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Abstract

Natural language processing for program syn-
thesis has been widely researched. In this
work, we focus on generating Bash commands
from natural language invocations with expla-
nations. We propose a novel transformer based
solution by utilizing Bash Abstract Syntax
Trees and manual pages. Our method incor-
porates tree structure information in the trans-
former architecture and provides explanations
for its predictions via alignment matrices be-
tween user invocation and manual page text.
Our method performs on par with the state of
the art performance on Natural Language Con-
text to Command task and performs better than
fine-tuned T5 and Seq2Seq models.

1 Introduction

Natural Language Processing (NLP) of program-
ming language source code is a well-established
field with a recent resurgence of using NLP tech-
niques to assist programming. Advances have
been made in code generation (Svyatkovskiy et al.,
2020), code summarization (Ahmad et al., 2020),
bug detection (Gupta et al., 2019), code transla-
tion (Lachaux et al., 2020) etc. However, there is a
lack of explainable methods for assisting software
developers.

Bash is a Unix command language with numer-
ous utilities (like cut, tr, sed etc) for interacting
with the Operating System. It is difficult for a
novice developer to remember the purpose and syn-
tax of these Bash utilities. Usually, to understand
the intended usage of a utility, one looks up rele-
vant manual page using man, apropos and info.
However, these pages have been described as "fre-
quently hard to read", byzantine and formal (Cozzie
et al., 2011) and finding relevant information from
them itself becomes a challenging task. Hence it
gets difficult for a new user to learn Bash. Previ-
ous works in this area (Agarwal et al., 2021, 2020;
Gros, 2019) have explored Transformer (Vaswani

et al., 2017), Sequence to Sequence with atten-
tion (Bahdanau et al., 2015) (Seq2Seq), grammar
guided methods and retrieval based methods for
translating Natural Language to Bash commands.
However, these methods are predictive and do not
provide explanations or reasoning for their predic-
tions. These methods propose a black-box solution
to the translation problem relying on only parallel
data. There is a lack of user trust in such predic-
tions.

Motivated by these challenges, we propose an
explainable neural machine translation model. To
the best of our knowledge, ours is the first method
to explore the use of manual page data for assisting
translation. Besides translating natural language
invocations to Bash code, our model also provides
alignment matrices between user invocations and
manual text, which explain the predictions by the
model. Such alignments could be helpful to gain
developer confidence in using the system. At the
same time, it can help improve the learning curve
for Bash while providing a more user-friendly in-
terface with the Operating System.

We apply our method to NLC2CMD challenge
(Agarwal et al., 2021) dataset (Lin et al., 2018) and
compare the results with baselines like TS5 (Raffel
et al., 2019), Seq2Seq and the winning solution to
NLC2CMD challenge (Agarwal et al., 2021). Our
method performs better than TS5 and Seq2Seq while
providing explanations for the predictions. Code
for our model is available on github !. We also
release parsed and cleaned utility descriptions from
linux manuals and ¢/dr? (a community-contributed
collection of utility descriptions) which were used
in our experiments.

Problem Statement Assume that [ is the set

of all natural language invocations, C' is the set

of all Bash commands without pipes, process-
"https://github.com/Shikhar-S/
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Figure 1: Target side processing for command chown -R Regex File: Nodes in grey are End of Children
(EC) and End of Tree (ET) nodes. These are artificially introduced. The token sequence on the right is used as the
target sequence for our translation model. Curved arrows in the AST sequence denote edges from parent tokens.
The figure has been labelled with only a few edges for clarity.

substitution and command-substitution, {{ is the

set of all Bash utilities and S is the set of all sen-

tences from manual pages of Bash commands.
Given a dataset D := {P, M}, where

* P is parallel natural language invocation-Bash
command data of form (nlc, ¢), and

e M is the paired utility-utility description doc-
umentation data of form (u, d)

where nlc € I,c € C,u € U, and d C S, the task
is to design an algorithm that, given an invocation
nlc € I and dataset D, outputs

* a set of Bash command-confidence pairs (¢, d)
such that ¢ € C is the predicted Bash com-
mand that performs the task specified in nic
and 6 € [0,1] is the associated confidence
score, and for each pair in this set also out-
puts,

o A" an #nlcx #d alignment matrix Yu €
U (¢é), where #nlc denotes the number of to-
kens in nlc, #d denotes the total number of
tokens in all sentences in d, U(¢) denotes the
set of all utilities in Bash command ¢ and
(u,d) € M.

For example, nlc = Recursively change owner-
ship of all files in /path/to/dir to root.

