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Abstract

Children learn the meaning of words and sen-
tences in their native language at an impres-
sive speed and from highly ambiguous input.
To account for this learning, previous com-
putational modeling has focused mainly on
the study of perception-based mechanisms like
cross-situational learning. However, children
do not learn only by exposure to the input. As
soon as they start to talk, they practice their
knowledge in social interactions and they re-
ceive feedback from their caregivers. In this
work, we propose a model integrating both
perception- and production-based learning us-
ing artificial neural networks which we train
on a large corpus of crowd-sourced images
with corresponding descriptions. We found
that production-based learning improves per-
formance above and beyond perception-based
learning across a wide range of semantic tasks
including both word- and sentence-level se-
mantics. In addition, we documented a syn-
ergy between these two mechanisms, where
their alternation allows the model to converge
on more balanced semantic knowledge. The
broader impact of this work is to highlight the
importance of modeling language learning in
the context of social interactions where chil-
dren are not only understood as passively ab-
sorbing the input, but also as actively partic-
ipating in the construction of their linguistic
knowledge.

1 Introduction

An important aspect of language acquisition is
learning how to map linguistic forms to meanings.
This involves both mapping individual word forms
(e.g., “dog”) to concepts of the world (e.g. the cate-
gory DOG) and mapping the relationship between
words in a sentence (e.g., “the dog chases the ball”)
to a given event configuration in the world (i.e., that
the dog is the agent performing the act of chasing

on the ball, the semantic patient). Children manage
to learn this mapping in their native language at
an impressive speed (Fisher and Gleitman, 2002;
Golinkoff et al., 2013; Frank et al., 2021) and de-
spite the high ambiguity of this task in the natural
context where language learning occurs (Quine,
1960).

Perception-based learning

Much modeling effort has focused on learning from
the multimodal input that children perceive around
them. These models are based on Cross-Situational
Learning (hereafter XSL): While a single word-
world mapping situation is ambiguous, being ex-
posed to many situations allows the learner to nar-
row down, over time, the set of possible associa-
tions. This kind of learning has been demonstrated
using toy situations in controlled laboratory testing
with children (Smith and Yu, 2008). It has also
been shown to scale up to more realistic learning
contexts using a combination of NLP and computer
vision tools (Chrupata et al., 2015; Vong and Lake,
2020, 2021).

Production-based learning

Learning from perceived multimodal input is an im-
portant mechanism, especially in the early stages
of development. Nevertheless, an additional mech-
anism comes into play as soon as children start to
produce language themselves, thus becoming able
to receive feedback from more linguistically knowl-
edgeable interlocutors (e.g., caregivers) (Warlau-
mont et al., 2014; Clark, 2018; Tsuji et al., 2021).
One specific form of feedback that has received
much attention is when the caregiver provides ex-
plicit reformulation to the child’s inadequate use of
words (Brown, 1973; Chouinard and Clark, 2003;
Saxton et al., 2005; Hiller and Fernandez, 2016).
Nevertheless, explicit reformulation is not the only
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way children can get useful feedback on their early
production. For instance, the feedback that signals
communicative success/failure to the child — even
in an implicit form — can also play a role. Below
we elaborate on the nature and potential usefulness
of this — more general — mechanism which we call
Communicative Feedback (hereafter CF).

When children start to talk, they immediately
start putting words to use in social interaction
to try and establish coordinated communication.
This coordination aims at achieving various goals
such as directing the interlocutor’s attention (e.g.,
“A duck!”) or requesting something (e.g., “I am
thirsty!””), among many other communicative in-
tents that children demonstrate very early in life
(Snow et al., 1996, Casillas and Hilbrink, 2020;
Nikolaus et al., 2021).

Importantly, children are sensitive to when coor-
dination appears to break down without necessarily
requiring explicit correction or even a verbal re-
sponse from the caregiver. In fact, the child might
feel misunderstood merely by not getting the reac-
tion she expected (e.g., a puzzled or a still face) or
by not getting the exact object she requested (e.g.
Tronick et al., 1978; Markova and Legerstee, 2006).
On such occasions, the child may not be offered the
correct linguistic form as in reformulation-based
(or corrective) feedback, but communication break-
down represents in and of itself a negative feedback,
a cue to the child that her way of using words was
not correct and that it should be revised for commu-
nication to be re-established or "repaired" (Clark,
2018, 2020). Vice versa, successful coordination
(i.e., a contingent response or action from the care-
giver) signals to the child that her use of words was
probably adequate, encouraging (or reinforcing)
this use in future conversations.

Compared to explicit corrective feedback, CF
relies on sensitivity to broad coordination and mis-
coordination cues that are fundamental to reach
shared understanding in any linguistic exchange
(see “communicative grounding” (Clark, 1996)). It
is, thus, arguably more pervasive in child-caregiver
conversations and less dependent on parenting
styles, Socioeconomic Status (SES) or culture
(Childers et al., 2007; Mesman et al., 2018).

