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Abstract

The most straightforward approach to joint
word segmentation (WS), part-of-speech
(POS) tagging, and constituent parsing
(PAR) is converting a word-level tree into a
char-level tree, which, however, leads to two
severe challenges. First, a larger label set
(e.g., > 600) and longer inputs both increase
computational cost. Second, it is difficult to
rule out illegal trees containing conflicting
production rules, which is important for reli-
able model evaluation. If a POS tag (like VV)
is above a phrase tag (like VP) in the output
tree, it becomes quite complex to decide word
boundaries. To deal with both challenges,
this work proposes a two-stage coarse-to-fine
labeling framework for joint WS-POS-PAR.
In the coarse labeling stage, the joint model
outputs a bracketed tree, in which each node
corresponds to one of four labels (i.e., phrase,
subphrase, word, subword). The tree is
guaranteed to be legal via constrained CKY
decoding. In the fine labeling stage, the model
expands each coarse label into a final label
(such as VP, VP*, VvV, VV*). Experiments
on Chinese Penn Treebank 5.1 and 7.0 show
that our joint model consistently outperforms
the pipeline approach on both settings of
without and with BERT, and achieves new
state-of-the-art performance.

1 Introduction

As shown in Figure 1(a), the results of word seg-
mentation (WS), part-of-speech (POS) tagging, and
constituent parsing (PAR) can be organized in a
unified hierarchical tree, where leaf nodes include
words and their POS tags, and non-terminal nodes
correspond to phrases (or constituents) with their
syntactic label. Before the deep learning (DL)
era, there had been intensive research interest in
jointly modeling of the three tasks, i.e., WS-POS-
PAR (Luo, 2003; Qian and Liu, 2012; Zhang et al.,
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Figure 1: Example WS-POS-PAR trees. The English
translation is “The chocolate is very delicious.”

2013; Wang et al., 2013). The motivations are
three-fold: 1) alleviating error propagation, 2) pro-
moting knowledge sharing and interaction during
inference, 3) simplifying system architecture by
training a single model.

In contrast, there have been few work on joint
WS-POS-PAR in the DL era, with the exception
of Zheng et al. (2015). Similar to this work, they
treated the joint problem as a char-level parsing
task, which is obviously the most straightforward
way for Chinese, as illustrated in Figure 1(b). How-
ever, they showed that the joint model fails to out-
perform the pipeline approach.

In the past few years, constituent parsing has
achieved significant progress. Compared with pre-
DL parsers based on discrete features (Collins,
1997; Charniak and Johnson, 2005; Petrov and
Klein, 2007), the major characteristic of graph-
based parsers (Stern et al., 2017; Gaddy et al., 2018;
Kitaev and Klein, 2018; Zhang et al., 2020) is that
the score of a constituent tree is decomposed into
scores of labeled spans (i.e., (2,3, VP) or VP33),
without any consideration on production rules (i.e.,
VP23 — ADVP2 2 VP373).

For char-level graph-based WS-POS-PAR, there
exist two severe challenges. (1) The first challenge
is high model complexity. On the one hand, a
char sequence is almost twice longer than its word
sequence. On the other hand, the size of the la-
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bel set is very large (e.g., > 600) after transform-
ing char-level trees into Chomsky normal form
(CNF), as illustrated in Figure 2(a). Both fac-
tors greatly increase time and memory complexity.
(2) The second challenge is rule conflict. Since
neural graph-based parsers do not consider pro-
duction rules, there is no way to guarantee the
output tree is legal. Conflicting rules, such as
“VP — VA* VA*” (two subwords into a phrase)
and “VA — ADVP+AD VP+VA” (POS tag above
phrases), make it very difficult to decide word
boundaries and thus unfeasible to evaluate model
outputs.

