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Abstract

Zero pronoun resolution aims at recogniz-
ing dropped pronouns and pointing out their
anaphoric mentions, while non-zero corefer-
ence resolution targets at clustering mentions
referring to the same entity. Existing efforts
often deal with the two problems separately
regardless of their close essential correlations.
In this paper, we investigate the possibility of
jointly solving zero pronoun resolution and
coreference resolution via a novel end-to-end
neural model. Specifically, we design a gap-
masked self-attention model that encodes gaps
and tokens in the same space, where gaps
could capture valuable contextual information
according to their surrounding tokens while
tokens could maintain original sequential in-
formation without disturbance. Additionally,
we also propose a two-stage interaction mech-
anism to make full use of the exclusive re-
lationship between zero pronouns and men-
tions. Our empirical study conducted on the
OntoNotes 5.0 Chinese dataset shows that our
model could outperform corresponding state-
of-the-art approaches on both tasks.

1 Introduction

Zero pronoun resolution and non-zero coreference
resolution are two fundamental tasks in natural lan-
guage processing (NLP). Zero pronoun resolution,
which is only studied in pro-drop languages such
as Chinese, aims at recognizing dropped pronouns
in a given text and pointing out their anaphoric
mentions within the text (Chen and Ng, 2013).
Coreference resolution, which is studied in all lan-
guages, targets at clustering mentions referring to
the same real-world entity in the text (Sukthanker
et al., 2020). Both of the two tasks are vital for
many downstream NLP applications including ma-
chine translation (Mitkov et al., 1995), information
extraction (Zelenko et al., 2004) and text summa-
rization (Steinberger et al., 2007).

∗Zhixu Li is the corresponding author

Given their importance, both tasks have been
studied extensively. For zero pronoun resolution,
most previous works assume that positions of zero
pronouns are given. They encode zero pronouns
and their candidate antecedents by LSTM (Yin
et al., 2017), Attention (Yin et al., 2018b; Liu et al.,
2017) or BERT (Song et al., 2020; Aloraini and
Poesio, 2020), then measure the similarity between
embeddings to find out the best antecedents. How-
ever, positions of zero pronouns are usually un-
known in practice. To solve this problem, some
recent works (Yang et al., 2019; Song et al., 2020)
treat spaces between tokens as candidate zero pro-
nouns, recognize and resolve zero pronouns based
on gap embeddings jointly. For non-zero coref-
erence resolution, the state-of-the-art models be-
long to an end-to-end paradigm or its variants. In
these models, all spans in the text are candidate
mentions. After representing spans by highway
LSTM (Lee et al., 2018) or transformers (Joshi
et al., 2019, 2020), they calculate mention and an-
tecedent scores using feed forward neural network
or machine reading comprehension method (Wu
et al., 2019), and select the top K mentions and
their antecedents with the top antecedent score.

Most existing efforts deal with the two problems
separately, and someone also state that it is chal-
lenging to combine zero pronoun resolution with
the resolution of overt mentions (Aloraini and Poe-
sio, 2020). But according to our observations, there
are at least four intuitions motivating us to tackle
the two tasks jointly:
- Firstly, with the joint learning of zero pronoun

resolution and non-zero coreference tasks, a
more robust and universal representations of to-
kens could be learned and shared for both tasks,
which could potentially benefit both tasks.

- Secondly, the coreferred mentions in coreference
resolution could enrich each others’ contextual
information, which may provide some hidden
clues for zero pronoun resolution. In Fig. 1,
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[CHN] 为 提升品牌 ，我们 正计划 从 明年 开始 投入 五十五亿的 重建 计划。 将来 我们会 实施 这样 一个 很 重

大 的 计划 ， 𝜙1 就 是 𝜙2 把 整个 公园 分 七 个 区域 来 重建 。 我们 等到 政府 批准 就 可以 进行 计划，预计 𝜙3

明年可以 动工。

Document

[ENG] To strengthen the brand , we will invest 5.5 billion in a renovation plan in the next year . In the future , we will

implement such a very major plan , where 𝜙1 is that 𝜙2 divide the entire park into seven areas . We will implement the plan

as soon as it is approved by the government , and it is expected that next year 𝜙3 will be executed .