Previous experimental research has explored a
simple form of Communicative Feedback and how
it can help with language acquisition, especially
regarding the emergence of speech-related vocal-
ization (Oller, 2000). When the child produces

a sound that contains speech-related vocalization
(as opposed to other non-speech types of vocal-
ization such as cry or laugh), the child is more
likely to receive an immediate, positive response
from the caregiver than if the produced sound is
not speech-related. Critically, the fact of receiving
a response from the caregiver (that is contingent
of the production of speech) encourages the child
to subsequently produce more speech-related vo-
calizations (Bloom, 1988; Goldstein et al., 2003;
Goldstein and Schwade, 2008; Warlaumont et al.,
2014).

To the best of our knowledge, no previous mod-
eling work has investigated the role that CF could
play in semantic learning or how CF may interact
with the — more studied — class of semantic learn-
ing mechanisms that are based on perception alone
such as XSL.

1.1 The current study

This work aims at providing a comprehensive
account of early semantic learning combining
both perception-based learning through XSL and
production-based learning through CF. The learn-
ing account we propose is very similar to — and in
fact, can be seen as a computational instantiation
of — the “original word game” proposed by Brown
(1958):

“The original word game is the opera-
tion of linguistic reference in first lan-
guage learning. At least two people are
required: One who knows the language
(the tutor) and one who is learning (the
player) ... The tutor names things in ac-
cordance with the semantic customs of
the community. The player forms hy-
potheses about the categorical nature of
the things named. He tests his hypothe-
ses by trying to name new things cor-
rectly. The tutor compares the player’s
utterances with his own anticipations of
such utterances and, in this way, checks
the accuracy of fit between his own cat-
egories and those of the player. He im-
proves the fit by correction.””!

Here we focus on a simple case of semantic
learning where the meaning can be derived from

"Note that in our work, the fit of the semantic knowledge
is not necessarily improved by correction, but rather by broad
cues about the success or failure of the communicative coordi-
nation.
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concrete visual scenes. We use an integrated model
to characterize the child’s learning both during
the perception phase and during the production
phase. In the perception phase, the model opti-
mizes the generative probability of the tutor’s ut-
terances given the visual scenes. This probability
is refined thanks to exposure to several situations
(i.e., XSL).

In the production phase, the same language
model is now used to generate utterances given
a scene. The adequacy of the utterance is evalu-
ated against the gold standard descriptions of the
scene (representing the tutor’s superior knowledge).
The adequacy value is a continuous number we
use to characterize the valence of the Communica-
tive Feedback: The higher the adequacy, the more
likely the child receives signals of communication
success from the tutor (e.g., a positive, contingent
reaction). Vice versa, the lower the value, the more
likely the child receives signals of communication
breakdown (e.g. a puzzled face or a non-contingent
reaction). The model gets updated via Reinforce-
ment Learning (RL) using the adequacy value as a
reward.

Using this computational framework, we study
the role of CF in early semantics acquisition. In
addition, we investigate how CF interacts with XSL.
We evaluate and compare these two mechanisms in
terms of how they fare on a wide range of semantic
tasks including both word-level (nouns, adjectives,
and verbs) and sentence-level meaning acquisition
(e.g. semantic roles).

Combining some kind of (weakly) supervised
learning model with reinforcement learning is not a
new technique. Such a setup has been used in previ-
ous NLP work (Ranzato et al., 2016; Rennie et al.,
2017). The novelty of our work is to use these tools
to instantiate new hypotheses about early language
acquisition and to test these hypotheses using a
benchmark of language acquisition tasks, similar
to the tasks used to study children’s semantic learn-
ing in laboratory experiment.

The paper is organized as follows. First we
present the cross-modal dataset we use in this work
and introduce the modeling framework. We explain
how we instantiate both the perception-based mech-
anism (XSL) and the production-based mechanism
(CF) using tools from NLP and computer vision.
Next, we present the experiments we run: each rep-
resenting a learning scenario, including scenarios
combining both perception and production-based

mechanisms. Next, we test the extent to which
these models learn various aspects of semantics.
Finally, we discuss the results in the light of the
literature on early language learning.

To ensure reproducibility, we make the source
code for the model and all experiments publicly
available.”

2 Methods

2.1 Data

We used the Abstract Scenes dataset 1.1 (Zitnick
and Parikh, 2013; Zitnick et al., 2013), which con-
tains 10K crowd-sourced images each with 6 cor-
responding short descriptive captions in English.
The images are clip-art scenes involving one or two
children engaged in different actions involving a set
of different objects and animals.> The correspond-
ing captions were crowd-sourced from a different
set of annotators.* Two example scenes along with
descriptions can be found in Figure 1.

We use this dataset as it allows us to evaluate
the learning of visually-grounded semantics on
the word-level and sentence-level, using recently
proposed evaluation tasks by (Nikolaus and Four-
tassi, 2021) (see also Section 2.4). Other studies
on XSL have used larger dataset with naturalis-
tic images (e.g. Lin et al., 2014; Plummer et al.,
2015). However, there is currently no similar evalu-
ation method available for these datasets that allows
for detailed examination of the learned visually
grounded semantics. We divide the data into train-
ing (80%), validation (10%) and test splits (10%)
as proposed in Nikolaus and Fourtassi (2021).