In this work, we propose a two-stage coarse-to-
fine labeling framework for joint WS-POS-PAR,
which can deal with both challenges. In the coarse
labeling stage, the joint model outputs a brack-
eted tree with coarse labels (i.e., phrase, subphrase,
word, subword). The constrained CKY algorithm is
used to guarantee that the predicted tree contains no
illegal production rules. In the fine labeling stage,
the model expands each coarse label into a final
fine-grained label (such as VP, VP*, VvV, VV*). Ex-
periments on three Chinese Treebank (CTB) bench-
mark datasets show the joint framework is supe-
rior to the pipeline framework on both settings of
without and with BERT (Devlin et al., 2019), and
achieves new state-of-the-art performance. We will
release our code at https://github.com/
ironsword666/JointParser.

2  Joint WS-POS-PAR as Char-Level
Tree Parsing

2.1 From Word-level Tree to Char-level Tree

As illustrated in Figure 1, a word-level constituent
tree with POS tags in 1(a) is converted into a char-
level tree in 1(b). In a word-level tree, a leaf node
corresponds to a word with its POS tag. In contrast,
in a char-level tree, a leaf node is always a character,
and POS tags become non-terminal nodes. We
use flat structures for multi-char words, such as
“NNyg — %7 5t 717

Chomsky normal form (CNF). To facilitate
graph-based model training and inference, we use
the NLTK tool' to transform original char-level
trees into Chomsky normal form (CNF). Following
the recent work of Zhang et al. (2020) on con-
stituent parsing, we adopt left binarization.

'https://www.nltk.org
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Figure 2: Char-level tree in CNF and two typical kinds
of subtrees containing illegal production rules.

Figure 2(a) gives an example of char-level tree
in CNF. The non-terminal labels can be divided
into four categories. (1) NN7 ; means that “*3” is
a subword. (2) NP+NN; 3 means that “*5 3 71”
corresponds to a complete word with NN as its POS
tag, and the word is also a constituent labeled as
NP. (3) IP“L6 spans a subphrase. (4) IP1 7 means
that the span z;...x7 corresponds to a complete
phrase with IP as its label. Non-terminal labels
corresponding to subwords and subphrases, such
as NN* and IP*, are created during breaking n-
ary (n > 2) production into binary ones. Complex
labels such as NP+NN are created during collapsing
unary chains such as “NP — NN — *3 5L /17

2.2 Two Challenges

Directly performing char-level constituent parsing
confronts two severe challenges, i.e., high com-
plexity, and illegal trees containing word-vs-phrase
conflicts.

(1) The high complexity challenge. This chal-
lenge concerns two aspects. (i) large number of
non-terminal labels. A mass of new labels is intro-
duced by CNF transformation, most of which are
produced from the collapsing process of consecu-
tive unary chains. Taking CTB7 as an example, the
number of labels grows from 63 to 638 after CNF
transformation for joint WS-POS-PAR. In contrast,
for word-level constituent parsing, the number of
labels grows from 28 to 265. (ii) longer inputs.
Moreover, since words are broken into characters
in char-level parsing, the same sentence is almost
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twice the length of that in word-level parsing, pos-
ing further challenge on model efficiency.

In summary, longer inputs and a larger label set
both increase computational cost from the aspects
of time and GPU memory size.

This work handles the high complexity issue in
two ways. First, we adopt the two-stage parsing
framework of Zhang et al. (2020). The first stage
produces a bracketed tree without labeling non-
terminal nodes; the second stage independently pre-
dicts the label for each node. In this way, with the
CKY decoding algorithm, the total time complexity
decreases to O(n? ), versus O(n3 + n?|L])
for one-stage parsing. In terms of space com-
plexity, two-stage parsing needs to compute only
O(n? + n|L|) scores, versus O(n?|L|) for one-
stage parsing.

Second, we prune low-frequency labels by re-
placing them with most-similar high-frequency la-
bels in the training data. On CTB7, less-than-10
pruning decreases the label number from 638 to
293.

(2) The word-vs-phrase conflict challenge. In
the DL era, mainstream graph-based constituent
parsers (Stern et al., 2017; Kitaev and Klein, 2018;
Zhang et al., 2020) determine the label for each non-
terminal node in a local manner. As a result, there is
no guarantee that productions in 1-best parse trees
are all legal. For example, “IP — VP* VP” is an
illegal production, where “VP*” should probably
be changed to “IP*”. In the case of word-level
constituent parsing, a popular way to handle such
conflicts is ignoring such intermediate nodes during
evaluation, since they are created to meet CNF.