m1 m2 m3 m4

m5 m6

m1 m2 m3 m4 m5

Previous (Non-Zero) Coreference Resolution

m1 m2 m3 m4 𝜙1 𝜙2 𝜙3m5 m6

Previous Zero Pronoun Resolution

Joint Coreference Resolution (Our model)

m1
m2 m3

m4
np2 m5 m6

np1

np3

np4

np1

np2 np3 np4

np1 np2 np3 np4

m6

m1 m2 m3 m4 𝜙1 𝜙2 𝜙3m5 m6

Figure 1: An example document for coreference resolution and zero pronoun resolution, where mentions and zero
pronouns marked in the same color have coreferential relationship, and noun phrases that are taken as candidate
antecedents of zero pronouns are marked in blue color. For the sake of clarity, we do not list all the mentions, zero
pronouns, and noun phrases in the figure.

while resolving, the contextual information of
m2, such as “next year”, will be incorporated
into the representation of m6 as they are refer-
ring to the same entity. Therefore, φ3 next to
“next year” will be explicitly resolved to m6 with
reference to the common context.

- Thirdly, based on the mention detection results in
non-zero coreference resolution, only mentions,
instead of all maximal and modifier noun phrases
in the sentence, would be taken as candidate
antecedents. As in Fig. 1, the noun phrase np1
would not be taken as candidate antecedent in
jointly learning.

- Lastly, the positions of zero pronouns and the
spans of mentions are exclusive. That is, if a men-
tion is determined, gaps in the mention won’t be
taken as a zero pronoun. Also, if a zero pronoun
is determined, a phrase across the zero pronoun
is impossible to become a mention. Therefore,
the mention detection results can help to exclude
some gaps as zero pronoun, and vice versa. In
Fig. 1, if m4 is a mention, the gaps in the men-
tion, such as the gap between “major” and “plan”,
should not be a zero pronoun. If φ3 is a zero
pronoun, the span “next year will be executed”

across the φ3 should not be a mention.

Guided by the four intuitions above, this paper
proposes a crafted end-to-end neural model for
tackling the two tasks jointly, where the positions of
zero pronouns are unknown in advance. Within the
model, both tasks share the same token embedding
layer (intuition 1). Inspired by Lee et al. (2018)
and Zhang et al. (2018), we introduce high-order
inference module to enrich mentions’ contextual
information (intuition 2) and introduce mention de-
tection loss to help mention recognition (intuition
3). Additionally, considering the exclusive rela-
tions between the position of gaps and spans, we
propose a two-stage interaction mechanism to real-
ize the exclusivity in both embedding level and de-
tection scoring level (intuition 4). Last but not the
least, to learn proper representation for both gaps
and tokens in the same space, a gap-masked self-
attention model is designed which enables gaps to
take advantage of the contextual messages from
their surrounding tokens, without polluting the rep-
resentations of tokens.

To summarize, our contributions are as follows:

- We are the first to attempt to solve zero pronoun
resolution and coreference resolution with an
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end-to-end neural network model jointly.

- We propose a two-stage interaction mechanism
to make full use of the exclusive relationship
between zero pronouns and mentions.

- We design a gap-masked self-attention model
that could learn representations for gaps from
their surrounding tokens, without polluting the
representations of tokens in the same space.

Extensive experiments conducted on the widely-
used OntoNotes 5.0 Chinese dataset shows that
our model could outperform the state-of-the-art
approaches on both tasks. The code is available at
https://github.com/cheniison/e2e-joint-coref.

2 Related Work

In this section, we first briefly introduce previous
works on zero pronoun resolution and non-zero
coreference resolution respectively, and then intro-
duce some joint works.

According to whether positions of zero pronouns
are given, previous works of zero pronoun resolu-
tion can be classified into two categories: reso-
lution with gold positions of zero pronouns and
resolution without gold positions of zero pronouns.

For resolution with gold positions of zero pro-
nouns, previous work concentrates on finding an
antecedent for a given zero pronoun. (Chen and
Ng, 2016; Yin et al., 2017) first use deep learning
models to compute embeddings for zero pronouns
and candidate antecedents. Liu et al. (2017) pro-
poses a method of generating an amount of pseudo
zero pronoun data automatically so that models
can be pre-trained on the pseudo data. Yin et al.
(2018a) introduces reinforcement learning model
into zero pronoun resolution to integrate local and
global resolution information. Lin and Yang (2020)
considers bidirectional attention between zero pro-
nouns and candidate antecedents and proposes a
pairwise-margin loss and a similarity constraint to
optimize their model.