2.2 Modeling framework

We develop an integrated modeling framework that
can both learn from pairs of images and sentences
in the context of XSL and and to produce its own
sentences given an image to learn using rewards
(CF). This framework will allow to assess various
learning scenario, including ones that combine both
XSL and CF.

Some previous work in NLP has used image-
sentence ranking models (Hodosh et al., 2013) to

https://github.com/mitjanikolaus/
perception-and-production-based-learning

3 Annotators were asked to “create an illustration for a
children’s story book by creating a realistic scene” given a set
of clip art objects (Zitnick and Parikh, 2013).

4 Annotators were asked to write “simple sentences describ-
ing different parts of the scene”. They were asked to refer to
the children by the names “Jenny” and “Mike” (Zitnick et al.,
2013).
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learn the alignment of visual and language repre-
sentations, and thus to model cross-modal XSL
(Chrupata et al., 2017; Vong et al., 2021; Nikolaus
and Fourtassi, 2021). However, these models are
not designed to produce new utterances given an
image.

As we are here interested in both perception and
production, we use a different computational frame-
work borrowed from studies on image captioning
(Vinyals et al., 2015; Xu et al., 2015; Anderson
et al., 2018). This framework is based on a lan-
guage model conditioned on the image. Just like
the image-sentence ranking models, here the model
is trained using pairs of images and captions, in-
stantiating learning in a XSL fashion. In addition,
the same language model can be used to generate
sentences given an image, which we used to instan-
tiate the production-based mechanism CF. Since
the goal is not to produce a state-of-art image cap-
tioning model, we consider a basic implementation
close to that used in Vinyals et al. (2015).

To process the images, we use ResNet 50 (He
etal., 2016) pre-trained on ImageNet (Russakovsky
et al., 2015), assuming that the visual system of the
child has already been developed to some degree al-
lowing her to process visual scene.’ We discard the
final classification layer and fine-tune the remain-
ing layers of this CNN during the training progress
to encode the images in our dataset.

Conditioned on this image encoding, an autore-
gressive language model learns to produce utter-
ances word by word: The words of a sentence are
passed through a linear word embedding layer and
then fed, together with the encoded image features®,
into a one-layer LSTM (Hochreiter and Schmidhu-
ber, 1997).

2.3 Model Training

Perception-based learning is realized by train-
ing the model using a cross-entropy loss. The
model is given pairs of images with correspond-
ing sentences and uses these to learn a mapping
from the visual to the language domain. Given an

3>As commonly applied in other multimodal XSL work
(Chrupata et al., 2015; Khorrami and Rédsédnen, 2021).

SWhile Vinyals et al. (2015) fed the image features only
at the first timestep into the LSTM, here we feed it at every
timestep as this showed to improve performance on our evalu-
ation substantially. An explanation could be that when feeding
the image features only at the first timestep the model gradu-
ally forgets about the input, and relies more on the language
modeling task of next-word prediction, which does not aid the
learning of visually-grounded semantics.

image ¢ and a target ground-truth sentence s con-
sisting of the words wi, . . ., wr, the loss is defined
as:

T

Lxsi(0) ==Y log pp(wilwey;i) (1)
t=1

Production-based learning is instantiated by
training the model using REINFORCE (Williams,
1992). To operationalize the Communicative Feed-
back (i.e., the reward), we calculate the BLEU
score (Papineni et al., 2002) between the produced
sentence and all 6 reference descriptions/captions
from the dataset, taking into account both the qual-
ity of semantics as well as word order (n-gram se-
quences).” Crucially, the BLEU score takes into ac-
count the fact that there is not only one correct sen-
tence for each image, but rather a range of equally
adequate ways to describe the same scene. In par-
ticular, if the model produces an exact imitation
of one of the reference sentences, it obtains the
highest BLEU score, even if the other 5 reference
sentences are very different.

Given an image ¢, the sampled sentence from
the model s,,, = wq,...,wr and the 6 reference
sentences Sycf = S1, ..., S¢, the loss is defined as
follows:

Lerp(0) ==Y r(sm, Sref) - log po(wr) ()

t=1

where 7 (S, Syef) = BLEU (S, Syef).
More details on model hyperparameters can be
found in Appendix B.

2.4 Model Evaluation

In order to evaluate the model’s acquisition of
visually-grounded semantics, we use an evaluation
method proposed by Nikolaus and Fourtassi (2021).
It is based on a two-alternative forced choice de-
sign, similar to what is typically done to evaluate
children’s knowledge in laboratory experiments
(Bergelson and Swingley, 2012; Noble et al., 2011;
Gertner and Fisher, 2012). Note that the models

"While the BLEU score only measures the adequacy of
the children’s produced sentence, we used it here as a proxy
for adults” Communicative Feedback. The assumption being
that the degree to which adults provide positive, contingent
responses (i.e., cues of coordination success) depends closely
on children’s production adequacy as was shown previously,
though in a different context, by Warlaumont et al. (2014). We
return to this assumption in the Discussion.
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Accuracy