However, in the case of char-level parsing, such
conflicts are very difficult to handle. Figure 2
presents two typical kinds of conflicts. In Fig-
ure 2(b), the top POS tag “VA” tells that “4& % *k”
is a word; “ADVP+AD” tells that “4R” is a word
and a phrase; “VP+VA” tells that “ % %&” is word
and a phrase. However, there is only one way to
segment a sentence into a word sequence.

In Figure 2(c), the marked “VP” tells that *“ % %&”
is a phrase; the two “VA*” tell that “%” and “*&”
are subwords. Obviously there is a gap in between.

In summary, we can see that word-vs-phrase
conflicts pose great challenge on reliable evaluation
of joint WS-POS-PAR results. One possible way to
handle this is to post-process illegal trees into legal
ones based on heuristic rules, which, however, is a
non-trivial task itself.
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Figure 3: The architecture of our proposed joint frame-
work.

As an extension to the two-stage parsing frame-
work of Zhang et al. (2020), this work proposes a
coarse-to-fine labeling framework to elegantly deal
with the word-vs-phrase conflict issue. In the first
stage, the joint model not only produces a brack-
eted tree, but also assigns a coarse label to each
node. We ensure the coarsely-labeled bracketed
tree is legal via constrained CKY decoding. In
the fine labeling stage, the model expands each
coarse label into a final fine-grained label via local
classification.

3 Proposed Two-stage Coarse-to-fine
Labeling Framework

As shown in Figure 3, our proposed framework
consists of two independent decoders and a shared
encoder. During training, two parts of losses are di-
rectly added, i.e., the weights of two tasks are both
one?, and the whole model is trained via standard
multi-task learning (MTL).

Given a sentence consisting of n characters « =
X1,...,ZTn, we use (i,7,c) to denote a candidate
span z;...x; with a coarse label ¢, and (4, j, f) to
denote one with a fine-grained label f. Section 3.3
illustrates how to obtain their corresponding scores,

i.e., s(i,j,c) and s(i, 7, f).
3.1 Stage 1: Produce Tree w/ Coarse Labels

While Zhang et al. (2020) produce a completely
unlabeled bracketed tree in the first stage, we ob-
tain a bracketed tree with coarse-grained labels, as

2We try to adjust the weights of two tasks, but the perfor-
mance gains no significant improvement.
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Coarse labels ~ Examples #Labels #Pruned
P (Phrase) VP VP+NP 213 82
P* (Subphrase) VP* NP* 27 27
W (Word) AD QP+CD 368 154
W* (Subword) NR* CD* 30 30
Table 1: Four categories of coarse-grained labels.

“#Labels” means the number of corresponding fine-
grained labels after CNF transformation on CTB7, and
“#Pruned” refers to label pruning with < v = 10.

illustrated by the left tree on top of Figure 3.

As illustrated in Table 1, all fine-grained non-
terminal labels are categorized into four types of
coarse-grained labels.

We denote a bracketed tree with coarse labels as
y = {(i,J,c)}. As a mainstream practice adopted
by most neural graph-based parsers, the tree score
is decomposed into scores of spans.

s(@wy)= > s(i,jc) (1

(i,4,c)€y

Constrained CKY decoding. During evalua-
tion, given an input sentence, the model aims to
produce a highest-scoring tree.

y = arg max s(x, 2
y = arg max (z,y) 2)

where )(x) denotes the set of all possible legal
trees for x.

Using the standard CKY algorithm, we can effi-
ciently find the highest-scoring tree. However, the
legality of the tree, i.e., free from word-vs-phrase
conflicts, cannot be guaranteed, since the scores
of spans are mutually independent and the model
does not consider production rules at all.

