Deconstructing syntactic generalizations with minimalist grammars*

Marina Ermolaeva
University of Chicago / Chicago, IL
mail@mermolaeva.com

Abstract

Within the currently dominant Minimalist
framework for syntax (Chomsky, 1995, 2000),
it is not uncommon to encounter multiple pro-
posals for the same natural language pattern in
the literature. We investigate the possibility of
evaluating and comparing analyses of syntax
phenomena, implemented as minimalist gram-
mars (Stabler, 1997), from a quantitative point
of view. This paper introduces a principled
way of making linguistic generalizations by de-
tecting and eliminating syntactic and phono-
logical redundancies in the data. As proof of
concept, we first provide a small step-by-step
example transforming a naive grammar over
unsegmented words into a linguistically moti-
vated grammar over morphemes, and then dis-
cuss a description of the English auxiliary sys-
tem, passives, and raising verbs produced by
a prototype implementation of a procedure for
automated grammar optimization.

1 Introduction

Marr’s (Marr, 1982) approach to understanding
complex cognitive systems, including natural lan-
guage, distinguishes between three levels of de-
scription: computational (abstract specification of
what the system computes), algorithmic (structures
representing the data and algorithms that manip-
ulate them), and implementational (concrete real-
ization of the algorithms in the hardware or wet-
ware). Linguistic theories are considered to be at
the computational level (Johnson, 2017) or between
the computational and algorithmic level (Peacocke,
1986). In particular, syntactic literature often omits
lower-level details such as full descriptions of units
and operations involved. This allows for a bird’s-
eye view of the problem but leads to a lack of
explicitness. While the body of work in this field
holds tremendous empirical and theoretical value,
there is no straightforward way to extract from it a

*This paper is based on a chapter of the author’s disserta-
tion (Ermolaeva, 2021).

consensus on what constitutes the best description
(grammar) for any given set of language data.

How can one choose between various structures
that could underlie the same linguistic construction
based on some robust quantitative metric and in
a way compatible with the insights of theoretical
syntax? First, this task requires translating the data
into an explicit formal representation. For this pur-
pose, minimalist grammars (Stabler, 1997) are a
natural choice. Designed as a formalization of the
Minimalist Program (Chomsky, 1995, 2000), they
are compatible with analyses of syntax phenomena
found in theoretical literature and provide a way to
implement them as grammar fragments, explicitly
defining syntactic units and operations.

There exists a substantial amount of work
on learning formal grammars from unstructured
strings; see e.g. (Clark and Eyraud, 2007; Yoshi-
naka, 2011; Clark, 2017). These techniques are
based on the notion of distributional similarity: in
short, words found in the same contexts are as-
signed the same syntactic category. Resulting algo-
rithms can make plausible generalizations based on
observable data; however, they are of limited appli-
cability if the goal is to produce results similar to
those of theoretical syntax, which is heavily reliant
on highly abstract concepts. Two broad considera-
tions are particularly illustrative in this respect:

o Empty categories. Null DPs of various fla-
vors, null heads such as complementizers,
traces/unpronounced copies are commonplace
in the literature, even though none of them
are directly visible in the raw data. How-
ever, works on grammar induction tend to
avoid silent elements altogether. For example,
classical categorial grammars in (Kanazawa,
1995) are defined over an alphabet of con-
stant symbols and cannot derive the empty
string, and (Clark and Eyraud, 2007; Yoshi-
naka, 2011) explicitly prohibit rules with
empty right-hand sides.

435

Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL), pages 435-444
November 10-11, 2021. ©2021 Association for Computational Linguistics

e Morphology. Many crucial generalizations
require words to have internal structure. For
example, the standard analysis of passive con-
structions relies on the object being promoted
into the subject position. In order for this to
work, the verb has to consist of at least two
elements: the root and the passive morpheme.
Any learning algorithm incapable of manipu-
lating units smaller than a word will miss this
generalization.

In order to focus on these and similar issues,
rather than use unstructured sentences as input, we
start with a grammar defined over unsegmented
words and in a maximally theory-neutral way. The
goal is to refine it, producing an intuitively cor-
rect description accounting for the original data.
Unlike grammar induction, the focus is on captur-
ing generalizations within the grammar rather than
generalizing beyond the corpus; in fact, the output
grammar is expected to generate the same string
language as the input. To highlight this distinction,
we refer to this task as grammar optimization.