For resolution without gold positions of zero
pronouns, positions of zero pronouns need to be
identified first. Kong and Zhou (2010) and Bouzid
and Zribi (2020) first find the positions of zero
pronouns, after that they filter out non-referential
pronouns and determine antecedents. In the work
of Chen and Ng (2013), zero pronouns can estab-
lish coreference relation with each other to help
zero pronouns find overt antecedents far away from
them. These works rely on handcraft features and

suffer from error propagation. To solve these prob-
lems, Yang et al. (2019) tackles context reconstruc-
tion in an end-to-end way. It formulates pronouns
detection as a sequence labeling task and uses pro-
noun masking mechanism to combine the detection
and the resolution modules. Song et al. (2020)
presents a Bert-based multi-task model which han-
dles zero pronoun recovery, zero pronoun detection
and zero pronoun resolution jointly.

Non-zero coreference resolution is an important
task in natural language processing in all languages.
Recently, end-to-end coreference resolution models
achieve the state-of-the-art performance in the non-
zero coreference task. Lee et al. (2017) proposes
the first neural end-to-end coreference resolution
model which computes scores of span and men-
tion pairs jointly to detect mentions and predict
antecedents. To avoid global inconsistency, Lee
et al. (2018) proposes a higher-order model which
iteratively updates mention representations. Zhang
et al. (2018) learns mention detection and mention
clustering jointly and proposes a biaffine attention
method to compute antecedent scores. Instead of
using Word2vec and Elmo, Joshi et al. (2019, 2020)
apply BERT to get better span representations.

There are also some efforts on solving the two
tasks jointly. Iida and Poesio (2011) proposes an
ILP-based model integrating the zero anaphora re-
solver with a coreference resolver. Kong and Ng
(2013) exploits zero pronouns to improve non-zero
coreference resolution by refining the syntactic
parser and training examples. Shibata and Kuro-
hashi (2018) presents an entity-based joint model
for Japanese coreference resolution and predicate
argument structure analysis. However, these works
either rely on artificially designed features and syn-
tactic information, or need the golden positions of
the zero pronouns, which are costly and not prac-
tical. In this paper, we first propose an end-to-end
neural model for solving the two tasks jointly.

3 Model

In this section, we first formally define the Zero &
Non-Zero Joint Coreference Resolution task, and
then present the details of the joint model.

3.1 Task Definition

This paper aims to solve the zero pronoun res-
olution and coreference resolution jointly. And
we call the new task as Zero & Non-Zero Joint
Coreference Resolution. Formally, given a doc-

https://github.com/cheniison/e2e-joint-coref
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Figure 2: The architecture of end-to-end joint coreference resolution model

ument D = {t1, t2, t3, ..., td} where ti represents
the i-th token, S = {s11, s12, ..., sdd} is the set
of spans, where sij means the span starting from
the token ti and ending at the token tj and G =
{g1, g2, ..., gd+1} is the set of gaps, where gi means
the gap before the token ti and gd+1 is the last gap.
For simplicity, we denote the set of spans and gaps
as U = {u1, u2..., um} where ui is a unit which
can be either a span or a gap.

Our task is to find a partition P =
{X1, X2, ..., Xk, Xk+1} from U , where k is the
number of entities that appear in D. Each set Xi

refers to an entity enti, and any two distinct setsXi

and Xj refer to different entities i.e. enti 6= entj .
All units in the set Xi(i ≤ k) are the mentions or
zero pronouns referring to the entity enti. There is
a special entity called “empty entity” which the set
Xk+1 refers to, and the units in the set Xk+1 are
neither mentions nor zero pronouns.

3.2 End-to-end Joint Coreference Resolution

We introduce zero pronouns into the end-to-end
neural coreference resolution model (Lee et al.,
2018). Fig. 2 illustrates the framework of our
model. The model first computes unit (span and
gap) representations using transformer and gap-
masked self-attention. Based on these embeddings,
a unit score for each unit and a pairwise score for
each pair of units will be calculated by a unit in-
teraction mechanism and a pair-wise scoring func-
tion. These two scores are used to determine the
antecedent.