In this work, we propose an efficient constrained
CKY algorithm to elegantly handle this issue, as
illustrated in Algorithm 1. The basic idea is in-
troducing two sets of production scores into de-
coding, i.e., binary productions s(A — BC), and
unary leaf productions s(A — z;), where A/B/C
are non-terminal labels in coarse label set N and
x; 1s a character. For illegal productions such as
“P — W* W*”, we set their scores into —oo. Scores
of all legal productions are set to 0. By ruling out
illegal productions, we can exclude all illegal trees
eventually.

Algorithm 1 Constrained CKY Algorithm.

1: input: labeled span scores s(i, j, A); produc-
tion scores s(A — a) and s(A — BC)

2: initialize all 77(---) to 0
3: fori:=1tondo
4: for A € N do
5: m(i,1,A) = s(i,i, A) + s(A — x;)
6: for width := 2 to n do
7 fori:=1ton — width + 1 do
8: j =i+ width — 1
9: for A € N do
10:
m(i,g,A) = max TN EG)
{B,C}eN?

11: return ¢

TreeCREF training loss. We follow (Zhang et al.,
2020) and adopt a global TreeCRF loss. As a prob-
abilistic model, TreeCRF defines the conditional
probability of a bracketed tree as:

o5(@.y)

:Z(m)z S es@y)
y'eY(x)

p(y|x) 3)

where Z () is known as normalization term and
can be efficiently computed via the inside algo-
rithm. Analogously to CKY decoding, we employ
a constrained inside algorithm to exclude illegal
trees from )(x), which leads to improved perfor-
mance. Please see Subsection 5.2 for more details.
Given a sentence x and its gold-standard
coarsely-labeled tree y*, the TreeCRF training loss
is:
x,y") = —logp(y*le) (4

losscoarse(

3.2 Stage 2: Expand into Fine-grained Labels

In the second stage, we predict a fine-grained label
for each non-terminal node in the 1-best tree ¥
obtained in the first stage.

f = ar max s(t, J, 5
f g mmax (47, [) ®)

where ¢ is the predicted coarse-grained label for
span (i,7), and F(¢) is the corresponding fine-
grained label set for ¢.

Cross-entropy training loss. As a typical multi-
class classification task, we adopt cross-entropy
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loss independently in the second stage.
Zf/ es(i:3,f")
(6)

loss™"¢(x, 2*) = Z —log
(i7j7f)€z*

where z* is the gold-standard tree with fine-grained
labels.

3.3 Model Details for Span Scoring

This subsection introduces model details for obtain-
ing span scores, i.e., s(i, J, ¢) and s(i, j, f), corre-
sponding to the lower part of Figure 3, most of
which are borrowed from Zhang et al. (2020).

Input vectors. The input vector for the ¢-th posi-
tion is composed of a char embedding and a bichar
embedding.

e; = emb(x;) ® emb(z;x;1) @)

Encoder. We employ three BiLSTM (Hochreiter
and Schmidhuber, 1997) layers over the input vec-
tors for context encoding. The final representation
of ¢-th position is:

h; =1, &b (8)

where f; and b; are the output vectors of the top-
layer forward and backward LSTMs for the i-th
position.

Span boundary representation. Two MLPs are
used to obtain two representation vectors for each
position.

rl;r’ = MLP! (h;) ; MLP" (h;) )

27

where [ /r represent the situation that the i-th posi-
tion is the left/right boundary of some spans.

Biaffine scoring. We compute scores of coarsely
labeled spans (4, 7, ¢) using biaffine operations.

T

s g I'l B coarse r;
s[4 weee[4] o

where WSoarse ¢ RO01X50L g the biaffine param-
eter matrix for the label c.

Analogously, for scoring fine-grained labeled
spans (4, j, f), two extra MLPs and an extra set
of Biaffines are used. Since the number of fine-
grained labels are very large, we use a smaller bi-
affine matrix dimension W7 € RI01X101 ¢
reduce computational cost.