2 Minimalist grammars

We use a version of minimalist grammars (MGs)
primarily based on (Stabler, 1997, 2001). In order
to define an MG, one has to fix an alphabet of
phonological segments 3. and a set of feature names
Base and to define a lexicon Lex — a finite set of
lexical items (LIs). An LI is a pair consisting of a
phonological exponent and a sequence of syntactic
features.! Each syntactic feature is characterized
by its name (drawn from Base) and type, as shown
in (1).

Attractor Attractee

merge | =x (right selector)

(1) x= (left selector)
=>x (HM selector)

+x (overt licensor)

x (category)

move —x (licensee)

*x (covert licensor)

Selectors and licensors together are called attrac-
tors, and categories and licensees are attractees.
The first feature of each LI is accessible to the struc-
ture building operations, merge and move, that
consume features with matching names to generate
complex expressions from Lex:

"While this formalism ignores semantic features, there
is work on adding semantics to MGs, e.g. (Kobele, 2012).
Augmenting the proposed approach with semantic information
is a potential direction of future work.

e merge is a binary operation that targets selec-
tors and categories, combining two syntactic
expressions into a new one. The dependent
is merged on the left if the selector is of the
form x=, and on the right if it is of the form
=x, where x € Base;

e merge with head movement (HM) is triggered
by selectors of the form =>x. It proceeds as
right merge and concatenates the heads of its
arguments, treating the head carrying the =>x
as a suffix. This operation offers a way of
forming complex morphological words;

e move matches a licensor with a licensee
within the same expression. Overt licensors
(+x) cause the moving sub-expression to be-
come a (left) sister of the head, leaving be-
hind an empty node € without a string compo-
nent or syntactic features. Covert move (*x)
leaves the string component behind.

The expression with the attractor becomes the
head of the new expression; and the one with the
attractee becomes its dependent. We label the par-
ent node with < if the head is on the left or > if the
head is on the right. Matched features (indicated
as) are deleted, making the next feature in the
sequence accessible for syntactic operations. The
dependent introduced by the first attractor of an LI
is its complement, and all subsequent dependents
are specifiers.

A complete expression of category x has no
unchecked features left, except for x on its head.
We will be primarily concerned with complete ex-
pressions of category t (for Tense) and their string
yields (sentences). Note that, in order to arrive at a
complete expression via merge and move, all LIs
involved must have feature sequences where all li-
censors and selectors precede the (unique) category
feature, and all licensees follow it.

Consider two toy grammars (2), which generate
the same set of sentences:

a. Mary :: d-k b. Mary :: d-k

laughs :: =d+kt -s n =>v+kt
() laughed :: =d+k t -ed = =>v+kt

Jjumps :: =d+kt laugh :: =dv

Jjumped :: =d+k t Jjump : =dv

In linguistic terms, (2a) treats each sentence as
a single t P headed by an unsegmented verb (3a).
In (2b) finite verbs are complex heads formed by
head movement. The lexical verb directly selects

436

its argument and forms a vP, while the suffix takes
the vP as its complement and is responsible for
moving the subject into its specifier position (3b).

(3) Structure of Mary laughs generated by (2a)
and (2b)

a.
>
/\
Mary <
e
laughs Meary
€
b.
>
/\
Mary <
[all=x] — T~
laugh-s <
N
Mery

A convenient way to visualize head-complement
relations within a lexicon is a directed multigraph
where vertices are category features, and each edge
corresponds to an LI and connects the category
of its complement to its own category. It ignores
specifiers formed by merge and move, focusing
on the subset of relations which are relevant for
morphologically complex words.

(4) (2a) and (2b) as multigraphs

)
td
b.

t v

d
T e

Intuitively, (2b) is an improvement over (2a). By
recognizing internal structure within verbs, it cap-
tures similarities found within verbal paradigms
(laughs, laughed vs. jumps, jumped) and across
paradigms (laughs, jumps vs. laughed, jumped).
On the other hand, (2a) misses all these generaliza-
tions. To account for a new verbal paradigm (e.g.
smiles, smiled), we would need to add two new LIs
to (2a), but only one to (2b).