The model learns the antecedent distribution

P (uj) for each unit ui:

P (uj) =
es(ui,uj)∑

uj∈Ui
es(ui,uj)

(1)

where Ui is the set of possible antecedent units for
ui which contains units in front of ui and a dummy
unit ε′. The pairwise score s(ui, uj) represents the
coreference score between ui and uj . The score is
the sum of three factors:

s(ui, uj) = su(ui) + su(uj) + sa(ui, uj) (2)

where su(ui) is the unit score of ui indicating the
possibility that the unit ui becomes mention or a
zero pronoun and sa(ui, uj) is the pairwise score
for ui and uj indicating the possibility that ui and
uj refer to the same entity. Especially, the coref-
erence score between dummy unit and any other
unit is set to 0, i.e. s(ui, ε′) = 0. In the basic joint
model, these scoring functions are computed as
follows:

su(ui) =

{
FFNNm(hui) ui ∈ S
FFNNz(hui) ui ∈ G

sa(ui, uj) = FFNNa([hui ;huj ;ψ(ui, uj)])
(3)

We use two different feed-forward neural networks
FFNNm and FFNNz to score spans and gaps
separately, where hui is the span or gap representa-
tion for ui and will be described in detail in the next
section. While computing the pairwise score, we
take the spans and gaps equally. The input of feed-
forward neural network FFNNa consists of the
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embeddings of two units ui and uj and the feature
between ui and uj denoted as ψ(ui, uj). Follow-
ing Lee et al. (2018), a coarse-to-fine antecedent
pruning approach and a representation refining ap-
proach are introduced to our model to reduce com-
putational cost and enrich unit representation with
global information.

3.3 Span & Gap Representations
As mentioned above, there are two kinds of units:
span and gap. To reduce computational cost and
prevent overfitting, we encode them into the same
structure.

For computing a span ui’s representation, de-
noted as hui , we follow Lee et al. (2017):

hui = [eSTART (ui); eEND(ui); eATT (ui);ψ(ui)]
(4)

where eSTART (ui) is the embedding of the first to-
ken for the span ui and eEND(ui) is the embedding
of the last token for the span ui. eATT (ui) is an
attention embedding computed over all tokens in
span ui. In addition to token embeddings, a feature
vector ψ(ui) indicates the length of ui is concate-
nated to the span representation.

For gap representations, we treat the gaps the
same as the spans which only consist of a single
token:

hui = [gui ; gui ; gui ;ψgap] (5)

where gui is the gap embedding of ui and has
the same dimension as those of token embeddings.
ψgap is a feature vector indicating that the unit is a
gap (or the length of the unit is 0).

To get token embeddings e and gap embeddings
g, we firstly apply BERT to encode the document
following the independent variant of splitting in
Joshi et al. (2019) and get the basic token embed-
dings e′. After that, we concatenate the token em-
bedding e′i−1 with e′i, and map the concatenated
embedding [e′i−1; e

′
i] to the same dimension to get

basic gap embedding g′i. Formally, the basic token
embedding e′i and the basic gap embedding g′i are
computed as follows:

e′1, e
′
2, ..., e

′
d = BERT (t1, t2, ..., td)

g′i = FFNNg([e
′
i−1; e

′
i])

(6)

Based on basic embeddings e′ and g′, we use a
gap-masked self-attention model to get final embed-
dings e and g. The model is a variant of multi-head
self-attention model where the weight for each gap

is set to 0 while computing attention weights. That
is, both token embeddings e and gap embeddings
g are the weighted basic token embeddings. There-
fore, gap embedding and token embedding can be
in the same space without polluting token embed-
ding. The details of the model are as follows:

e, g = softmax(W )V

W i =


QKT

i√
dk

i ∈ D

− inf i ∈ G
Q,K,V = linearq,k,v({e′, g′})

(7)

where Q,K,V are query, key, value following
Vaswani et al. (2017), and all tokens and gaps will
get these three factors based on e′ and g′ to calcu-
late attention weights W . linearq,k,v are three dif-
ferent linear functions to compute Q,K,V .

√
dk

is the scaling factor and dk is the size of K.

3.4 Two-stage Interaction Mechanism

As mentioned in Section 1, there is an exclusive
relationship between zero pronouns and mentions.
Therefore, the unit score of a span should be af-
fected by the gaps in it, and the unit score of a gap
will be affected by the spans across it. We define
these gaps and spans as the relevant unit set Rui
for the unit ui:

Rui =

{
{gx|gx ∈ G, p < x <= q} ui = spq

{sxy|sxy ∈ S, x < p <= y} ui = gp
(8)

When the unit ui is a span consisting of a single
token (spq, p = q) or the gap at the beginning or the
end of the document (g0, gd+1), the relevant units
set Rui will be an empty set.

