-art sys-
tems for negation resolution on three English
corpora, and make our implementation of the
evaluation scripts publicly available.

1 Introduction

Negation is a complex semantic phenomenon in
natural language that “transforms an expression
into another expression whose meaning is in some
way opposed to the original” (Morante and Blanco,
2021). It occurs frequently, with the proportion of
sentences with negation in English corpora rang-
ing between 9 and 32% (Jiménez-Zafra et al.,
2020b). Natural Language Processing (NLP) ap-
plications that may benefit from negation resolu-
tion include sentiment analysis (Wiegand et al.,
2010; Moore and Barnes, 2021) and information
extraction. Negation is also still a challenge in
machine translation (Fancellu and Webber, 2015;
Bentivogli et al., 2016; Hossain et al., 2020a) and
natural language inference (Hossain et al., 2020c;
Geiger et al., 2020).

Negation Resolution (Morante and Blanco,
2021) refers to the task of automatically retriev-
ing the elements of a sentence that are affected by

Test Sentences (gold scope) . . . . . . .System. . .A System B

TP / FP / FN TP / FP / FN

(1) . .If not, .I . .’ll . . . .have to do with you. 0 / 4 / 0 0 / 0 / 0

7 3

(2) He made no . . . . . . .remark, but the 1 / 0 / 2 3 / 0 / 0

matter remained in his thoughts. 7 3

(3) Well, Mrs. Warren, I can see that 16 / 0 / 0 10 / 2 / 6
you have any particular cause 3 (3)
for concern, nor . . .do .I

. . . . . . . . . . .understand . . . .why .I, . . . . . . .whose . . . . .time

. .is . .of. . . . . . .some . . . . . .value, . . . . . . .should

. . . . . . . . .interfere . .in. . . .the. . . . . . .matter.

Scope Tokens P/R: 81.0/89.5 86.7/68.4
F1: 85.0 76.5

Instance-Based P/R: 66.7/77.8 94.4/87.5
F1: 71.8 90.8

Figure 1: Different scoring metrics for negation
scope resolution predictions. 3/7 = our judgment of
system correctness taking into account linguistic crite-
ria. Parentheses indicate partial correctness.

the negation introduced by a cue. The cue’s scope
is “the part of the meaning that is negated” (Hud-
dleston and Pullum, 2002). The task is difficult due
to the multitude of ways in which negation may
be expressed. Despite having been a continuously
active research area especially since two shared
tasks (Farkas et al., 2010; Morante and Blanco,
2012), building robust computational models is far
from being a solved task, in part due to a lack of
annotation standards (Jiménez-Zafra et al., 2020b).

Negation resolution has traditionally been ad-
dressed by heavily relying on syntactic parses (e.g.
Sanchez Graillet and Poesio, 2007; Sohn et al.,
2012; Mehrabi et al., 2015). Recently, end-to-end
neural approaches to modeling negation resolu-
tion (Fancellu et al., 2016, 2018; Khandelwal and
Sawant, 2020; Kurtz et al., 2020) have claimed
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superior performance.

A significant problem in the field of negation res-
olution is that due to the large variety of possible
evaluation setups and metrics, and the use of stan-
dard scoring scripts vs. custom implementations, it
is not obvious how to meaningfully compare exist-
ing approaches and benchmark new models. Dif-
ferences in evaluation setup include, for example,
whether gold cues are provided for scope resolu-
tion, and which subset and variations of evalua-
tion metrics are used. In the CoNLL 2010 Shared
Task on detecting hedges and resolving their scope
(Farkas et al., 2010), only exact cue and scope
matches were counted. The *SEM 2012 Shared
Task on negation resolution (Morante and Blanco,
2012) proposed additional less strict metrics based
on token-level matching. The organizers of both
tasks explicitly state that their evaluation is in-
tended as a starting point and that further work
on defining a scope evaluation measure that better
captures the impact of partial matches is necessary.

In this paper, we take a step back and revisit the
evaluation of negation resolution in order to pro-
vide a more unified picture of the relative perfor-
mance of different systems. As a result, we propose
a negation-instance based evaluation framework
that defines intuitively interpretable and linguisti-
cally motivated metrics, facilitating a graded scor-
ing of cue and scope matching. As illustrated by
Figure 1, a gradual judgment of a system’s scope
resolution capability may be misleading if simply
computing F1 over tokens in gold or predicted
scopes. In (1), system A marked a non-existent
scope, which may be detrimental to a user’s trust
in the system. In (2), A did not mark the main
event, i.e., extracting a correct logical representa-
tion would be impossible. In (3), despite getting
a bad recall score, B’s output captures all relevant
arguments and complements of the negated propo-
sition headed by “understand.”

The core of our proposed method is to normalize
precision and recall scores per instance and com-
pute an expectation for these instance-wise match
scores treating all instances equally during score
aggregation, following the insight that failing on
short or long negation scopes may be equally detri-
mental. We apply our metrics to a set of recent
neural models for negation resolution, including
NegBERT, tagging-based, and dependency-parsing
based approaches, providing a competitive range
of baselines for future work to compare with.

Our contributions are as follows. (1) We pro-
vide a concise and formal overview of existing eval-
uation metrics with the aim of facilitating a princi-
pled comparison of approaches to negation resolu-
tion. (2) We propose a linguistically motivated and
intuitively interpretable negation-instance based
scope resolution scoring framework. (3) Using
our (and previously proposed) metrics, we con-
duct a reproducibility study on negation resolution,
reporting performance scores of a variety of rele-
vant baseline systems in a uniform experimental
setup.1 (4) As a side result, we show that a modern
transformer-based reimplementation of the tagging-
based system by Fancellu et al. (2016) achieves the
best negation resolution performance under most
circumstances.

2 Related Work

We here introduce the linguistic terminology and
concepts used in this paper, and briefly survey re-
lated work in computational linguistics.

2.1 Linguistic Background
A negation cue signals to the listener or reader
that the inverse of something is referred to. In
the ConanDoyle-neg (CD-neg) annotation scheme
(Morante et al., 2011), a negation cue may be a
single word such as “not,” a multi-word expression
such as “no more,” or a negation affix such as “im”
(e.g., in “imprecise”). The scope is the part of the
sentence that is “affected” by the negation signaled
by the cue (Huddleston and Pullum, 2002).