3.4 Label Pruning

As mentioned above, CNF transformation intro-
duces a large number of labels, largely due to col-
lapsing of unary rules, such as “VP+NP”. Taking
CTB7 as an example, the number of fine-grained
labels in CTB7 increases from 63 to 638, among
which 355 labels occur less than 10 times in the
training data and only 172 labels simultaneously
appear in all train/dev/test datasets.

To boost computational efficiency, we pro-
pose to reduce the number of fine-grained la-
bels by projecting a low-frequency label into a
most similar one. For example, both “CP+VV”
and “NP+CP+IP+VP+VV” can be used to replace
“NP+CP+CP+IP+VP+VV”, and the latter is cho-
sen to recover more constituents.

Table 1 and 2 show the results after pruning
low-frequency labels (< a = 10). Effect of label
pruning on model performance is investigated in
Figure 4.

4 The Pipeline Framework

We adopt the typical cascaded pipeline framework
as our baseline. In the training phase, three sepa-
rate models (WS/POS/PAR) are separately trained.
In the evaluation phase, the first step is word seg-
mentation; then the word sequence is fed into the
POS tagger; finally the word sequence is fed into
the constituent parser.

Constituent parsing. We directly adopt the com-
petitive two-stage CRF parser of Zhang et al.
(2020), which is also backbone of our joint WS-
POS-PAR model. As a word-level parser, its input
is composed of two parts: 1) word embedding and
2) CharLSTM word representation (Lample et al.,
2016).

an

Other components, such as encoding and span scor-
ing, are the same with those in Section 3.3.

e _ emb(w;) ® CharLSTM (w;)

)

POS tagging. The inputs and encoder of the POS
tagging model are the same with the above word-
level constituent parser. We then feed h; into a
MLP layer to directly calculate the scores of differ-
ent POS tags. We directly use the local word-level
cross-entropy loss in the training phase, and greed-
ily select the highest-scoring tag for each word
during evaluation. Our preliminary experiments
show that applying a global CRF layer does not
lead to better performance.
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#Labels

#Train #Dev #Test Orig. CNF CNF*

CTB5 18,104 352 348| 57 323 183
CTBS5-big 16,091 803 1,910{ 57 313 179
CTB7 46,572 2,079 2,796| 63 638 293

Table 2: Numbers of sentences and constituent labels.
“Orig.” indicates the number of labels before CNF.
“CNF*” represents the number of remained labels after
pruning labels with frequency < o = 10.

Word Segmentation. The inputs and encoder of
the WS model are the same with our joint WS-POS-
PAR model. Similar to POS tagging, we feed h;
into a MLP layer to directly calculate the scores
of “BMES” tags, and use local cross-entropy train-
ing loss. During evaluation, we apply constrained
Viterbi decoding to avoid illegal tag transitions like
“B— S”.

S Experiments

5.1 Settings

Data. We conduct experiments on Chinese Penn
Treebank 5.1 (CTB5) and 7 (CTB7). For CTBS,
we follow previous works (Zhang and Clark, 2009;
Liu and Zhang, 2017) to split train/dev/test datasets.
Because both dev and test datasets of CTBS contain
only about 350 sentences, which is not enough to
conduct robust investigations, we adopt another
partition of Chinese Penn Treebank 5.1 (CTBS5-
big), which is proposed by Duan et al. (2007). For
CTB7, we follow the data split suggested in official
guidelines. Table 2 shows the data statistics.

Evaluation metrics. Before the evaluation, we
convert predicted character-level CNF trees into
word-level n-ary trees. Since our joint framework
is based on characters, we follow Zhang et al.
(2013) to redefine the span by the index of its begin-
ning and ending characters. We adopt the standard
constituent-level labeled precision, recall, F-score
(Par P/R/F) as the evaluation metrics for constituent
parsing, where POS tags are discarded. Metrics of
labeled precision, recall, and F-score (Tag P/R/F)
of POS tags are used to evaluate the POS tagging
task. For word segmentation, the unlabeled preci-
sion, recall, F-score (Seg P/R/F) of POS tagging
are served as the evaluation metrics.