To make use of the exclusive relationship be-
tween zero pronouns and mentions, we propose a
two-stage interaction mechanism. By modifying
the unit scoring function su, the mechanism will
introduce the relevant units of ui when computing
the unit score su(ui), so that the unit score of ui
can be affected by its relevant units. According
to the incorporation of relevant units, the interac-
tion mechanism includes two different interaction
methods: the interaction among unit representa-
tions and the interaction among unit scores. For the
interaction among unit representations, the repre-
sentations of relevant units will be used when the
model computes unit scores. We concatenate the
unit embedding with the attention embedding of
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its relevant units and take the concatenated result
as the input of the scoring function. If the rele-
vant unit set is an empty set, we then use a special
embedding ε instead of an attention embedding.
Therefore, the unit scoring function su is modified
as s′u:

s′u(ui) =

{
FFNNm([hui ;hRui

]) ui ∈ S
FFNNz([hui ;hRui

]) ui ∈ G

hRui
=

∑
uj∈Rui

softmax(αuj )huj

αuj = FFNNα(huj )
(9)

For the interaction among unit scores, the unit
scores of relevant units will be used when the model
computes the unit score. We update the unit score
of ui by the score over its relevant units Rui . Intu-
itively, there is a negative correlation between these
two unit scores. The higher score of a unit brings
the lower score over its relevant units:

s′′u(ui) = s′u(ui)− I(
⋃

uj∈Rui

s′u(uj)) (10)

where I is an aggregate function with unit scores of
relevant units as input. In our model, we adopt two
common functions to aggregate these unit scores:
max and mean. The max function outputs the
highest unit score, and the mean function calcu-
lates average unit scores.

3.5 Training
Our model trains resolution for zero pronouns and
mentions simultaneously. However, the number of
zero pronouns is far less than mentions in the train-
ing data. If we only adopt the clustering loss (Lee
et al., 2017) which considers antecedent links, the
learning process of zero pronoun resolution will
be slow. Therefore, we follow Zhang et al. (2018),
combining unit detection loss with clustering loss:

L = λ
∑
i∈U

Ldetect(i) +
∑
i∈U ′

Lcluster(i) (11)

where λ controls the weights of two loss, U is
the set of all units, and U ′ is the set of units after
coarse-to-fine pruning (Lee et al., 2018).

For the detection loss Ldetect:

Ldetect(i) = −yilog(ŷi)− (1− yi)log(1− ŷi)
(12)

where yi is the gold label of unit i, yi = 1 means
that unit i is a zero pronoun or a mention, otherwise

yi = 0. ŷi = sigmoid(su(i)) is the predicted unit
score of unit i.

For the clustering loss Lcluster:

Lcluster(i) = −log
∑

u∈Ui∩GOLD(i)

P (u) (13)

where Ui is the set of possible antecedent units
for i, and GOLD(i) is the set of gold antecedent
units for i. If i is either a singleton mention or a
singleton zero pronoun, or i is neither a mention
nor a zero pronoun, or gold antecedents are all
pruned, GOLD(i) = ε′.

3.6 Evaluating & Predicting
There are two different antecedents setting strate-
gies, “To ZP” and “Not to ZP”, according to
whether the zero pronouns are allow to be resolved
to as antecedents. The “To ZP” strategy stipulates
that zero pronouns can be resolved to if they get
the top coreference scores while the “Not to ZP”
strategy stipulates that zero pronouns cannot be
resolved to even if they get the top coreference
scores. For example in Fig. 1, to find the best
antecedent of m5, the model calculates all coref-
erence scores for m5:

⋃
u∈Um5

s(m5, u), where
Um5 = {m1,m2,m3,m4, φ1, φ2}. We assume
that s(m5, φ2) = 0.6, s(m5,m3) = 0.3, and we
ignore the other scores. If we adopt the “To ZP”
strategy, the model would choose zero pronoun
φ2 as the best antecedent. But if we choose the
“Not to ZP” strategy, the model would skip all zero
pronouns and choose the mention with the highest
score as the best antecedent (in this example the
best antecedent is m3).

4 Experiments

In this section, we study the effectiveness of our
model. We firstly introduce the datasets and the
metrics we use to evaluate models. Then we present
the details of experimental settings in the model.
Finally, we display our experimental results.