Evaluation task XSL Alt XSL+CF XSL+Alt
Nouns: Persons 0.87+0.03 0.514+0.01 0.79+0.03 0.87+0.04
Word- Nouns: Animals 0.99 +0.01 0.534+0.050 0.98+0.01 0.99 +0.00
level Nouns: Objects 0.94+0.01 0.51£+0.01 0.944+0.00 0.95=+0.00
Semantics Verbs 0.55+0.05 0.50£+0.00 0.77+0.04 0.73+0.05
Adjectives 0.75£0.02 0.504£0.01 0.81+0.03 0.82+0.02
Sentence- Adj-noun dependencies  0.61 +0.03 0.50+£0.00 0.62+0.02 0.63 +0.03
level Verb-noun dependencies 0.55 £ 0.03 0.50 £0.00 0.724+0.05 0.68 +0.02
Semantics Semantic roles 0.65+0.07 0.504+0.01 0.61+0.05 0.61+0.07
Average 0.74+0.01 0.514+0.01 0.78+0.01 0.79 +0.01

Table 1: Accuracy (mean and standard deviation over 5 runs with different random initializations) for all semantic

evaluation tasks for different learning scenarios.

are not trained to optimize these tasks. The tasks
are only used during the evaluation phase and they
test if the models learn various aspects of semantics
as a “side product” of XSL and CF. Indeed, when
we evaluate children’s knowledge in the lab, we do
not suppose they have acquired their knowledge by
being trained on lab tasks.

Example

Counter-Example

Target: jenny is wearing a crown
Distractor: mike is wearing a crown

Target: mike is wearing a crown
Distractor: jenny is wearing a crown

Figure 1: Counter-balanced evaluation of visually-
grounded learning of semantics: Each test trial has a
corresponding counter-example, where target and dis-
tractor sentence are flipped. Figure reproduced from
Nikolaus and Fourtassi (2021).

These tasks test the model’s learning of
grounded semantics on the word level (nouns, ad-
jectives, verbs) and sentence level (adjective-noun
dependencies, verb-noun dependencies, semantic
roles). A task involves multiple test trials, each
consists of an image, a target sentence and a dis-
tractor sentence: (i, S¢, sq). Critically, each test
trial is counter-balanced to control for linguistic
biases (e.g., that Jenny occurs most frequently as
semantic agent and Mike more as a semantic pa-

tient), in a way that a language model that does not
have access to the image data performs at chance
(see also Figure 1, more examples are shown in
Appendix A).2

The model’s accuracy at choosing the correct
sentence s; given the image ¢ indicates how well
it has learned visually grounded semantics for the
phenomenon under study. We operationalize the
model’s choice for a trial by calculating both the
perplexity of the target sentence s; given the image
7 and the perplexity of the distractor sentence sg
given . If the perplexity of the target sentence s;
is lower, the trial has been successfully completed.

3 Analyses

3.1 Comparing learning scenarios

We study and compare four different learning sce-
narios:

XSL: Pure perception-based learning In this
scenario, the model learns only using XSL. It rep-
resents our baseline against which we compare
configurations including CF.

Alt: Alternating between perception and
production-based learning Here, the model
switches between the XSL and CF objectives
throughout the entire learning process.

XSL+CF: First pure perception-based learning,
then pure production-based learning We train

8Besides controlling for linguistic biases, the evaluation
sets also control for some potential visual biases, e.g., that
the semantic agent may occur more frequently on the left side
of the image (see Nikolaus and Fourtassi (2021) for more
details).
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the model until convergence using XSL, and after-
wards we fine tune the model using CF.

XSL+Alt: First pure perception-based learn-
ing, then alternation The model is first trained
until convergence using XSL, but afterwards, we
alternate between XSL and CF. This scenario is in-
tuitively the most plausible one: Once the language
learner starts to speak (i.e. produce their own utter-
ances), this does not mean that they stop to engage
in perception-based learning. Rather, they continue
learning using both mechanisms.

Accuracies for the four different learning sce-
narios are reported in Table 1.° The scenario XS
learns word-level and sentence-level semantics rel-
atively well compared to the other scenarios. It
only appears to struggle with the verbs and the
verb-noun dependencies. This fact highlights the
role of XSL as a major learning mechanism. When
looking at the results of A1t, we can conclude that
combining XSL and CF from the start deteriorates
the performance (compared to XSL alone) of all
metrics. This deterioration was observed regardless
of the frequency of alternation between XSL and
CF (for direct comparison with XSL+A1t we only
report results using one XSL update every 10 CF
updates in Table 1, but see Appendix C for results
with other alternation frequencies).

Moving to the more plausible scenarios (where
production comes into play only after a phase of
pure perception-based learning), we found that
for XSL+CF, we have, on the one hand, an in-
crease in performance (compared to the baseline
XSL) in some categories like “verbs,” “adjectives,”,
and “verb-noun dependencies.” On the other hand,
we observe a decrease in other categories, espe-
cially the category “persons.” Finally, the scenario
XSL+Alt leads to the best overall results except
for verbs and semantic roles, but the difference is
within the margin of error. Here we only show
results of XSL+A1t using one XSL update every
10 CF updates (which seems to optimize perfor-
mance), but other — both lower and higher — ratios
only marginally change the model’s behavior and
the conclusions remain the same (see Appendix C).