Logically, negation is an operator taking a propo-
sition, which typically correspond to (sub-)clauses
(e.g., like(m, p) for “Mary likes pizza”), convert-
ing the corresponding assertion to an assertation
stating that something is not the case (¬like(m, p)
for “Mary does not like pizza”). However, in nat-
ural language, depending on the embedding con-
text as well as pragmatic presuppositions, it is not
always the case that negation operators convert
something to its logical complement (Horn, 2010;
Blanco and Moldovan, 2011b). For example, “she
is not unhappy” does not mean “she is happy.”

In CD-neg, the aim of the annotation is to make
explicit which event (process, or state) is affected
by the change of polarity (Morante et al., 2011;
Morante and Daelemans, 2012). The word refer-
ring to the event is marked as Event, but only if the

1Our code is available at github.com/
boschresearch/negation_resolution_
evaluation_conll2021.

github.com/boschresearch/negation_resolution_evaluation_conll2021
github.com/boschresearch/negation_resolution_evaluation_conll2021
github.com/boschresearch/negation_resolution_evaluation_conll2021
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event is factual. Thus, in cases such as “He may
not know the answer,” no event is annotated. To
avoid terminological confusion, in this paper, we
ignore Event annotations and call “know” in the
example above the main predicate of the negation.

The scope is annotated as the longest relevant
part of the sentence, i.e., as the main predicate refer-
ring to the negated event and all its arguments and
complements. In contrast to BioScope (Szarvas
et al., 2008), CD-neg includes the subject, but not
the cue in the scope. In constituent negation, the
negation marker is attached to the object as in
“Mary came to the lecture with no books.” Still,
the negation scopes over the entire sentence and
is marked accordingly in CD-neg to achieve repre-
sentational equality with the sentence “Mary did
not come to the lecture with books.” A constituent-
negated subject receives the same treatment.

One element of the scope is singled out as the
negation’s focus, i.e., the part that is intended to
be interpreted as false (Huddleston and Pullum,
2002). Detecting the focus usually requires lever-
aging phonetic cues as in “Your kids don’t hate
school” vs. “Your kids don’t hate school” (Blanco
and Moldovan, 2011b). Correct identification of a
negation’s focus is key to natural language under-
standing. However, to date, no corpora annotating
both negation scopes and focus exist. For some
ideas on integrating focus identification into our
proposed evaluation framework, see Sec. 6.

2.2 Automatic Negation Resolution

Computational work on negation resolution is gen-
erally based on small- to medium-scale corpora,
which in addition are often not very compatible
due to differences in the employed annotation
schemes and underlying tokenization. Jiménez-
Zafra et al. (2020b) provide a comprehensive sur-
vey of datasets annotated for negation.

As the problem of negation resolution is closely
tied to syntax, there are many works leveraging
syntactic information, using rules over syntactic
structures to resolve negation or speculation scopes
(e.g., Velldal et al., 2012; Packard et al., 2014;
McKenna and Steedman, 2020) or training systems
with explicit or learned syntactic features (Read
et al., 2012; Lapponi et al., 2012; Enger et al., 2017;
Ren et al., 2018; Jiménez-Zafra et al., 2020a).

Li et al. (2010) frame scope resolution as a shal-
low semantic parsing task backed up by syntactic
parses. In the neural age, Kurtz et al. (2020) frame

negation resolution as a dependency parsing task.
Several works using neural networks (e.g., Fan-
cellu et al., 2016, 2018; Lazib et al., 2020) train
BiLSTMs, or syntactically structured BiLSTMs or
GCNs. Qian et al. (2016) propose a CNN-based
architecture combined with some path/position in-
formation. Recently, a range of papers has explored
BERT-based models for negation resolution (Khan-
delwal and Sawant, 2020; Khandelwal and Britto,
2020; Britto and Khandelwal, 2020; Shaitarova
and Rinaldi, 2021). Further related work includes
datasets annotated for focus (Blanco and Moldovan,
2011a; Altuna et al., 2017), and the computational
modeling thereof (e.g., Hossain et al., 2020b). In
addition, there is a growing body of work address-
ing negation within the context of neural language
models and commonsense reasoning using them
(e.g., Hossain et al., 2020c; Geiger et al., 2020;
Hosseini et al., 2021; Jiang et al., 2021).

3 Evaluation Metrics and Settings

In this section, we first give an overview of the var-
ious evaluation metrics used in shared tasks and re-
search publications. We then propose a framework
for negation resolution focusing on instance-level
metrics. Negation resolution as a standalone NLP
task is usually split into two sub-tasks, cue detec-
tion and scope resolution, where the latter depends
on the former.2 Hence, scope resolution may be
evaluated in two settings, with either gold cue in-
formation being given or in an end-to-end manner
where systems also have to predict cues.

We first introduce some notations with the aim
of a unified presentation of metrics. A negation
instance is a tuple (c, s) consisting of a set of cue
tokens c = (c1, c2, ..., cC) and a set of scope tokens
s = (s1, s2, ..., sS). Punctuation may be excluded
from these sets by definition. In the case of affix
negation, the affix is treated as a separate token if
annotated or predicted as a cue. Ig is the set of gold
standard, Ip the set of predicted negation instances.

3.1 Metrics used in Shared Tasks
Previously proposed metrics for negation resolu-
tion can be divided into metrics requiring exact cue
matches and metrics requiring partial cue matches
(perhaps confusingly called No Cue Match).

Cue Detection. In this step, gold standard and
predicted cue annotations are matched to each other.

2Morante and Blanco (2012) also use scope resolution to
refer to the entire task of negation resolution.
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When matching the gold standard cue cg and the
predicted cue cp, we can either require an exact
match (cg = cp) or a partial match (cg ∩ cp 6= ∅).