How to express this intuition in quantitative
terms? One common approach is based on the Min-
imum Description Length principle (MDL, Rissa-
nen 1978). Within linguistics, MDL has been used,

among other examples, for induction of phono-
logical constraints (Rasin and Katzir, 2016) and
ordered rules (Rasin et al., 2018), morphological
segmentation (Goldsmith, 2001, 2006), and infer-
ring syntactic categories given known morpholog-
ical patterns (Hu et al., 2005). In this framework,
the best grammar to describe a data corpus is the
one that minimizes the sum of the following, both
measured in bits: (i) size of the grammar and (ii)
size of the corpus, as encoded by the grammar. An
overfitting grammar, which makes few (or no) gen-
eralizations on the data, would have a very large
grammar size and small (or zero) corpus size. At
the other end of the spectrum, an overgenerating
grammar, capable of producing any string at all,
would itself be very small but require a lengthy
encoding of the corpus. MDL strikes a balance by
taking both considerations into account. We focus
on grammar size here and will return to corpus size
and the problem of overgeneration in section 5.

To encode a minimalist lexicon, we use a
straightforward encoding scheme (adapted from
Katzir 2014) which treats each LI as a sequence of
symbols followed by a separator. Each syntactic
feature is considered two symbols (corresponding
to its type and name). Letting 7 denote the set of
syntactic feature types, the size of a lexicon Lex
over a set of categories Base is given by

Z (Is| +2 x |6] + 1) x logy(|%| + |7| + |Base| + 1).

s::0 € Lex

total number of symbols cost of encoding per symbol

We fix ¥ and 7, with |7| = 7 and |X| = 26 (2
being the set of English letters). Then the above is
a function of the number of LIs and the following
three metrics:

e |Base|, the number of unique category fea-
tures in Lex;

® Dyn = 2ssc Lex ([0]), the total count of
syntactic features in Lex;

® Dhon = Disis € Lex (151), the total length of
all string components in Lex.

Table (5) presents the values of these metrics for
(2a) and (2b):

|Base| | X0 | 2phon | Grammar (bits)
G| a |3 14 28 317.78
(2b) | 4 12 16 236.16

Separating roots and suffixes in (2b) comes at
the cost of an extra category feature. However, this

437

pays off by eliminating redundant strings, which
reduces thon. Moreover, four instances of +k
are collapsed into two, yielding a small reduction
of >, These differences would be even more
noticeable with a larger dataset, especially with re-
spect to open-class words, since adding a new verb
to (2a) would have a higher cost (in both syntactic
features and string components) compared to (2b).

3 Decomposing lexical items

How can we transition from a grammar over words
such as (2a) to a grammar over morphemes such
as (2b)? One way is to directly modify LIs while
keeping track of how the changes affect all struc-
tures that use them. For example, we can split the
string component of laughed :: =d +k t (6a) into
two substrings, laugh and ed, and its feature se-
quence into =d and +k t. We then assemble two
useful LIs from these elements by introducing x, a
category feature that is fresh (i.e. not used before
in the grammar), with head movement to combine
them into a morphological word (6b).

6) a.
>
/\
<
TN
laughed
=]«
laughed :: =d +k t
b.
>
/\
<
/\
laughed <
EEEIN
laugh :: =d x
-ed =>x+kt
C.
>
/\
<
/—\
laughed <
E=nt N
< [4.
N
€ taugh
| |
laugh =y :
-€ 1 =>y=dx

-ed : =>x+kt

The same operation can be applied even if some
or all of the splits result in empty sequences. For
instance, we can split laugh :: =d x by assigning
its entire string component to one LI, and its feature
sequence to another (6¢). This creates a root with
only the new feature y and shifts its selectional
properties to an empty head. In each case, the new
LIs generate the same strings as the original ones.

Following (Kobele, 2018, to appear), we define
the operation of lexical item decomposition as a
generalization of this idea. Consider an arbitrary LI
w i affxy, where w € X*, o and (3 are sequences
of licensors and selectors, x € Base, and 7 is a
sequence of licensees. Then it can be decomposed
as follows:

Uy
W afxy v v i =>yBxy
w=u®v,

where vy is a fresh feature name added to Base.
Since the resulting structure has to behave as a
single unit with respect to move, the split must
take place to the left of the category feature. The
original LI is replaced with two new items, whose
string components are # and v, along with a mor-
phological rule generating w from u and v via some
operation .