Appendix D contains a comparison of the BLEU
scores (our measure of utterance adequacy) for the
different learning scenarios. Consistent with our
semantic evaluation results, XSL+A1t leads to the

°Note that the results are not directly comparable to the re-
sults for the cross-situational learner in Nikolaus and Fourtassi
(2021), see Appendix E for more detail.

highest BLEU score.

3.2 Developmental Trajectories

Results in Table 1 show evaluation scores after the
model has converged on the entire dataset. Here we
test the developmental trajectories in each seman-
tic category using different data sizes as a proxy
for progression in time. Figure 2 shows the accu-
racy for different tasks when the best-performing
model XSL+ALt is trained on different training
data sizes. Already with very small training data
(10% of the original training set, 800 examples),
nouns and adjectives are learned to a high degree.
Verbs and sentence-level semantics are learned only
with larger training set sizes.

3.3 Effect of the data size used for XSL
pre-training

In the best performing configuration, XSL+Alt,
the model was first pre-trained on the entire dataset
using XSL, and then trained further using XSL and
CF, using again the entire dataset. However, in
real life, children spend only a fraction of their
learning time (generally the first year of their life)
doing pure perception-based learning. Thus, here
we test how different fractions of pre-training data
influence performance.

Figure 3 shows the average task accuracy (cf.
last row in Table 1) for XST.+A1t models that are
pre-trained until convergence on training datasets
of different size, and then trained in alternation
between XSL and CF on the full training dataset
until convergence. While the results indicate that
more pre-training data is better, we observe a steep
gain in average task accuracy starting from pre-
training only 5% of the data (up from chance level
with 0% pre-training, a limit case that corresponds
to the scenario of A1t alone), indicating that even a
small amount of perception-based training is useful
to initiate a successful learning trajectory.

4 Discussion

How do children learn the meanings of words and
sentences in their native language? Previous model-
ing effort has largely focused on perception-based
learning mechanisms such as XSL. However, chil-
dren do not learn only by mere exposure to the
perceptual cross-modal input, they also practice
their early — albeit rudimentary— knowledge and
receive feedback from caregivers, which allows
them to correct/refine this knowledge (Clark, 2018,
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through reinforcement. We tested various learning
scenarios that varied in their plausibility given our
understanding of how children’s learn language.
Crucially, we found that the most plausible learn-
ing scenario (i.e., XSL+A1t) — where the model
first learns through perception, and second through
alternating perception and production — is also the
one that leads to the best overall performance on
most semantic tasks.

The fact that XSL+A1t performed better than
XSL alone confirms the main hypothesis of this

T T T T
0.2 0.4 0.6 0.8
Fraction of training set used for perception-based pretraining

Figure 3: Average accuracy as a function of amount of
perception-based pre-training for the best performing
learning setup (XSL+Alt). Vertical bars indicate the
standard deviation over 5 runs.

2020). Here we investigated one possible feed-
back mechanism on children’s early production
(CF), that relies on general coordination and mis-
coordination cues, and does not necessarily require
the caregiver providing an explicit correction.

We proposed a computational model that inte-
grates both XSL and CF, allowing us to study how
these two mechanisms could interact in early se-
mantic learning. The same model learns both from
perceptual input and from feedback on production

work: CF plays a role in semantic learning above
and beyond XSL. In addition, the fact that A1t —
which alternates perception and production from
the start — hurts performance compared to XSL,
suggests that for CF to be effective, it requires a
first phase of learning through perception, which is
an intuitive finding since the model has first to be
exposed to enough linguistic/semantic input to be
able to start producing — at least partially — mean-
ingful utterances (for which RL is more useful).
This finding also corresponds to children’s learning
trajectory where they only start producing words
(and receiving feedback on them) after a period of
pure perception-based learning.'”

10Children do not generally utter their first words until
they are about 10 months old (Frank et al., 2021) while they
already understand certain words well before that age (Bergel-
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Interactions between perception-based and
production-based learning Another interesting
finding of this work is that XSL+Alt (e.g., alter-
nating XSL and CF after a period of pure XSL)
performs better than XSL+CF (i.e., using CF alone
after a period of pure XSL). This finding means
that when CF is combined with XSL, it leads to
improvement in performance compared to when
either XSL or CF operates alone or in a sequential
fashion. In other words, we found that XSL and
CF interact synergistically to improve performance.
In what follows, we examine this observed synergy
in more details.

Results in Table 3 show that while XSL+CF im-
proved performance on “verbs” compared to XSL,
it also led to a significant drop in the category “per-
sons.”!! We speculate that by using reinforcement
learning alone, XSL+CF explores the hypothesis
space and picks short utterances that lead to a high
reward signal and continues (re)producing them.
While this behavior could lead to improvement for
the parts of the language that are well covered by
this local space (e.g., verbs), it can also lead to a
drop in performance for the other aspects. In partic-
ular, here the difference between Jenny and Mike
in the category “persons” may become forgotten.