The CoNLL 2010 Shared Task on detecting
hedges and their scope in text (Farkas et al., 2010)
required exact cue matches, while the *SEM 2012
Shared Task (Morante and Blanco, 2012) employed
two metrics, one counting only exact and one count-
ing also partial cue matches as true positives. For
these metrics, each negation instance (called scope
in these works) counts as an instance, which can
either be evaluated as a true positive (TP), false pos-
itive (FP), or false negative (FN). Precision is then
computed as TP/(TP+FP), recall is TP/(TP+FN),
and F1 is used to summarize the scores.

Scope Resolution. The CoNLL 2010 Task em-
ployed only a single strict metric requiring exact
cue and scope matches, then computing negation-
instance level precision, recall and F1. This metric
is intuitive but (as the authors concede) maybe a
bit too strict. For example, the metric gives little
insight when trying to identify which to two imper-
fect systems is slightly better at scope resolution, or
when trying to evaluate whether a system under- or
overpredicts the extents of scopes. In addition, as
pointed out by Morante and Blanco (2012), the met-
ric penalizes partially matched negation instances
more than missed instances, as these cases count
both as an FN and an FP.

As a remedy, the *SEM 2012 Shared Task eval-
uation employs a suite of scores. Their Scope-
Level Cue Match (SCM) metric requires an exact
cue match, while the Scope-Level No Cue Match
metric only requires a partial cue match (but ex-
act matching of the scope). In both cases, partial
matches are counted only as FNs; however, this re-
sults in the problem that TP+FP (the denominator
in computing precision) does not correspond to the
number of system predictions. Hence, a second ver-
sion called “B” is employed that uses the number
of system predictions as the denominator.

For giving credit to partial scope matches, a so-
called Scope Tokens (ST) metric is used, which
computes precision, recall, and F1 for tokens be-
longing to the scope of a negation instance in the
gold data vs. system output. Notably, one token
can be counted several times if it belongs to more
than one scope.3 However, each cue must belong to

3This is not stated explicitly in Morante and Blanco (2012),
see original evaluation script: https://www.clips.
uantwerpen.be/sem2012-st-neg/data.html.

exactly one negation instance. Formally, the scores
are computed as follows:4

Ptok =

∑
(cg ,sg)∈Ig ,(cp,sp)∈Ip,cg=cp

|sg ∩ sp|∑
(cp,sp)∈Ip |sp|

Rtok =

∑
(cg ,sg)∈Ig ,(cp,sp)∈Ip,cg=cp

|sg ∩ sp|∑
(cg ,sg)∈Ig |sg|

The *SEM 2012 task employs additional metrics
such as an F1 over Negated Events (independently
of cues and scopes), as well as Global Negation
which requires cue, scope and event to be correct.
Finally, they also report the percentage of correct
negation sentences (CNS).5

3.2 Motivation for Instance-based Scoring

From the perspective of a linguist, it matters to cor-
rectly resolve the scope pertaining to a negation
cue, as this is a prerequisite for modeling the se-
mantics of the sentence, e.g., using predicate logic.
For a machine comprehension downstream task
such as sentiment analysis, it matters that a truth-
theoretic interpretation of the sentence would come
out correctly, or that the parts of the sentence that
the model bases its decision on are interpreted us-
ing the correct polarity. NLP tasks such as semantic
parsing and event extraction care about factors sim-
ilar to the predicate logic view. In typical relation
extraction setups, events are only indicated implic-
itly via relations between participants; here, it is of
high relevance that a system includes the negated
proposition’s arguments in the scope.

Both the linguistic and the downstream task
views desire that all parts of the negated propo-
sition(s) are detected (high recall), but no more
than these (high precision). Ideally, a user of a sys-
tem could obtain its precision and recall in terms
of (a) correctly identifying negation cues and (b)
correctly identifying the negated propositions in-
cluding arguments and complements by indicating
the corresponding spans in the surface text. We

4The notation under the sum symbol is to be read as “for
each element in Ig , identify at most one element in Ip for
which the criterion cg = cp holds.” Replacing the requirement
cg = cp in the formulas below with cg ∩ cp 6= ∅ results in
a version using partial cue matches. However, we argue that
this (a) results in technical difficulties for how to integrate
partial matches, rending scores less intuitive, and (b) from an
downstream point of view, it is crucial to know the full cue.
Consider, for instance, the implications of “There should be
no problems” vs. “There should be no more problems.”

5Fancellu et al. (2017, 2018) also report PCS, “the propor-
tion of negation scopes that we fully and exactly match in the
test corpus,” which should be the recall of the B-version of
SCM.

https://www.clips.uantwerpen.be/sem2012-st-neg/data.html
https://www.clips.uantwerpen.be/sem2012-st-neg/data.html
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argue that without any prior information on the
type of negation or the average scope length in the
application domain given, a score computed based
on existing annotated gold standard data should
reflect an expectation of how well a system would
perform on a random instance.

It is without question that a metric able to iden-
tify gradual differences between systems and con-
figurations is invaluable for research and devel-
opment. The *SEM 2012 Scope Tokens F1 met-
ric, however, effectively weights instances by their
scope lengths, with longer scopes contributing
more to the overall scores. We here argue that
this is not desirable. If a system gets a fair amount
of long-scope cases as in example (3) in Figure 1
right, the system will obtain a high overall score. A
system that is good at recognizing the exact extents
of short scopes (which may not be trivial, espe-
cially in long sentences), will not perform on par
when using such a metric. From an application
point of view, predicting a scope where none exists
such as in example (1) in Figure 1 may be quite
detrimental to a user’s trust in the system, yet, this
would have little impact on the system’s score.

3.3 Negation-Instance Based Scoring (NIS)
In this section, we propose a new flexible scoring
framework for negation resolution. The aim of the
scope match metric(s) is to summarize how well
a negation resolution system performs overall in
terms of being precise and capturing all relevant
instances (recall), giving partial credit for scope
resolution. The final scores can be intuitively in-
terpreted as the expectation how a system would
perform on a random unseen instance. For each
pair of negation instances whose cues match ex-
actly, the scope match scoring functions fP and fR
compute a precision and recall score, respectively.
These scores must each range between 0 and 1.