Lexical item decomposition formalizes discov-
ering structure within words. However, it cannot
transform a grammar like (2a) into one like (2b)
on its own. First, every split creates a fresh feature
name, so each newly formed affix is only compati-
ble with a single stem. Second, decomposing LIs
in isolation is very permissive, and whether a given
step is reasonable depends on other items in the
lexicon. To recognize useful steps, decomposition
needs to process multiple LIs simultaneously, using
similarities between them to inform its decisions.
We will refer to this strategy as batch decomposi-
tion.

In the rest of this section we build and expand on
Kobele’s work to define a toolkit of operations over
MGs. We adopt a simple model of morphology that
defines @ as string concatenation, which renders
morphological rules trivial. It is sufficient for cases
like (6b), where w is cleanly separated into a stem
and a suffix, or (6¢), where the string component is
not split at all, but not for irregular forms such as
was or ran.

Consider the transition in (7). It starts with a
batch of four LIs and factors out the elements they
have in common: the prefix laugh- and the syntac-

438

tic feature =d. These repeated elements are then
expressed as a single new LI, laugh :: =d %, adding
only one new feature to Base.

@) laugh :: =dv
laughed :: =d +k t
laughing :: =dprog

laughs :: =d+k t

é

-€ I =>XV
-ed :: =>x+kt
laugh :: =d x .
-ing =>xXprog

-5 no=>x+kt

This is an example of left decomposition, as the
shared part of both the string component and fea-
ture sequence is on the left-hand side. Similarly,
right decomposition factors out right-hand side
commonalities. In a (primarily) suffixal language
such as English, left decomposition can be used to
identify stems, and right decomposition to identify
affixes.

LIs of the form -¢ :: =>x y for any x, y € Base,
which we will refer to as category changers, are
of special interest. In the general case, -€ :: =>x y
represents the idea that expressions of category y
have a more limited distribution than those of cat-
egory x; that is, any x can freely become an vy,
but not necessarily the other way around. That
said, some category changers can be eliminated
while still allowing the grammar to generate all
sentences it did before. For example, the distinc-
tion between x and v in (7) can be safely collapsed,
essentially reversing the effects of decomposition
for laugh :: =d v. Another redundant configura-
tion involves alternative paths through the gram-
mar multigraph consisting exclusively of category
changers. In order to deal with these, we introduce
two auxiliary operations that target and delete cat-
egory changers and are convenient to describe in
(multi)graph terms: contraction, which removes
an edge and merges the two vertices it previously
joined, and deletion, which removes an edge as
long as there is another path of category changers
from its origin to its destination vertex.

4 Towards a grammar over morphemes

The following example shows how the operations
introduced in the previous section can be used to
transform a naive word-based grammar into one
over morphemes by making generalizations about
word structure. We start with a small lexicon of

unsegmented words encoding a fragment of the
English auxiliary system (8).

(8) Original lexicon

Mary :: d-k laughing :: =d g
bes :: =g+kt laugh :: =dv
wills :: =v+kt Jjumps : =d+k t
be :: =gv Jjumping :: =d g

laughs :: =d+kt Jjump =dv

|Base| Zsyn thon
5 24 49

Grammar
565.54

Focusing on syntax and morphotactics, we abstract
away from morphological irregularities of English
and replace each word with a sequence of mor-
phemes formed by string concatenation; in partic-
ular, is is rendered as bes, and will as wills. We
continue using |Base|, 3., and > ., along with
grammar size in bits, to keep track of how each
transition changes the complexity of the lexicon.
We begin by decomposing lexical verbs. The
three LIs targeted in (9) share the prefix laugh- and
the first syntactic feature =d. Batch decomposition
factors out these commonalities, associating them
with the fresh feature £1 (highlighted in boldface).