Parameter settings. We adopt most of hyper-
parameter settings from Zhang et al. (2020) directly,

600 638
400
293
200 81 149
1 10 10% 10° 1 10 10% 10°
(a) Labels (b) Segmentation
94.2

86.0
94.0
85.8
93.8
85.6
93.6
85.4

1 10 10% 10°

(c) POS Tagging (d) Constituent Parsing

Figure 4: Effect of label pruning threshold (< «) on
CTB7-dev.

with the exception that we increase the decay steps
of learning rate from 5000 to 7500/6500/15000
(CTB5/CTB5-big/CTB7) in favour of more train-
ing steps. In our joint framework, the dimensions
of character and bichar embedding are 100, which
are identical to the dimensions of word embedding
and output vector of CharLSTM in the pipeline
framework. All embeddings are randomly initial-
ized. For experiments with BERT, we adopt “bert-
base-chinese” to get contextual char/word repre-
sentations. Both pipeline and joint frameworks use
3 BiLSTM layers with the hidden size of 400 as
their encoder. The dimensions of coarse-grained
and fine-grained label MLPs are 500 and 100 re-
spectively. We use the Adam optimizer (Kingma
and Ba, 2014) for all models. All dropout ratios
are 0.33. The mini-batch size is 5000 words (or
characters). We stop the training process when the
peak performance on dev data does not increase in
100 consecutive epochs.

5.2 Results on the Dev Datasets

Results of the pipeline framework. The upper
part of Table 3 shows the results of pipeline frame-
work. We conduct the study on dev datasets to
understand the influence of automatic word seg-
mentation. The “Pipeline” row presents the re-
sults of using automatic word segmentation as the
input of the tagger and parser. Then, in the “w/
gold-standard WS” row, we feed the gold-standard
word segmentation into the tagger and the parser.
Although the performance of automatic word seg-
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CTBS CTB5-big CTB7
Seg Tag Par Seg Tag Par Seg Tag Par
Pipeline 97.44 95.17 89.22 96.06 92.23 83.65 96.42 92.88 85.14
w/ gold-standard WS - 9735 91.12 - 95.75 86.14 - 96.12 87.43
Joint 97.94 9597 90.25 96.54 93.22 84.51 96.99 93.81 85.89

w/o constrained inside 98.02 95.89

89.85

96.51 93.07 84.27 96.97 93.77 85.66

Table 3: Results (F-score) of pipeline and joint frameworks on dev datasets.

mentation is fairly high, the tagger and parser using
automatic word segmentation are still distinctly in-
ferior to those using gold-standard segmentation. It
proves that the error propagation issue has a strong
impact on the performance of downstream tasks.

Results of the joint framework. First, to study
the impact of constrained inside algorithm, we re-
tain illegal trees in )Y(x). The “Joint” row uses
the constrained inside and CKY algorithms. In
the “w/o constrained inside” row, we try to use a
standard inside algorithm in the training phase but
still perform constrained CKY decoding. It is inter-
esting that using the constrained inside algorithm
achieves a consistent improvement in POS tagging
and constituent parsing. One possible reason is that
the constrained inside algorithm produces a more
precise normalization term Z (x) while the stan-
dard inside algorithm creates a mismatch between
training and decoding.

Second, we explore the impact of threshold value
a used to prune low-frequency labels for joint
framework. As shown in Figure 4, we select four
different threshold values (i.e., 1, 10, 100, 1000)
and conduct experiments on CTB7 dev dataset. We
can clearly see that (Figure 4(a)) the number of
labels is halved from 638 to 293 when « is set to
10. A fairly large value 1000 should be chosen
to further prune labels to a quarter of the original.
In terms of model performance, different o values
have very slight impact, except constituent parsing,
in which o = 10 outperforms others and higher
thresholds lead to worse results.