Pinst =
∑

(cp,sp)∈Ip,(cg ,sg)∈Ig ,cg=cp

1

|Ip|
fP (sg, sp)

Rinst =
∑

(cg ,sg)∈Ig ,(cp,sp)∈Ip,cg=cp

1

|Ig|
fR(sg, sp)

The formulas above can be interpreted as sum-
ming the scores of all gold standard / predicted
instances for which a match could be found. In
other words, predicted instances for which no cue
match has been found in the gold data contribute
to the sum with a precision score of 0. Similarly,
in the case of recall, gold instances for which no

match has been found implicitly contribute with a
score of 0.

In our standard metric, giving credit to partial
matches, we compute token-level scope matching
scores as follows:

fP,tok(sg, sp) =

{ |sg∩sp|
|sp| if |sp| > 0

1 else

fR,tok(sg, sp) =

{ |sg∩sp|
|sg | if |sg| > 0

1 else

In our formulation above, we weight the match
scores returned by fP or fr by 1

|Ip| or 1
|Ig | , respec-

tively. In other words, our final negation-instance
scores (NIStok) correspond to precision and recall
scores that are the expectations of the instance-level
scores when weighting each instance equally, and
thus allow a somewhat intuitive interpretation.

In the strictest case requiring exact scope match,
the scope matching functions can be defined as:

fP,ex(sg, sp) = fR,ex(sg, sp) =

{
1 if sp = sg

0 else

In this case, our metric (NISex) would corre-
spond to SCM-B, the *SEM 2012 B-style Scope-
Level F1 (and to the CoNLL 2010 metric).

When comparing the *SEM 2012 Scope To-
kens metric to NIStok, for computing precision, the
weighting term 1

|Ip| is replaced with |sp|
Z ( |sg |Z in

the case of recall). Z is the sum of all predicted
(gold standard) scope tokens (see also Appendix A).
Hence, longer scopes have a higher impact, and the
resulting scores are not interpretable as expecta-
tions for a random unseen instance. As we have
argued above, this may not reflect a system’s ca-
pacity of negation scope resolution in an ideal way.

4 Modeling

In this section, we explain the negation resolution
models that we compare in our experiments in
Sec. 5. Due to the large number of negation reso-
lution systems, often with no published code, it is
infeasible to provide unified evaluation scores for
all prior work. Instead, to provide competitive base-
lines for future work to compare with, we chose
a wide range of neural architectures inspired by
previous work and re-implement them. For com-
parability reasons, we base them all on the same
robust transformer-based language model.

Token representation. Our token embedding
backbone is the transformer-based XLM-R-large
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language model (Conneau et al., 2020), as well
as the corresponding word-piece tokenizer. To ob-
tain contextualized word embeddings, we take a
weighted sum of the internal states corresponding
to the first word piece for each token. The co-
efficients of this weighted sum are learned during
training, employing layer dropout (see Kondratyuk
and Straka, 2019). Transformer weights are fine-
tuned during training. To determine the effect of
injecting implicit syntactic knowledge into the sys-
tem, in addition to using the default pre-trained
XLM-R model, we also run experiments on an
XLM-R-synt model that was previously fine-tuned
on the task of Universal Dependencies parsing on
the EWT treebank (Silveira et al., 2014).

4.1 Sequence-Tagging Based Approaches

Tagging pipelines first identify negation cues, and
then for each cue, identify its scope using a sec-
ond tagger. The NegBERT system (Khandelwal
and Sawant, 2020; Britto and Khandelwal, 2020),
which we run using XLM-R, modifies the input
for the second step, adding artificial tokens to indi-
cate cues. In addition, we implement a BiLSTM-
Tagger following the architecture proposed by Fan-
cellu et al. (2016), but using XLM-R as the under-
lying language model.6 Cues are predicted using a
single linear layer with softmax on top of XLM-R.
Scopes are predicted by feeding, for each negation
instance, the XLM-R embeddings of the sentences
concatenated with a cue/notcue embedding to a
single-layer BiLSTM and once again using a token-
wise linear+softmax layer for classification.

4.2 Dependency-Parsing Based Approaches

This class of models frame negation resolution as
a dependency parsing (DP) task, as proposed by
Kurtz et al. (2020), predicting cues and scopes in a
single step by encoding negation instance annota-
tions as dependency trees. The systems we present
here differ w.r.t. this encoding (see Figure 2). In
the direct mapping (Kurtz et al., 2020), cue tokens
are modeled as dependents of the artificial root to-
ken, and scope and event tokens are attached via
a dependency link to all cues they belong to. In
addition, we propose a nested mapping in which
in the cases of embedded scopes, there is only one
link from the outer scope’s cue to the inner scope’s
cue, and all other scope tokens are only linked to

6Fancellu et al. (2016) use task-specific learned or
word2vec embeddings (Mikolov et al., 2013).
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Figure 2: Direct (upper) vs. nested (lower) encoding.

their corresponding nearest cue. We build these
models using the graph-based dependency parser
STEPS (Grünewald et al., 2020).7

5 Experiments

We here report our results for end-to-end negation
resolution including cue detection and scope reso-
lution. In all of our evaluations, we ignore punctua-
tion tokens. In addition to the models explained in
Sec. 4, we report results for a punctuation baseline
(Punct-BL) that uses gold cues and tags everything
between the cue and the next punctuation marker
as the scope.

Datasets. We conduct our experiments on three
corpora from a variety of domains. In our experi-
ment, we focus on the CD-neg (CD) dataset, which
has been shown to be most challenging among the
English negation corpora (Fancellu et al., 2017).
The corpus comprises seven literary texts corre-
sponding to 5,520 sentences with 1,432 negation
instances. CD annotates “neither...nor” as a mul-
tiword cue with a single scope. However, from a
semantic point of view, we interpret “Neither Mary
nor Sam like pizza” as ¬like(m, p) ∧ ¬like(s, p),
which actually suggests annotating two separate
instances with overlapping scopes.8 We noticed
that the majority of cases in which systems got
multiword cue detection wrong were like this, de-
tecting only part of the cue but resolving the scope
correctly. Rather than punishing systems for this,
we decide to re-annotate the dataset accordingly,
fixing a total of 10 cases.