4.1 Datasets
We train and evaluate our model on the OntoNotes
5.0 Chinese corpus1. The corpus is split into
train/dev/test datasets2 which contain 1810 training
documents, 250 development documents, and 218
testing documents.

1http://catalog.ldc.upenn.edu/LDC2013T19
2We use same algorithm as in CoNLL-2012 to create train-

ing, development and test partitions
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MUC B3 CEAFφ4
P R F1 P R F1 P R F1 Avg. F1

(Clark and Manning, 2016b) 73.85 65.42 69.38 67.53 56.41 61.47 62.84 57.62 60.12 63.66
(Clark and Manning, 2016a) 73.64 65.62 69.40 67.48 56.94 61.76 62.46 58.60 60.47 63.88
(Kong and Fu, 2019) 76.95 64.58 70.21 70.58 54.68 61.60 64.92 55.36 59.75 63.85
(Joshi et al., 2019) 76.33 65.53 70.52 67.15 55.99 61.07 65.65 53.47 58.94 63.51

+ hyperparameter tuning 74.42 70.80 72.57 65.68 62.74 64.18 66.98 59.61 63.08 66.61
Our model 77.07 68.83 72.71 68.79 61.28 64.82 69.62 60.38 64.67 67.40

+ IUR 75.33 69.76 72.44 68.17 62.30 65.10 68.69 62.20 65.29 67.61
+ IUS(max) 75.53 70.55 72.96 66.79 63.28 64.99 68.93 61.81 65.17 67.71
+ IUS(mean) 77.77 68.31 72.74 70.40 60.85 65.28 69.58 61.15 65.09 67.70

Table 1: Results of non-zero coreference resolution on Chinese corpus in OntoNotes 5.0. The average F1 of MUC,
B3, and CEAFφ4

is the main evaluation metric.

P R F1
(Yang et al., 2019) - - 17.25
(Song et al., 2020) 30.96 22.51 26.07
Our baseline 36.22 30.84 33.31
Our model 37.00 31.06 33.77

+ IUR 36.74 31.63 33.99
+ IUS(max) 37.56 31.28 34.13
+ IUS(mean) 37.51 31.25 34.10

Table 2: Results of zero pronoun resolution on Chinese
corpus in OntoNotes 5.0.

4.2 Evaluation Metrics

The metrics for evaluating mentions and zero pro-
nouns are different.

To evaluate coreference results of mentions, we
follow the previous coreference resolution works
including three metrics: MUC, B3, and CEAFφ4 .
We report the precision, recall and F-score for each
metric. Also, we report the average F-score of the
three metrics.

To evaluate zero pronoun resolution results,
we follow the previous zero pronoun resolution
works (Zhao and Ng, 2007; Chen and Ng, 2013) to
report precision, recall and F-score.

In addition, we also report precision, recall and
F-score for zero pronoun detection and mention
detection.

4.3 Experimental Settings

Our model reuses most of the hyperparameters
from Joshi et al. (2019) except: (1) We use the
official pretrained Chinese BERT-base model3 to
encode tokens. (2) To reduce computational cost
and memory usage, we decrease the maximum span
width from 30 to 20 tokens. (3) Due to the intro-

3https://github.com/google-research/bert

M-F1 ZP-F1
Our model 78.78 47.73

+ IUR 78.83 47.90
+ IUS(max) 78.86 47.99
+ IUS(mean) 78.84 48.00

Table 3: Results of mention detection and zero pronoun
detection, where “M-F1” represents F1 score of men-
tion detection and “ZP-F1” represents F1 score of zero
pronoun detection.

duction of zero pronouns, we increase the top unit
ratio, which indicates the ratio of units being kept
after pruning, from 0.4 to 0.5. (4) The gap-masked
self-attention model uses 1 self-attention layer with
8 heads, and is trained with AdamW (Loshchilov
and Hutter, 2019) with a learning rate of 2× 10−4.
(5) The weight of detection loss λ is set to 0.2.

4.4 Main Results

The main results on test sets are shown in Table 1
and Table 2. In particular, Table 1 shows the results
of non-zero coreference resolution. We compare
our model with previous works which are trained
and tested only on non-zero part of the OntoNotes
5.0 Chinese datasets. The baseline is an end-to-end
neural coreference resolution model (Joshi et al.,
2019) using official Chinese BERT-base model.
For fair comparison, we tune hyperparameters and
add a self-attention model which has the same size
with the gap-masked self-attention model after the
BERT encoding layer on the baseline model. Com-
pared with the baseline model which only resolves
mentions, the joint model has better performance
on non-zero coreference resolution. Benefited from
the introduction of zero pronouns, the joint model
outperforms the baseline by at least 0.8%.