5.3 Efficiency Comparison

Table 4 compares two frameworks from the aspects
of speed and parameter size. Our models are all run
on a Nvidia Tesla V100 GPU. The comparison is
made on CTB7 test dataset. First, in the upper part
of the table, we list the results of the three tasks
(WS/POS/PAR). As illustrated in the table, WS is

#Speed (Sents/sec) #Params (M)

WS 353 22.8
POS 1785 12.8
PAR 444 16.7
Pipeline 217 51.3
Joint 208 27.7

Table 4: Speed and parameter size comparisons on
CTB7 test. For “#Speed”, we divide total sentences by
total time used. “#Params” is counted in millions with
Pytorch function “numel()”.

the bottleneck of the pipeline framework since it
is in char-level. Second, we calculate the speed
of the pipeline framework and compare the two
frameworks. Although using a char-level parser,
the joint framework can parse 208 sentences per
second, which is only about 4% slower than the
pipeline counterpart. What’s more, our joint frame-
work only has half parameter size compared with
pipeline framework (27.7M vs 51.3M).

5.4 Final Results on the Test Datasets

Comparisons with the pipeline framework. In
this part, we compare pipeline framework and joint
framework on the settings of without and with
BERT. The joint framework uses the constrained
inside and CKY algorithms, and threshold value
a is set to 10. Without using BERT representa-
tions, our joint framework outperforms the pipeline
framework by a large margin. Considering that
the pipeline framework can make use of both char-
acter and word information, it is not easy for the
joint framework which only has access to the for-
mer one. After incorporating BERT representa-
tions into two frameworks, our joint framework
still achieves better performance except the word
segmentation task on CTBS5. We owe it to the over-
fitting phenomenon of complicated model since
CTBS is relatively small.
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CTB7
Tag

CTB5-big

Seg Tag Par Seg Par

CTBS
Seg Tag Par
Pipeline 98.05 95.17 87.47
Joint 98.41" 95.641 87.57

95.64 91.62 83.15
96.18% 92,72} 84.28*

96.07 92.50 85.19
96.55% 93.30% 85.89%

Pipeline w/ BERT 98.72 96.51 91.39
Joint w/ BERT 98.59 96.53 91.51

97.36 94.73 89.39
97.39 94.97" 89.48

97.27 94.70 89.76
97.49% 95.11* 90.14%

Table 5: Results (F-score) of pipeline and joint frameworks on different test datasets. “t”” marks statistical signifi-
cance with p < 0.005 and “1” marks the significance with p < 0.0005 (Noreen, 1989)

Seg Tag Par

Joint frameworks

Qian and Liu (2012) 97.96 93.81 82.85
Zhang et al. (2013) 97.84 94.80 84.43
Wang et al. (2013)  97.86 94.40 83.42
Zheng et al. (2015) - - 8422
Pipeline 98.05 95.17 87.47
Joint 98.41 95.64 87.57

Table 6: Comparisons with previous works on CTBS5
test.

Comparisons with previous works. Finally, we
list results of all recent related works of the joint
framework on CTBS5. Please note that our pipeline
framework is already remarkably superior to the
previous state-of-the-art joint framework proposed
by Zhang et al. (2013). Compared with it, our
joint framework achieves an absolute improvement
of 0.57, 0.84, 3.14 on word segmentation, POS
tagging, and constituent parsing respectively on
CTBS test.

6 Related Work

Coarse-to-fine Parsing. Directly performing dy-
namic programming parsing with fine-grained
grammar is computationally expensive from the
aspects of time and memory size. Coarse-to-fine
parsers introduce complexity gradually by coarse-
to-fine utilizing a sequence of grammars. Charniak
and Johnson (2005) succeed in reranking n-best
parses with a two-stage method. They predict n-
best parses with a coarse-grained grammar in the
first stage, then, the best parse is selected from the
n-best parses with the finer-grained second-stage
grammar which makes use of more important con-
textual information. Charniak et al. (2006) extend
the basic two-stage coarse-to-fine parsing to multi-

stage parsing by constructing multiple levels of
grammars. They cluster constituent labels of the
raw treebank into coarser categories. For example,
in the most coarse grammar, there only exists one
label “P” which corresponds to the phases. The
proposed clustering idea in their work is similar
to that used in our work. The work of Petrov and
Klein (2007) also builds a multi-stage parser which
constructs a sequence of increasingly refined gram-
mars in a automatic fashion. However, the final
grammar is finer than the raw treebank grammar.