In addition, we conduct experiments on the Bio-
Scope corpus (Szarvas et al., 2008) using the ab-
stracts subset (11,871 sentences), as well as the

7https://github.com/boschresearch/
steps-parser

8The original annotation may be seen as corresponding to
an (equivalent) formalization of ¬ (like(m, p) ∨ like(s, p)).

https://github.com/boschresearch/steps-parser
https://github.com/boschresearch/steps-parser
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Cues-B SCM SCM-B (NISex) ST ST ST NIStok NIStok NIStok
System F1 F1 F1 P R F1 P R F1

Punct-BL 100.0 17.0 9.9 89.8 62.0 73.3 93.3 58.8 72.1
NegBERT 91.1 78.8 70.1 86.1 87.8 86.9 83.9 88.7 86.3
BiLSTM-Tagger 92.3 79.6 70.0 90.8 85.4 88.0 90.3 86.3 88.2
DP-direct 92.8 73.2 61.4 85.4 87.4 86.4 84.6 87.7 86.1
DP-nested 93.3 72.8 60.6 86.6 83.0 84.8 85.6 85.4 85.5
DP-direct-synt 92.8 79.1 69.2 87.4 86.5 86.9 86.2 88.3 87.2
DP-nested-synt 93.4 79.2 69.2 88.0 84.6 86.2 87.2 86.6 86.9

Table 1: Comparison of Evaluation Scores on when training and testing on CD-neg. For cues, we re-
port the *SEM 2012 B version for exact cue matching (Cues-B). SCM and SCM-B refer to the standard
and B versions of Scope Level F1 of *SEM 2012, respectively; ST refers to the Scope Tokens metric.
Underlined: Comparison NegBERT vs. DP-direct-synt.

SFU Review corpus (Taboada et al., 2006; Kon-
stantinova et al., 2012), which comprises 400 re-
views in eight different domains. The BioScope
and SFU datasets are also annotated for specula-
tion; our experiments only use the negation anno-
tations. More details on all corpora are given in
Table 9 in Appendix C.

5.1 Experimental Setup

We use the official training-dev-test split for CD-
neg. For BioScope and SFU, we create our own
80-10-10 splits for these datasets. For more infor-
mation, see Appendix C. To tokenize BioScope,
we use NLTK (Loper and Bird, 2002) with custom
rules for punctuation and URLs.

Our models are implemented using PyTorch
(Paszke et al., 2019) and the Huggingface Trans-
formers library (Wolf et al., 2020). Training is
performed on a single nVidia Tesla V100 GPU.
We use a unified set of hyperparameters for the
underlying XLM-R language model, but different
hyperparameters for the parser/tagger layers on top.
For a detailed description, see Appendix B.

5.2 Results

Table 1 shows the results for our set of compet-
itive neural systems on CD-neg. For cue detec-
tion, all systems perform similarly well, with the
parsing-based approach using the nested represen-
tation and a syntactically fine-tuned XLM-R (DP-
nested-synt) having a slight advantage. We ran
the NegBERT system for end-to-end negation res-
olution using the original code, but our evaluation
scripts.9 In this unified evaluation setup, in the
SCM metrics, we can only see that the DP models
based on standard XLM-R underperform; all other

9Khandelwal and Sawant (2020) report results for scope
resolution that appear to be based on gold cues.

systems perform roughly similarly. The less strict
ST and NIStok metrics reveal different precision-
recall trade-offs for the direct vs. the nested en-
coding. The BiLSTM-Tagger turns out to be the
most accurate model for scope resolution, reflected
similarly in the ST and the NIStok scores. Our
architecture similar to the one of Fancellu et al.
(2018) seems to outperform NegBERT, which adds
artificial tokens to indicate cues.10

As expected to some extent, the NIStok and ST
scores are similar in general. Both scores identify
the BiLSTM-Tagger as the most precise system
and NegBERT as having the highest recall, with
the Tagger achieving the best F1. However, while
the bold-facing in Table 1 indicates similar pat-
terns for the top systems, the ranking of the other
systems differs when comparing ST and NIStok
scores. For example, ST assigns the same sum-
mary statistic (F1) to NegBERT and DP-direct-synt,
while in terms of NIStok, the F1 of DP-direct-synt
is more than 1 point higher. Comparing ST and
NIStok scores, we can see that NIStok generally as-
signs higher recall, but slightly lower precision to
systems such as NegBERT or DP; the BiLSTM-
Tagger’s precision drops less. Hence, the ST scores
for models such as NegBERT or DP slightly under-
estimate recall because the systems failed more
often on longer instances; and in turn they slightly
over-estimate precision, e.g., because wrongly pre-
dicted instances often have short scopes. We here
argue that while monitoring the system on several
metrics is generally a good idea, NIStok constitutes
a more realistic gradual end-to-end evaluation met-

10We ran the scope tagger (trained on gold cues) on the
output of the best cue tagger run as chosen by dev set perfor-
mance. Note that while this reflects a real-life development
setup, the DP models predict cues and scopes in one run. Like-
wise, NegBERT scores were produced by running the system
off-the-shelf without optimizing the cue tagger separately.
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System F1 F1 F1 P R F1

B
io

Sc
op

e Punct-BL 100.0 43.2 65.7 77.0 69.7 73.5
NegBERT 90.5 79.5 84.5 83.3 91.5 87.2
BiLSTM-Tagger 94.3 83.0 88.6 91.7 91.7 91.7
DP-nested-synt 95.4 82.7 90.4 92.7 92.1 92.4

SF
U

Punct-BL 100.0 45.9 66.5 75.5 87.4 81.0
NegBERT 81.9 69.5 71.0 67.9 86.3 75.9
BiLSTM-Tagger 86.7 73.2 77.9 74.9 89.8 81.7
DP-nested-synt 86.5 71.1 77.1 73.7 88.9 80.5

Table 2: In-Domain Comparison of Systems on the
BioScope and SFU datasets.