Table 2 shows the results of zero pronoun resolu-
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NZ-F1 Z-F1
Gaps embedded BERT 58.96 27.96
FFNN + tanh 64.09 31.07
LSTM 64.15 31.21
Self-attention 66.42 32.15
Gap-masked self-attention 67.40 33.77

Table 4: Results of different encoders. NZ-F1 and Z-
F1 represent the F1 on non-zero coreference resolution
and zero pronoun resolution respectively

tion, where Song et al. (2020) proposes the state-of-
the-art model in zero pronoun resolution without
relying on syntactic information. We remove the
training process of non-zero coreference resolution
from our model as our baseline. The baseline joint
model greatly improves the performance of zero
pronoun resolution, which demonstrates the ad-
vantages of having mentions detected for the task
in joint learning. The results of the joint model
also demonstrate the positive effects of non-zero
coreference resolution on zero pronoun resolution,
which could improve the zero pronoun resolution
by more than 0.46%.

We can also observe that the introduction of two-
stage interaction mechanism produces better per-
formance. In Table 1, Table 2 and Table 5, “+
IUR” means using the interaction among unit rep-
resentations described in Eq. 9, and “+ IUS” means
using the interaction among unit scores described
in Eq. 10. We test two different aggregate func-
tions max and mean while using the interaction
among unit scores. According to the results, we can
see that both of the aggregate functions max and
mean can improve the joint model, and using the
max aggregate function has a better performance
than using the mean aggregate function. Table 3
shows that the introduction of two-stage interaction
mechanism improves both mention detection and
zero pronoun detection results.

4.5 Encoder Evaluation

As shown in Table 4, we apply different encoders
to get representations for tokens and gaps in our
model. “Gaps embedded BERT” encoder inserts all
gaps into documents directly and uses one BERT
model to encode gaps and tokens simultaneously.
The weights for gaps are non-zero unlike the gap-
masked self-attention encoder used in our model.
With this encoder, embeddings of gaps and tokens
can be encoded into the same space but the in-

To ZP Not to ZP
NZ-F1 Z-F1 NZ-F1 Z-F1

Our model 67.38 33.71 67.40 33.77
+ IUR 67.51 33.59 67.61 33.99

+ IUS(max) 67.65 34.12 67.71 34.13
+ IUS(mean) 67.68 34.03 67.70 34.10

Table 5: Results of coreference resolution and zero
pronoun resolution with different antecedents setting
strategies

sertion of gaps will pollute the representations
of tokens. “FFNN + tanh” encoder uses feed-
forward neural networks and tanh activation func-
tion to map token embeddings into gap embeddings.
“LSTM” encoder and “Self-attention” encoder ap-
ply LSTM or self-attention model on token embed-
dings to get gap embeddings. These three encoders
compute gap embeddings without updating token
embeddings obtained by BERT, where token repre-
sentations will not be polluted but embeddings of
gaps and tokens will be in different space. “Gap-
masked self-attention” is the encoder used in our
model. It can encode gaps and update token repre-
sentations at the same time without polluting token
representations and can put embeddings into the
same space.

4.6 Antecedents Setting Strategy Analysis

As mentioned in Section 3.6, we select different
antecedents setting strategies in the evaluation. Ta-
ble 5 shows the results of adopting different strate-
gies. As we can see, the “Not to ZP” strategy has
better performance in all tasks and models. The
reason is that the performance of zero pronoun
detection and zero pronoun resolution is poor com-
pared with that of mention detection and non-zero
coreference resolution. Therefore, resolving to zero
pronouns will introduce more errors.

5 Conclusions

In this paper, we present an end-to-end joint coref-
erence resolution model which tackles zero pro-
noun resolution and non-zero coreference resolu-
tion jointly. To get proper representations for gaps
and tokens, we propose a gap-masked self-attention
model which puts embeddings of tokens and gaps
into the same space without polluting token repre-
sentations. Additionally, to make full use of the
exclusive relationship between zero pronoun and
mentions, we propose a two-stage interaction mech-
anism which incorporates information of relevant
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units while calculating unit scores. Extensive exper-
iments on OntoNotes 5.0 Chinese corpus demon-
strate the effectiveness of our model.
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