(9) left decomposition of laugh =d+k t,
laughing :: =d g, laugh :: =d v
Mary :: d-k
-€ i =>flv
bes :: =g+kt
. laugh :: =d £1
wills :: =v+kt .
Jumps z =d+kt
be :: =gv . ing 52 =d
s =>fl+kt JUmPpIng = _dg
-ing = =>flg Jump = =ay

Grammar
542.84

|Base|
6 26 39

Zsyn thon

439

Similarly, (10) decomposes the forms of jump,
introducing another fresh feature, £2. The lexicon
now contains two copies each of -s, -¢, and -ing.

(10) left decomposition of jumps =d+k t,
jumping :: =d g, jump :: =d v
Mary :: d-k € =>flv
bes :: =g+kt laugh : =d f1
wills :: =v+kt -s 2 =>f2+k t
be :: =gv -ing » =>f2g
-s i =>fl+kt -e i =>f2v
-ing :: =>flg jump : =d £2

Grammar
530.40

|Base|
7 28 31

Zsyn thon

The two instances of -ing share the entire string
component, and we can associate their syntactic
differences, =>f1 vs. =>f2, with empty heads
(11). Each decomposition step made so far imme-
diately pays off in terms of >} .., but adds a new
category to Base and increases Y

syn*
(11) right decomposition of -ing:=>flg,
-ing 2 =>f2g
Mary :: d-k
Y - i =>flv
bes :: =g+kt
. laugh :: =d f1
wills :: =v+kt
-s o =>f2+kt
be :: =gv
e =>f2v
-s i =>fl+kt
. £3 -€ i =>f2 £3
-ing = =>
& g Jjump » =df2
-€ i =>f1£3

t <(wils}- v H(be}— g «{-ing}— £3 «(O— £1 <laugh} g
(bes) \@\
© £2
O,

Grammar
544.62

\Base| Zsyn thon
8 30 28

Step (12) is an instance of contraction, which
collapses remaining distinctions between laugh and

jump. Even though jump can now be selected by
suffixes previously compatible only with laugh,
and vice versa, no new morphological words are
created. The new projection introduced by £4 now
hosts both lexical verbs.

(12) contraction of -€ :: =>f1 £3,-c::=>f1 2
Mary = d-k .
bes = —q 4kt -ing : =>fdg
b -€ w =>f4
wills ©: =v+kt ‘ v
laugh :: =d £4
be :: =gv .
jump = =d £4

-s i» =>f4 4kt

>

<

|B£ZS€| Zsyn thon
6 21 27

Note that contraction in general has a potential
for overgeneration. For example, contracting -¢ ::
=>f1vin (11) instead would have created a path
from v back to £3, generating the infinite set of
ungrammatical sentences *Mary wills be (being)™
laughing.

The LIs targeted in (13) share the suffix -s and
the sequence of syntactic features +k t. By fac-
toring out these commonalities, we create what is
essentially a dedicated Tense projection. Since the
batch shares more than one syntactic feature, this
decomposition step immediately reduces Zsyn and
keeps >y, the same.

(13) right decomposition of bes =g+kt,
wills :: =v+kt,-s:=>f4+kt
Mary :: d-k -e i» =>f4 £5
-s i =>f5+kt -ing = =>fdg
be :: =g £5 -€ » =>f4dv
will 2 =v £5 laugh :: =d £4
be :: =gv Jjump :: =d £4
/%
t «(s)— £5 v 9 £4 d
N
(be)
|Base| >, 2inn Grammar
7 21 25 412.53

This grammar still contains two partially redun-
dant instances of be. We decompose them in (14).

440

(14) left decomposition of be :: =g £5, be :: =g v

Mary :: d-k /@\ laugh
& -€ 11 =>f4 £5 t (o) £5 «(wil- £7 <(be)}— 9 <(-ing}- £4 () d
-5 i =>f5+kt . \@/ jump
€ = —>£6£5 -ing » =>f4dg
be o 6 € =>fdv |Base] ¥, Dppn Crammar
¢ =g laugh = =d £4 7 21 23 401.82
will 2 =v £5) . . .
€ —>E6v Jump : =d £4 Collapsing £6 and v into £7 in (15) has cre-
ated a path of category changers from £4 to £5,

which opens the path for deletion (16) of the

. . . . i empty LI directly connecting these two categories,
= - - :: =>f4 £5. This last step finally pushes Zsyn
6 (be) below the value it had in (13). The decision to de-
compose the two instances of be rather than leave
|Base| D Dipon Grammar .
3 3 73 43139 them intact took two more steps to fully pay off.