Tr
ai

n
Te

st Cues-B NISex ST NIStok
System F1 F1 F1 F1

NegBERT

B
io

C
D

65.2 8.9 55.2 51.1
BiLSTM-Tagger 61.6 10.1 46.0 46.8
DP-nested-synt 64.8 9.2 51.8 47.9

NegBERT

SF
U

C
D

69.3 9.7 56.7 53.6
BiLSTM-Tagger 68.8 10.1 58.0 53.8
DP-nested-synt 68.1 9.6 55.2 51.6

NegBERT

C
D

B
io

60.6 19.0 49.3 46.2
BiLSTM-Tagger 64.3 17.7 56.7 54.3
DP-nested-synt 65.3 18.7 54.7 50.9

NegBERT

SF
U

B
io

78.7 55.5 63.2 71.0
BiLSTM-Tagger 81.0 53.4 65.9 72.8
DP-nested-synt 82.0 57.2 67.2 74.0

NegBERT

C
D

SF
U 51.3 10.0 37.2 37.5

BiLSTM-Tagger 50.2 9.0 37.5 37.8
DP-nested-synt 50.3 9.0 36.2 36.5

NegBERT

B
io

SF
U 63.4 48.8 53.7 58.6

BiLSTM-Tagger 64.5 53.1 57.0 61.4
DP-nested-synt 56.9 40.1 47.5 51.5

Table 3: Cross-Domain Comparison of Systems be-
tween CD-neg, BioScope, and SFU.

ric for negation resolution systems, and should be
adopted as the main summary statistic by subse-
quent works or shared tasks.

Table 2 compares the various system architec-
tures on the BioScope and SFU data when trained
and tested in-domain. As the difference between
the DP models was small (see Appendix C), we
report only DP-nested-synt. On both datasets, the
DP-nested-synt models outperform NegBERT. On
BioScope, the parsing-based approach clearly out-
performs NegBERT and the BiLSTM-Tagger; on
SFU, the BiLSTM-Tagger performs best.

Finally, we also give results for cross-domain
performance. Overall, the BiLSTM-Tagger seems
most robust. However, the NegBERT system per-
forms close to or better than the BiLSTM-Tagger

when moving from another to the ConanDoyle-neg
dataset, and the DP-nested-synt model has an ad-
vantage when moving from SFU to BioScope. In
sum, particularly cross-domain negation resolution
is still far from being solved. We hope that our lin-
guistically motivated evaluation framework can aid
the development of more robust negation resolution
systems.

6 Discussion

A general problem with most existing text corpora
annotated for negation is that annotations are only
created on the surface level. However, in the words
of Blanco and Moldovan (2011a), “Negation does
not stand on its own, to be useful, it should be
added as part of another existing knowledge rep-
resentation.” Our negation-instance based frame-
work was detailed above such that it can directly be
applied to existing widely used negation corpora.
However, the precision and recall scoring functions
fP and fR can easily be designed in other ways.
For instance, if leveraging a dependency parse of
the sentence, argument structure could be approxi-
mated by taking as the set of elements in a scope
not the tokens, but only the dependents of the main
predicate to which the negation cue attaches. In
this way, relative clauses as in (3) in Figure 1 would
have zero impact. Thinking ahead, a truly linguisti-
cally motivated scoring function could even weight
components by their importance of being detected
as belonging to a scope, e.g., missing a restrictive
relative clause could be penalized more than miss-
ing a non-restrictive one.

If we had a dataset marking cues, scopes and
foci, our scoring framework could assign a high
weight for detecting the focus correctly. Similarly,
detecting the main predicates correctly could be in-
corporated into the score. We here decided against
including event annotations as they are only marked
on factual events and hence, in our opinion, should
be evaluated as a separate task (as was done in most
metrics in previous shared tasks).

7 Conclusion and Outlook

The aim of this paper is to provide a concise refer-
ence of evaluation metrics and setups for negation
resolution, making it easier for NLP researchers
and developers to enter the research area. Our core
contribution is to detail the linguistic motivation
for employing a new instance-based approach to
evaluating the performance of end-to-end negation
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resolution systems, giving credit to partial scope
matches but relying on exact cue matches. We
argue that this metric is well-motivated and intu-
itively interpretable and should hence be adopted
by future studies or shared tasks. In addition, our
experimental study, comparing a set of recent neu-
ral architectures on a similar basis, will serve as a
reference for future work.

Besides implementing a variety of linguistically
motivated extensions with the aim of deeper system
analyses using our framework as suggested above,
an important next step is to evaluate the suite of
models used in this paper on further datasets in
languages other than English (e.g., Zou et al., 2015;
Liu et al., 2018; Jiménez-Zafra et al., 2018).
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A Negation-Instance Based vs.
Token-Level Weighting

We here explain the correspondence between
NIStok and scope token-level scoring (ST) as em-
ployed in the *SEM 2012 task in greater detail. We
use precision for our example, recall is computed
analogously.

First, let us define the normalizing constant Z as
the sum over all predicted scope lengths.

Z =
∑

(cp,sp)∈Ip |sp|

For ST, precision is computed as:

Ptok =

∑
(cg ,sg)∈Ig ,(cp,sp)∈Ip,cg=cp

|sg ∩ sp|
Z

For NIStok, we compute precision as follows
(in this formulation for simplicity disregarding the
case that sp could be empty).

Pinst =
∑

(cp,sp)∈Ip,(cg ,sg)∈Ig ,cg=cp

1

|Ip|
· |sg ∩ sp|
|sp|

If we change the weighting of the scores that
each instance contributes to the sum from uniform
( 1
|Ip| ) to a weighting scheme that weights instances

by their scope length ( |sp|Z ), we arrive at the token-
level metric:

Ptok =
∑

(cp,sp)∈Ip,(cg ,sg)∈Ig ,cg=cp

|sp|
Z
· |sg ∩ sp|
|sp|

=
∑

(cp,sp)∈Ip,(cg ,sg)∈Ig ,cg=cp

1

Z
· |sg ∩ sp|

=
1

Z

∑
(cp,sp)∈Ip,(cg ,sg)∈Ig ,cg=cp

|sg ∩ sp|

=

∑
(cg ,sg)∈Ig ,(cp,sp)∈Ip,cg=cp

|sg ∩ sp|
Z

which corresponds to the definition of ST above.