Qualitative and quantitative investigation of the
model’s behavior supports our speculation. For
example, when we sample sentences randomly
from the productions of XSL+CF and XSL+Alt
given images in the validation set, we observed
that while XSL+CF produces a variety of verbs
(similar to XSL+A1t), it tends to produce system-
atically shorter utterances involving disproportion-
ately only one person (see Table 6 in Appendix F).

Figure 4 confirms this observation quantitatively:
XSL+CF increasingly produces sentences involv-
ing Jenny, but decreasingly sentences involving
Mike. This fact leads to the situation where the
model gets less feedback on the difference between
Jenny and Mike and, therefore, unlearns this dis-
tinction to some degree.

For XSL+A1lt, the fraction of sentences involv-
ing Jenny and Mike remains largely constant, thus
avoiding the problem faced by XSL+CF. At the

son and Swingley, 2012), indicating that they engage in a
perception-based learning well before starting to produce their
own utterances.

""'The drop in “persons” could explain the slight drop in
“semantic roles,” (as distinguishing the persons is a prereq-
uisite to understand semantic roles) however this slight drop
is within the margin of error, so we could not draw strong
conclusions about the difference with XSL for this category.
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Figure 4: Comparison of the fraction of occurrences
of persons ("jenny" and "mike") in sentences pro-
duced during training of the XSL+CF (left) and
XSL+Alt (right) training setups. The graphs only dis-
play the second training step, not the pre-training using
XSL.

same time, XSL+A 1t keeps a balanced coverage
of verbs allowing it to maintain the good scores
achieved by XSL+CF on this category (see Ap-
pendix F for a quantitative analysis comparing the
production of verbs in both models).

The conclusion we draw from comparing
XSL+CF and XSL+Alt is that, even after a pe-
riod of pure XSL, continuing to learn through XSL
from time to time while doing reinforcement on
production helps the model not to get biased to-
wards a subset of the language it is supposed to
learn. Similar phenomena of “language drift” — due
to reinforcement learning operating alone — have
been observed in another line of work studying
emergent communication systems (Lewis et al.,
2017; Lowe et al., 2019; Lazaridou et al., 2020).

Learning Trajectories The best performing
model, i.e. XSL+Alt, not only instantiates — in-
tuitively — the most plausible learning scenario in
early childhood, it also recapitulates some specific
findings in the language development literature
about the timeline of semantic learning. For ex-
ample, it learns nouns before predicates (adjectives
and verbs), resonating with previous findings about
the “noun bias” (Gentner, 1982; Bates et al., 1994,
Frank et al., 2021). That said, the models’ perfor-
mance on verbs (relative to other parts of speech)
should be interpreted with caution given the fact
that we only used static images in both training
and testing. In real life, children learn verbs from
dynamic actions and some experimental studies
also evaluate verb learning use videos instead of
static images (Golinkoff et al., 1987; Gertner et al.,
2006).
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The model shows a rather late onset of under-
standing sentence-level semantics such as semantic
roles, only after a sizable lexicon has been acquired.
This fact mirrors, e.g., the finding that children
show evidence of recognize semantic roles in a sen-
tence during their second year of life (Golinkoff
et al., 2013), that is, at an age when they have
already acquired a substantial vocabulary (Frank
et al., 2021). Note that the model’s performance
on sentence-level semantics remains relatively low
compared to word-level semantics even when learn-
ing from the entire dataset. It is difficult, based only
on the current results, to conclude whether more
data will lead to improvement in sentence-level se-
mantics or whether the model has already reached
its ceiling performance due to structural limitations
(e.g., the lack of higher-level conceptual knowledge
about semantic agency).

Limitations and future research directions
While our modeling work has allowed us to test cru-
cial hypotheses about semantic learning, it used —
like any modeling work — simplifying assumptions
about the phenomenon under study. For example,
here we used an integrated model for both percep-
tion and production. This choice was primarily
motivated by parsimony. While it allowed us to
provide a direct comparison of XSL and CF, it ab-
stracted away limitations in children’s production
abilities compared to perception (e.g., due to imma-
ture motor/articulatory skills) and from difficulties
that children face when trying to coordinate produc-
tion with perception (e.g. Clark and Hecht, 1983).
In addition, we did not account for constraints on
children’s information processing abilities during
the learning process (e.g., limited attention span
and working memory), and how these constraints
may, for example, translate in the learner focus-
ing on specific parts of the input (Gelderloos et al.,
2020).

More generally, the current work focused on in-
vestigating the input-output mapping problem for
semantic learning and how Communicative Feed-
back can help such learning. It did not intend to
account for the exact cognitive processes that oper-
ate in children’s mind nor did it take into account
specific cognitive limitations and constraints when
trying to achieve this mapping. Thus, this work
is best situated at the computational level of anal-
ysis (Marr, 1982), which is a necessary first step
towards a deeper understanding of the cognitive
implementation.