The following contraction step (15) brings (16) deletion of -¢ :: =>£4 £5

Mary :: d-k .
|Base| back to 7 and }, back to 21, same as skt -ing :: =>fdg
. . -5 => +
in (13), before decomposing be. -€ 1 =>f4 £7
-€ i =>f7f£5
laugh :: =d £4
be :: =g £7 .
(15) contraction of -€ :: =f6v i jump = =d £4
will :: =£7 £5
Mary :: d-k -€ i =>f4 f5
. laugh
PN ing = = /®\ (i)
s f5+kt ing :: =>f4dqg N £5 <(wil) f7'g'f4 a
-¢ i =>£7£5 -€ i =>f4 £7 o jormp
i =g £7 h :: =df4
be :: =g laug d |Base| Y., ppon Grammar
will :: =€7 £5 Jjump :: =d £4 7 19 23 375.03
danceing |
laughing |
smileing |
jumping
/' =d prog .
/ praiseing |
likeing |
kissing |
/ huging
/ ,, =d *k =d prog B
/'/ / dancen |
/ laughn |
/ smilen |
|/ bes | jumpn
| // bed =d perf .
/ _— rog - +kt .
/ ,// — declaremg 1 —P —_— p‘{?ll(s;nll
(‘// _— thllnkmg |I T kissn |
J g explaining / T T h
,/ Javine that_1 \=d *ku—g;perf -
- =c2 =d prog _— < =2 \ — —
seeming_1 | / declares\ gaa;‘(:::i II
appearing_1 declaren . declared |\ lauehs |
_ =clprog ~thinkn | \ / thinks | \\ \ laugh dl
G PrE S ben explamnl \ r/ thinkd | -} | smiles |
Ii T = rf say] \ (expla'msl A\ smiled |
— =Sprogpert =2 _d pe \| explaind | \ \ s |
\‘\ \ sceming| seemnl ﬁi \ 2) saysdl \ \\ JjumI};d
| appearing [d 1 | seemn_ 1I C say: \ =
\\\ \ =to prog i\g)‘e):m ?J‘n:lsrkel | appearn_1 \ 7“/_02 =d+kt \ //itk)// —
have \ explain | =c1 perf \ 7 raises |
—perf v say \ };Jraised |
— =2=dv | likes |
seem_1 | (liked |
T 1‘ Kisnd|
=cl v
hugs |
hugd
seems | _ =d*k=d+kt

seemd | \< Ny .
appears | ~ praisen_1 |
liken_1 | /
kissn_1 |
hugn_1 | 1
=d p: ? /| ’
— /|
being T |
=passprog el |
> kiss |
~—__ hug - r’
T =d*=dv /
T dancel /
laugh | /
smile | /
jump
— =dv R ~

Figure 1: Input (7572.80 bits)
441

it

Mary | John | Alice | Bob
0 /\v

this | a | the | some
=n0

€5 seem | appear that
=>6 =to 3 (> 776/ﬁ =tc2
€6

=c22

n_1
~=>5=d pass praise | like | kiss | hug

€3 5 5
 =>5=d*k2

dance ITe;gh | smile Ij;mp
2

Figure 2: Output (1964.68 bits)

The final lexicon (16) produces more complex
structures, treating each verb as a multimorphemic
word. It captures a number of correct generaliza-
tions: the roots in both verbal paradigms have been
identified and separated from inflectional morphol-
ogy, and they share the same syntactic category. A
lexical verb can be selected (directly or via cate-
gory changers) by -ing, will, or -s, whereas a phrase
headed by will can only be selected by -s. These
improvements are reflected in the metrics (17): the
new lexicon beats the original in terms of both Zsyn
and thon, at the expense of two features added to
Base.

|Base| | X.on | 2phon | Grammar
(17) | Original (8) | 5 24 49 565.54
Final (16) | 7 19 23 375.03

5 Automated decomposition

In the previous section we has shown how a linguis-
tically plausible grammar over morphemes can, in
principle, be obtained from a naive one over unseg-
mented words — or, in other words, that the desired
output is in the search space defined by the opera-
tions introduced in section 2. The next logical step
is to automate the process of finding it.