Joint modeling in the pre-DL era. In this part,
we try to briefly discuss works on joint modeling
of word segmentation, POS tagging, and parsing,
which were conducted in the pre-DL era, and most
of which are transition-based (shift-reduce) sys-
tems instead of graph-based.

Joint POS-ConPAR. Wang and Xue (2014) in-
tegrate POS tagging and constituent parsing based
on a transition-based parsing model. They modify
the action to assign a POS tag when the word is
shifted into the stack, making POS tagging as a
part of parsing naturally.

Joint POS-DepPAR. Li et al. (2011) extend
graph-based dependency parsing to handle POS
tagging simultaneously based on a dynamic pro-
gramming algorithm for joint decoding. Hatori
et al. (2011) combine POS tagging and dependency
parsing into a shift-reduce parsing system.

Joint WS-POS-ConPAR. Qian and Liu (2012)
design a graph-based joint decoding algorithm
to aggregate the outputs of three independently
trained models for the three tasks. Zhang et al.
(2013) integrate word segmentation and POS tag-
ging information into parse trees, and then use a
transition-based parser to perform joint learning
and decoding. They manually annotated the intra-
structures of words on the CTBS dataset, which is
proven to be very beneficial.
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Joint WS-POS-DepPAR. Hatori et al. (2012)
propose a transition-based parser that uses extra
actions for word segmentation and POS tagging.
Zhang et al. (2014) apply their previous work on
intra-word structures (Zhang et al., 2013) to depen-
dency parsing. The idea is to compose character-
level dependency trees by combing inter- and intra-
word dependencies.

Joint modeling in the DL era. Most closely re-
lated to our work, Zheng et al. (2015) also focus
on joint WS-POS-ConPAR. They adopt CNN with
pooling layers to encode the input character se-
quence. They show that utilizing the intra-word
structures annotated by Zhang et al. (2013) can
bring considerable gains to parsing performance.
Compared with their work, we simply use left bi-
narization to decide the intra-word structures, and
our model achieves much higher performance by
adopting the state-of-the-art BILSTM-based pars-
ing model. Our main contribution is proposing an
elegant way to handle word-vs-phrase conflicts,
which unfortunately are not mentioned in their
work.

Kurita et al. (2017) for the first time apply neu-
ral networks to jont WS-POS-DepPAR. They en-
hance the transition-based parser with char/word
embeddings and BiLSTM which alleviate the ef-
forts of feature engineering. Li et al. (2018) anno-
tate a character-level dependency treebank for joint
WS-POS-DepPAR. They use a neural character-
level transition-based parsing model to reduce com-
putational cost. Yan et al. (2020) focus on joint
WS-DepPAR. They adopt the character-level graph-
based parsing approach. For intra-word dependen-
cies, a character is designed to modify its subse-
quent character with the label of “app”. Wu and
Zhang (2021) split joint WS-POS-DepPAR into
joint WS-POS and joint WS-DepPAR by using a
shared character-level encoder and two indepen-
dent decoders. They adopt outputs from joint WS-
POS as final word segmentation results.

7 Conclusions

In this work, we propose a two-stage coarse-to-fine
labeling framework of joint WS-POS-PAR, which
is shown to be able to handle both challenges for
char-level parsing, i.e., high model complexity, and
word-vs-phrase label conflicts. In particular, we
believe that it is a novel and elegant way to remove
illegal trees using constrained CKY decoding in the
coarse-labeling stage. It is also very interesting that

under a TreeCREF loss, performance is consistently
improved by ruling out illegal trees in computing
the normalization factor via the constrained inside
algorithm. Experiments and analysis on three Chi-
nese benchmark datasets (CTB5 and CTB7) show
that 1) the joint framework is clearly superior to the
pipeline framework, and achieves new state-of-the-
art performance; 2) our joint framework has very
similar parsing speed compared with the pipeline
counterpart, but only requires a half number of
parameters.
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