Another simplifying assumption of this work
was the use of the BLEU score as a reward to the
model when learning through reinforcement. In
other words, we used a measure that only evaluates
the extent to which the learner’s utterance is correct
as a proxy for how the teacher would react. While
this assumption is grounded in previous experimen-
tal work showing that adults’ responses are con-
tingent on children’s type of vocalization (Warlau-
mont et al., 2014), here we went beyond the broad
distinction studied in this previous work (speech vs.
non-speech) and assumed that adults’ responses are
also contingent on the adequacy of speech itself.
That is, immediate, positive reaction from adults is
more likely to follow correct/adequate speech from
the child, which would encourage the re-use of ad-
equate (but not inadequate) speech in subsequent
conversations.

Note that the BLEU score feeds the model with
ideal information whereas the feedback that chil-
dren receive in real life is highly dynamic, mul-
timodal and noisy. While, as we said above, the
current paper took a computational level of analysis
approach that only studied learning under optimal
conditions, future work is required to (1) estimate
the quality and frequency of Communicative Feed-
back in child-caregiver conversations (CHILDES
(MacWhinney, 2000)) and (2) use these findings
to assess the scalability of the current proposal to
account for child’s language use and development
in the real world.

In conclusion, this paper provides a quantitative
proof of concept about the role production-based
learning can play in semantic knowledge acquisi-
tion together with perception-based learning. An
important finding was that combining both mech-
anisms leads to synergistic learning. One ques-
tion for future experimental work is whether such
synergy can be observed in controlled behavioral
experiments.
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A Semantic evaluation examples

For reference, Figure 5 shows an example for each different semantic evaluation set as proposed in
Nikolaus and Fourtassi (2021).

Nouns: Persons Nouns: Animals Nouns: Objects Semantic Roles

Target: jenny is wearing a crown Target: the cat is looking at jenny Target: jenny has a pizza Target: jenny is waving to mike
Distractor: mike is wearing a crown Distractor: the dog is looking at jenny Distractor: jenny has a hat Distractor: mike is waving to jenny
Adjectives Adjective-Noun Dependency Verbs Verb-Noun Dependency

Target: mike is happy Target: mike is happy Target: mike is sitting Target: jenny is sitting
Distractor: mike is sad Distractor: mike is sad Distractor: mike is standing Distractor: jenny is standing

Figure 5: Examples for the evaluation of word and sentence-level semantics. Each test trial consists of an image, a
target and a distractor sentence. Reproduced from Nikolaus and Fourtassi (2021).

B Hyperparameters

Model hyperparameters as indicated in Table 2 were chosen based on general best-practices and not any
further tuned (except for the frequency of CF updates, see Appendix C). During training, we evaluate
the model every 100 batches, and stop training if the BLEU score on the held out validation set does not
improve for 50 consecutive validations. All models converged within 8 hours when running on a single
GPU.

Parameter Value
Minimum word frequency for inclusion vocab 5
Word Embeddings Size 100
LSTM Hidden Layer Size 512
Optimizer Adam
Optimizer Initial Learning Rate 1-107*
Optimizer Initial Learning Rate (Model fine-tuning) 1-107°
Dropout 0.2
Batch size 32

Table 2: Model hyperparameters.
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C Varying frequency of CF updates

As the loss terms of the cross-entropy loss used in XSL and the policy gradient loss used in CF can take
very different margins, we experiment with different update frequencies of XSL updates with respect one
XSL update. An update frequency of 2 indicates that we perform an XSL update every 2 CF updates.

The results as shown in Table 3 show that we obtain the best results (average over all tasks) when
performing 1 XSL update every CF update for the model in the A1t setup, that is when alternating
production-based and perception-based learning from the start. However, the performance is still worse
than for a model trained using XSL alone (mainly regarding persons and semantic roles).

For our best performing setup, XSL+A1t, we observe a different pattern, displayed in Table 4. In this
case it is best to perform an XSL update every 10 CF updates. We hypothesize that this can be explained
by the fact that the CF updates are more useful in this setup, as the model has already learned a language
model in the first perception-based learning phase before starting to produce sentences. In the main text,
we report results for both A1t and XSL+A1t with a frequency of 10 CF updates per XSL update for
direct comparison.

Frequency of CF updates
Evaluation task 1 2 5 10 20
Nouns: Persons 0.740 0.660 0.520 0.500 0.480
Word- Nouns: Animals 0.997 0.978 0.703 0.667 0.500
level Nouns: Objects 0.930 0.858 0.720 0.567 0.497
Semantics Verbs 0.597 0.556 0.542 0.486 0.500
Adjectives 0.786 0.714 0.643 0.554 0.500
Sentence- Adj-noun dependencies 0.786 0.714 0.643 0.554 0.500
level Verb-noun dependencies 0.565 0.573 0.542 0.510 0.500
Semantics Semantic roles 0.540 0.500 0.480 0.500 0.440
Average 0.715 0.674 0.588 0.537 0.490

Table 3: Accuracy for all semantic evaluation tasks for varying frequency of CF updates in the A1t setup. Note
that we only performed one run for each setting, and thus some numbers do not match exactly those in the Table 1.