To this end, we have developed a prototype
Python implementation of an optimization proce-
dure for MGs.? It starts with a grammar over words,
similar to the one in (8), and uses beam search to
navigate the space of grammars. While MDL is a
natural choice for a cost function to evaluate candi-
date grammars, we have found that this metric as
typically defined does not perform as expected on
smaller grammars generating finite languages (due

2The code and supplementary materials can be found at
https://github.com/mermolaeva/mg-optimizer.

to its sensitivity to relative sizes of the grammar and
corpus), and its variations that put additional em-
phasis on corpus cost lead to under-generalization
and worse overall results.> Because of this, our
implementation uses grammar size in bits as the
cost function. To control overgeneration, instead of
corpus size, it utilizes a heuristic constraining the
application of contraction.*

When applied to the lexicon in (8), the proce-
dure does converge exactly to a grammar identical
to (16) up to feature names. This is both expected
and encouraging, as it indicates a connection be-
tween conciseness (as defined by grammar size)
and naturalness of a grammar.

A larger sample input and output are given as
multigraphs in Figures 1 and 2, respectively. The
output compresses the auxiliary system, making
use of category changers to implement hierarchi-
cal relations between categories. It collapses each
verbal paradigm into a single lexical verb assigned
a feature sequence according to its distribution:
intransitive (dance, laugh...), transitive (praise,
like...), verb with a clausal complement (declare,
think...), or raising verb (seem, appear). All proper
nouns and most lexical verbs carry a single cate-
gory feature, and their syntactic requirements are
supplied by LlIs that select them. This is consis-
tent with the idea of acategorial roots having to
merge with a categorizing head, which is a general
assumption in Distributed Morphology (Marantz,
1997; Embick and Marantz, 2008) and, from the

3See (Ermolaeva, 2021, pp.112-119) for additional details
and discussion.

*“Informally, this heuristic rules out candidate grammars
generating morphological words (complex heads) that differ,
either phonologically or syntactically, from those present in
the original grammar.

442

https://github.com/mermolaeva/mg-optimizer

quantitative perspective, a beneficial strategy espe-
cially for open-class items.

In general, we observe a tendency to push syntac-
tic differences between LIs into empty functional
heads. As a concrete illustration, consider the rais-
ing verb seem. The input includes a separate LI
for each of its forms; moreover, seem in construc-
tions with raising and expletive it is treated as un-
related LIs. For instance, the derivations of Mary
seems to smile (3a) and It seems that Mary smiles
(3b) involve, respectively, seems :: =to +k t and
seems :: =cl +k t.

>
/\
Mary <
@ /\
seems <
[Frol[ret Py
to <
N
smile Meary
(a) Raising
>
/\
it <
e
seems <
t A
< it
/\
that >
P
Mary <
EIE PN
smiles — Meary

(b) Expletive it

Figure 3: Examples before optimization

After optimization (4) both paradigms are col-
lapsed into a single root LI carrying just the cat-
egory feature: seem :: 6. The distinction be-
tween the the verbs’ selection requirements (=t o
vs. =cl) is now carried by empty categorizing
heads which take the root as their complement:
-€ : =>6=to3 and -€ :: =>6=cl 3. The suf-
fixes of the original verbs, in turn, are factored out
and unified with those of other verbal paradigms —
for example, the output grammar contains a single
present tense suffix -s :: =>1 +k t.

Mary Meary seem-s
FIEE O B S
Ps I <

e
-€ seem
[é]
I N
(a) Raising
>
it <

[e][=x]

seem-s
B 7 S

<

€ seett
[¢]
L 1

S

(b) Expletive it

Figure 4: Examples after optimization (partial trees
shown for space considerations)

6 Conclusion

This paper outlines an approach to formalizing and
automating the intuition behind generalizations in
natural language syntax. Building upon the idea
of lexical item decomposition, we have defined
a set of basic operations over minimalist lexica
and demonstrated how complex, intuitively correct
and quantitatively optimal analyses arise through
repeated application of easily interpretable steps.