B Hyperparameters

This section describes the hyperparameters used
in the systems implemented by us, i.e., the de-
pendency parsers and sequence taggers used for
negation resolution.

B.1 XLM-R language model

For the underlying XLM-R language model, we
use the same set of hyperparameters in all of our
experiments. These are shown in Table 4.

Model XLM-R-large
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Table 4: Hyperparameter values for the XLM-R lan-
guage model.

B.2 BiLSTM-Tagger

Cue tagging. For the cue tagging subsystem, we
simply use a linear layer with softmax on top of the
XLM-R model. The model is then trained using
the hyperparameters shown in Table 5.

Optimizer AdamW
Weight decay 0
Batch size 8
Base learning rate 2e−5

LR schedule Noam
LR warmup 1 epoch

Table 5: Hyperparameter values for cue tagger.

Scope tagging. For the scope tagging subsystem,
we add a 1-layer BiLSTM on top of the XLM-R
model and then use a linear layer with softmax
to classify tokens as part of negation scopes. In
this system, we use different learning rates for the
XLM-R model vs. the BiLSTM and the classi-
fier. We found that using low learning rates for the
entire system causes it to underfit. Furthermore, be-
cause the scope tagger is only trained on a smaller
number of instances (i.e., only those that actually
contain negation instances), we found it beneficial
to reduce the batch size compared to the cue tagger.
Our final hyperparameters can be found in Table 6.

BiLSTM

BiLSTM layers 1
BiLSTM hidden size 2 × 200
BiLSTM dropout 0.0
cue/notcue embedding dim. 128

Optimization

Optimizer AdamW
Weight decay 0
Batch size 4
Base learning rate (BiLSTM) 2e−4

Base learning rate (XLM-R) 2e−5

LR schedule Noam
LR warmup 1 epoch

Table 6: Hyperparameter values for scope tagger.
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neg.

B.3 Dependency Parser
Our parser implementation is based on the STEPS
parser by Grünewald et al. (2020), which in turn is
based on the unfactorized graph parsing approach
by Dozat and Manning (2018). Table 7 gives the
hyperparameters used for this system. Like the cue
tagger, we use only a single learning rate for the
entire system (XLM-R model as well as classifier).

Biaffine classifier

Arc and label scorer dimension 1024
Dropout 0.33

Optimization

Optimizer AdamW
Weight decay 0
Batch size 32
Base learning rate 4e−5

LR schedule Noam
LR warmup 1 epoch

Table 7: Hyperparameter values for dependency
parsing-based system.

C Additional Tables and Figures

Table 8 contains the full set of experimental results
of our study.

Figure 3, Figure 4, and Figure 5 show negation
instances by scope lengths for the three datasets
used in our experiments.

Table 9 gives details on the datasets annotated for
negation used in our study, while Table 10 provides
statistics for our data splits. In addition, we will
publicly release the exact splits (document IDs per
dataset) upon publication of our paper.
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Scope abstracts.
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CD Cues-B SCM SCM-B (NISex) ST ST ST NIStok NIStok NIStok
System Train Test F1 F1 F1 P R F1 P R F1

Punct-BL – CD 100.0 17.0 9.9 89.8 62.0 73.3 93.3 58.8 72.1
NegBERT CD CD 91.1 78.8 70.1 86.1 87.8 86.9 83.9 88.7 86.3
BiLSTM-Tagger CD CD 92.3 79.6 70.0 90.8 85.4 88.0 90.3 86.3 88.2
DP-direct CD CD 92.8 73.2 61.4 85.4 87.4 86.4 84.6 87.7 86.1
DP-nested CD CD 93.3 72.8 60.6 86.6 83.0 84.8 85.6 85.4 85.5
DP-direct-synt CD CD 92.8 79.1 69.2 87.4 86.5 86.9 86.2 88.3 87.2
DP-nested-synt CD CD 93.4 79.2 69.2 88.0 84.6 86.2 87.2 86.6 86.9

NegBERT Bio CD 65.2 13.0 8.9 75.6 43.7 55.2 71.1 40.0 51.1
BiLSTM-Tagger Bio CD 61.6 14.7 10.1 72.1 33.8 46.0 70.5 35.0 46.8
DP-direct Bio CD 65.2 13.1 8.9 74.1 36.2 48.5 74.3 35.1 47.6
DP-nested Bio CD 63.2 13.6 9.3 79.2 32.9 46.5 77.2 31.9 45.1
DP-direct-synt Bio CD 65.6 13.8 9.1 76.5 37.8 50.5 76.4 34.9 47.8
DP-nested-synt Bio CD 64.8 13.7 9.2 80.1 38.4 51.8 77.7 34.7 47.9

NegBERT SFU CD 69.3 15.2 9.7 74.4 46.1 56.7 70.2 43.6 53.6
BiLSTM-Tagger SFU CD 68.8 15.7 10.1 78.3 46.0 58.0 74.0 42.3 53.8
DP-direct SFU CD 69.2 14.2 9.1 78.0 42.8 55.3 74.9 40.0 52.1
DP-nested SFU CD 68.2 14.0 9.0 77.7 42.4 54.8 74.7 38.6 50.9
DP-direct-synt SFU CD 67.5 15.0 9.7 77.7 44.3 56.5 73.1 39.7 51.4
DP-nested-synt SFU CD 68.1 15.0 9.6 77.0 43.1 55.2 72.9 39.9 51.6

Punct-BL – Bio 100.0 59.4 43.2 67.3 64.2 65.7 77.0 69.7 73.5
NegBERT Bio Bio 90.5 85.6 79.5 81.0 88.3 84.5 83.3 91.5 87.2
BiLSTM-Tagger Bio Bio 94.3 89.6 83.0 88.9 88.5 88.6 91.7 91.7 91.7
DP-direct Bio Bio 95.4 83.8 74.3 85.6 89.2 87.3 88.7 92.4 90.5
DP-nested Bio Bio 95.3 87.4 79.8 89.1 87.9 88.5 91.2 91.2 91.2
DP-direct-synt Bio Bio 95.1 88.2 81.0 89.4 88.9 89.1 91.7 91.7 91.7
DP-nested-synt Bio Bio 95.4 89.1 82.7 91.0 89.8 90.4 92.7 92.1 92.4