Frequency of CF updates
Evaluation task 1 2 5 10 20
Nouns: Persons 0.900 0.880 0.880 0.860 0.900
Word- Nouns: Animals 0997 0.994 0.997 0.997 0.997
level Nouns: Objects 0.952 0.957 0.954 0954 0.949
Semantics Verbs 0.722 0.708 0.764 0.778 0.764
Adjectives 0.750 0.857 0.786 0.839 0.839
Sentence- Adj-noun dependencies  0.646 0.667 0.630 0.594 0.635
level Verb-noun dependencies 0.598 0.593 0.630 0.720 0.708
Semantics Semantic roles 0.620 0.620 0.680 0.660 0.480
Average 0.773 0.785 0.790 0.800 0.784

Table 4: Accuracy for all semantic evaluation tasks for varying frequency of CF updates in the XSL+Alt setup.
Note that we only performed one run for each setting, and thus some numbers do not match exactly those in the
Table 1.
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D BLEU Scores

Table 5 shows the BLEU scores for all different learning scenarios. The score was calculated by sampling
images from the validation set and comparing generated sentences with the gold sentences. These
results are compatible with our observations using the grounded semantics evaluation tasks. Here again
XSL+Alt performs best.

XSL Alt XSL+CF XSL+Alt
66.5+0.8 53.9+£06 70.8+0.2 727+£0.5

Table 5: BLEU score on the test set (mean and standard deviation over 5 runs) for different learning setups.

E Comparison with Nikolaus and Fourtassi (2021)

Our baseline (XSL) results differ from the results in Nikolaus and Fourtassi (2021) for several reasons.

Firstly, their models are trained with a max-margin loss, instead of a cross-entropy objective as we
did here. We cannot evaluate our model by directly calculating similarity between images and sentences
because it does not learn a multimodal semantic embedding space. Thus, we evaluate it by calculating
conditional perplexity for both target and distractor sentences. These factors might explain the drop in
performance for some metrics, especially for sentence-level semantics. Future work should investigate
how to combine both training objectives (max-margin loss and cross-entropy loss), in order to combine
their respective benefits (e.g. Nikolaus et al., 2019).

Secondly, we do fine-tune the ResNet of our models, as we observed substantial performance im-
provements with this change. This might explain the gain in performance for adjectives (the children’s
emotions), which the model of Nikolaus and Fourtassi (2021) struggled with (probably due to the in-
appropriateness of the pre-trained image features, they are largely optimized for recognizing objects in
naturalistic scenes, but not clip-art objects).

F Analysis of produced sentences

Examples of models’ produced sentences (at the end of training) are shown in Table 6.

XSL+CF XSL+Alt

jenny is wearing glasses jenny is crying

an owl is sitting mike is holding balloons

jenny is holding mike is kicking the soccer ball

jenny is holding balloons jenny is holding a ketchup

jenny is flying jenny is playing in the sandbox
jenny is holding the jenny has glasses on

jenny is holding mike is making a pirate

jenny is wearing jenny is running away from the snake
mike is wearing the bear is wearing a wizards hat
jenny is angrily the rain is cooking lightning in the sky

Table 6: 10 sentences produced by the models for randomly sampled images from the validation set. The model
checkpoints used were from the end of training (epoch 19).

We further quantitatively compare the produced utterances during the training using XSL+CF and
XSL+Alt. Every 100 batches, we sample sentences from the model for all images in the validation set
and analyze these produced sentences for sentence length (Figure 6) as well as occurrences of persons
(Figure 4) and verbs (Figure 7). There are only 2 persons in the dataset, "jenny" and "mike". We
measure occurrence of persons by counting sentences that contain "jenny", but not "mike" (and vice versa).
Regarding the verbs, we count occurrences for all verbs that are used in the semantic evaluation tasks.

The examples show that the model produces increasingly short sentences when trained using XSL+CF.
We also observe a drop in mean sentence length for XSL+A1t, but to a substantially smaller degree.
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Figure 4 shows that the model trained using XSL+CF increasingly produces sentences involving "jenny",
but decreasingly sentences involving "mike". Thus it might get less feedback on the difference between
Jenny and Mike and unlearn this distinction to some degree. Consequently, it also struggles more to
understand semantics roles (distinguishing the persons is necessary to correctly map the semantic roles).
For XSL+A1t, the fraction of sentences involving "jenny" and "mike" remains largely constant.

Regarding the presence of verbs, Figure 7 shows a different pattern. While for XSL+A1t the fractions
do not vary much, in XSL+CF some verbs are produced increasingly. This might explain the large gain in
performance for verbs: The model produces more sentences involving verbs, and thus also receives more
valuable feedback to learn meaningful semantic representations.
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Figure 6: Comparison of the mean sentence length during training of the XSL+CF and XSL+Alt training setups.
The graphs only display the second training step, not the pre-training using XSL.
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Figure 7: Comparison of the fraction of occurrences of verbs during training of the XSL+CF and XSL+Alt
training setups. The graphs only display the second training step, not the pre-training using XSL.
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