From a broader perspective, the intent of this
project is twofold. On the one hand, it seeks to
enable computational learning of natural language
to make use of the insights and theoretical devices
developed in the linguistic literature. The second
goal is to show how mainstream syntax can benefit
from a formally explicit approach. In this paper we
have taken a step towards both by capturing some
aspects of intuitive goodness of syntactic descrip-
tions and connecting it to the more easily definable
notion of guantitative goodness.

443

References

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, MA.

Noam Chomsky. 2000. Minimalist Inquiries: the
framework. In Roger Martin, David Michaels, and
Juan Uriagereka, editors, Step by Step: Essays
on Minimalist Syntax in Honor of Howard Lasnik,
pages 89—156. MIT Press, Cambridge, MA.

Alexander Clark. 2017. Computational learning of syn-
tax. Annual Review of Linguistics, 3:107-123.

Alexander Clark and Rémi Eyraud. 2007. Polynomial
identification in the limit of substitutable context-
free languages. Journal of Machine Learning Re-
search, 8(Aug):1725-1745.

David Embick and Alec Marantz. 2008. Architecture
and blocking. Linguistic inquiry, 39(1):1-53.

Marina Ermolaeva. 2021. Learning syntax via decom-
position. Ph.D. thesis, University of Chicago.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
linguistics, 27(2):153—-198.

John Goldsmith. 2006. An algorithm for the unsuper-
vised learning of morphology. Natural language en-
gineering, 12(4):353-372.

Yu Hu, Irina Matveeva, John Goldsmith, and Colin
Sprague. 2005. Using morphology and syntax to-
gether in unsupervised learning. In Proceedings of
the Workshop on Psychocomputational Models of
Human Language Acquisition, pages 20-27. Asso-
ciation for Computational Linguistics.

Mark Johnson. 2017. Marr’s levels and the mini-

malist program. Psychonomic bulletin & review,
24(1):171-174.

Makoto Kanazawa. 1995. Learnable Classes of Cat-
egorial Grammars. Ph.D. thesis, Stanford Univer-
sity, Stanford, CA, USA. UMI Order No. GAX94-
29947.

Roni Katzir. 2014. A cognitively plausible model
for grammar induction. Journal of Language Mod-
elling, 2.

Gregory M Kobele. 2012. Importing montagovian dy-
namics into minimalism. In International Confer-
ence on Logical Aspects of Computational Linguis-
tics, pages 103—118. Springer.

Gregory M. Kobele. 2018. Lexical decomposition.
Computational Syntax lecture notes.

Grerory M. Kobele. to appear. Minimalist grammars
and decomposition. In Kleanthes K. Grohmann and
Evelina Leivada, editors, The Cambridge Handbook
of Minimalism. Cambridge University Press, Cam-
bridge.

Alec Marantz. 1997. No escape from syntax: Don’t try
morphological analysis in the privacy of your own
lexicon. University of Pennsylvania working papers
in linguistics, 4(2):14.

David Marr. 1982. Vision: A Computational Investi-
gation into the Human Representation and Process-
ing of Visual Information. Henry Holt and Co., Inc.,
New York, NY, USA.

Christopher Peacocke. 1986. Explanation in computa-
tional psychology: Language, perception and level
1.5. Mind & language, 1(2):101-123.

Ezer Rasin, Iddo Berger, Nur Lan, and Roni Katzir.
2018. Learning phonological optionality and opac-
ity from distributional evidence. In Proceedings of
NELS, volume 48, pages 269-282.

Ezer Rasin and Roni Katzir. 2016. On evaluation
metrics in optimality theory. Linguistic Inquiry,
47(2):235-282.

Jorma Rissanen. 1978. Modeling by shortest data de-
scription. Automatica, 14(5):465-471.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics: First International Conference,
LACL ’96 Nancy, France, September 23-25, 1996
Selected Papers, pages 68-95. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Edward P. Stabler. 2001. Recognizing head move-
ment. In Proceedings of the 4th International Con-
ference on Logical Aspects of Computational Lin-
guistics, LACL ’01, pages 245-260, London, UK,
UK. Springer-Verlag.

Ryo Yoshinaka. 2011. Efficient learning of multiple
context-free languages with multidimensional sub-
stitutability from positive data. Theoretical Com-
puter Science, 412(19):1821-1831.

444