NegBERT CD Bio 60.6 24.5 19.0 36.4 77.3 49.3 32.6 80.5 46.2
BiLSTM-Tagger CD Bio 64.3 24.6 17.7 45.3 76.1 56.7 41.2 80.1 54.3
DP-direct CD Bio 64.4 17.5 12.5 38.0 76.0 50.7 32.1 79.0 45.7
DP-nested CD Bio 65.8 18.5 13.1 40.0 78.7 53.0 34.9 78.9 48.4
DP-direct-synt CD Bio 64.7 22.2 16.3 40.3 78.0 53.1 34.8 80.3 48.5
DP-nested-synt CD Bio 65.3 25.2 18.7 42.2 77.6 54.7 37.2 80.6 50.9

NegBERT SFU Bio 78.7 64.7 55.5 73.9 55.4 63.2 76.8 66.1 71.0
BiLSTM-Tagger SFU Bio 81.0 64.3 53.4 74.8 58.8 65.9 77.8 68.4 72.8
DP-direct SFU Bio 81.6 59.6 48.3 75.4 55.9 64.2 79.2 66.0 72.0
DP-nested SFU Bio 82.1 61.1 49.9 77.1 57.4 65.8 80.0 66.8 72.8
DP-direct-synt SFU Bio 81.6 66.8 57.1 77.3 59.2 67.0 80.0 68.4 73.7
DP-nested-synt SFU Bio 82.0 67.0 57.2 77.8 59.2 67.2 80.1 68.8 74.0

Punct-BL – SFU 100.0 56.9 45.9 55.0 84.0 66.5 75.5 87.4 81.0
NegBERT SFU SFU 81.9 74.2 69.5 63.6 81.0 71.0 67.9 86.3 75.9
BiLSTM-Tagger SFU SFU 86.7 78.0 73.2 71.1 86.0 77.9 74.9 89.8 81.7
DP-direct SFU SFU 86.1 73.5 66.9 71.2 79.5 75.1 73.2 86.1 79.1
DP-nested SFU SFU 85.8 73.0 66.1 70.7 80.1 75.0 70.8 80.2 75.2
DP-direct-synt SFU SFU 86.6 74.6 68.5 71.8 80.8 76.0 73.4 87.2 79.6
DP-nested-synt SFU SFU 86.5 76.6 71.1 72.2 82.7 77.1 73.7 88.9 80.5

NegBERT CD SFU 51.3 14.4 10.0 27.2 58.8 37.2 26.6 63.6 37.5
BiLSTM-Tagger CD SFU 50.2 13.4 9.0 28.9 53.6 37.5 28.0 58.0 37.8
DP-direct CD SFU 50.6 10.3 6.9 25.9 53.5 34.9 26.4 56.9 36.1
DP-nested CD SFU 50.6 11.6 7.8 26.8 53.1 35.6 27.0 56.4 36.5
DP-direct-synt CD SFU 50.6 12.3 8.3 27.2 55.1 36.4 26.7 58.8 36.8
DP-nested-synt CD SFU 50.3 13.2 9.0 27.2 54.1 36.2 26.6 58.0 36.5

NegBERT Bio SFU 63.4 54.0 48.8 60.1 49.7 53.7 63.6 55.4 58.6
BiLSTM-Tagger Bio SFU 64.5 56.6 53.1 67.9 49.1 57.0 70.2 54.5 61.4
DP-direct Bio SFU 66.6 51.9 45.9 63.2 49.2 55.2 65.1 54.7 59.3
DP-nested Bio SFU 65.1 51.2 45.9 64.0 44.7 52.6 66.9 51.2 58.0
DP-direct-synt Bio SFU 56.1 48.6 39.4 46.6 47.7 47.0 48.6 53.5 50.8
DP-nested-synt Bio SFU 56.9 48.6 40.1 48.2 47.0 47.5 50.7 52.5 51.5

Table 8: Complete experimental results: For cues, we report the *SEM 2012 B version for exact cue matching
(Cues-B). SCM refers to the standard version of Scope Level F1 of *SEM 2012, SCM-B to their B-version, which
also corresponds to our NISex. The punctuation baseline Punct-BL uses gold cues and predicts scopes as starting
from a cue to the next punctuation token.
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Dataset ConanDoyle-neg BioScope Abstracts SFU Review

Source Morante and
Daelemans (2012) Szarvas et al. (2008) Konstantinova et al.

(2012)

Domain fiction writing biomedical review
Sentence # 5,520 11,871 17,263
Negation sentence # 1,227 1,597 3,117

Negation instance #
1,421 (original) / 1,432

(ours) 1,719 3,518

Annotated for speculation no yes yes
Cue is a part of the scope no yes no
Includes discontinuous scopes yes no yes
Includes events yes no no

Annotates negation affixes yes rarely, with the whole
word as a cue

yes, but with the whole
word as a cue

Tokenized yes no yes
File format CoNLL XML XML

Table 9: Overview of datasets annotated for negation used in our study.

Dataset Train Dev Test Total

ConanDoyle-neg

sentence # 3,644 787 1,089 5,520
sentence % 66% 14.3% 19.7% 100 %
negation instance # 984 173 264 1,421
negation sentence # 848 144 235 1,227
negation sentence % 23.3% 18.3% 21.6% 22.2 %

(reannotated) negation instance # 987 176 269 1,432

BioScope Abstracts

sentence # 9,500 1,185 1,186 11,871
sentence % 80% 10% 10% 100%
negation instance # 1,396 156 167 1,719
negation sentence # 1,297 148 152 1,597
negation sentence % 13.7% 12.5% 12.8% 13.5%

SFU Review

sentence # 13,614 1,817 1,800 17,231
sentence % 79% 11% 10% 100%
negation instance # 2,835 365 309 3,509
negation sentence # 2,503 328 276 3,107
negation sentence % 18.4% 18.1% 15.3% 18%

Table 10: Dataset splits