¢ = chown -R root /path/to/dir

U(c) = {chown}

Notation We use lower case bold characters, X,
to represent row vectors, upper case bold charac-
ters, W, to represent two dimensional matrices,

italic characters, s, to represent scalars and upper
case bold-italic characters, X, to represent sequence
of row vectors. Subscripts, as in x;, represent ith
coordinate of the vector x while superscript, as in
x’, are used to index vectors in a sequence. The
set of positive even numbers is denoted by N, and
the set of positive odd numbers is denoted by N,.
Element-wise product of two vectors is denoted by
©®. The inner product of two vectors is denoted
by (-,-) and the Frobenius inner product of two
matrices is denoted by (-, -) .

2 Method

We model the problem as a natural language to
Bash Abstract Syntax Tree (AST) translation task
by transforming a Bash command to an AST. Our
method is motivated by human cognition while
programming. A developer usually looks up in-
formation from documentation while performing
a programming task. Similarly, our model uses a
convolutional neural network to match invocation
against manual page data. It then generates a Bash
command guided by manual page information. To
incorporate the information at the correct time-step
during the command generation process, we utilize
Abstract Syntax Tree (AST) for Bash.

Abstract Syntax Tree An AST for a Bash com-
mand consists of nodes with two attributes: struc-
ture and value. The structure attribute denotes the
broad type of node and the value attribute denotes
the specific value of the node. For instance, for
one of the children of the root node in Figure 1,
utility is a structure attribute and chown is a
value attribute.
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Figure 2: Broad Architecture: Encoder is the standard
transformer encoder. Decoder is modified to handle
AST sequence. Guidance module guides the generator
head via a guidance vector. Output sequence is Y.

Preprocessing Figure 1 illustrates the target side
processing. The Bash command c is first normal-
ized to replace all arguments with their types. Then
we use the Bash parser by Agarwal et al. (2020)
for parsing the normalized commands. The AST
thus generated is sequentialized by traversing the
tree in level order and enumerating node attributes.
Hence, each node in the AST generates two to-
kens in the target sequence - one for structure
and another for value of the node. From these
tokens we construct structure and value vocabu-
laries, V7 and V5 respectively. For nodes that do
not have value attribute we introduce a dummy
value. For instance, in Figure 1 the first 4 ele-
ments of the AST sequence are (root, dummy,
utility, chown). Some tokens in structure
vocabulary are root, utility, flag, argument
etc. Some tokens in value vocabulary are
chown, -R, 1s etc. The AST sequence is rep-
resented as a sequence of one-hot vectors ¥ =
(yl,...,y") where Vi € N,,y"is a |V4| dimen-
sional one hot row vector representing a token in
structure vocabulary and Vi € N.,y" is a |V3| di-
mensional one hot row vector representing a token
in value vocabulary.

Source side parallel data is also normalized and
tokenized. Let nlc = (t1,ta, . . . tsnc) be the result-
ing sequence of tokens in nlc. For instance, nlc =
(Recursively, change, ownership, of, all, files, in,
_PATH, to, _REGEX).

Broad Architecture A transformer based model
is used for translating from source to target se-
quence and convolution filters are used to obtain in-
formation from manual pages. We use the standard
transformer encoder for mapping the tokenized

Invocation Embeddings (X)

THRERTRTAT Y

| Encoder Layer N |

| Encoder Layer 2 ‘

| Encoder Layer 1 ‘

Matrix of embedding vectors for tokens in nlc : T

Embedding Layer

nlc = (Recursively, 'change, ownership,
of, all, files, in, _PATH, to, _REGEX)

Figure 3: Encoder Stack: Standard transformer en-
coder.

input invocation nlc to invocation embedding se-
quence X. A guidance vector, g, is also obtained
from the whole manual page data (M) and nlc.
Given X and the guidance vector g, our enhanced
decoder then generates an output sequence of prob-
ability distributions Y over vocabularies V; and Va.
We train the model in an end-to-end fashion by
backpropagating on a combined loss function.

The transformer decoder is extended with Tree
Coordinates (Section 2.1) and Parent Attention
(Section 2.2) to handle AST sequence. Section 2.3
describes a convolution net based approach to ob-
tain relevant information from manual page data.
Section 2.3.1 describes a method to analyze the
filters for obtaining explainability information in
the form of A™¢ matrices.

Transformer Encoder Tokens from nlc are em-
bedded in R* dimensional space (See Figure 3).
The resulting matrix T € R#7/¢** is then processed
via the standard transformer encoder. As a result
we obtain X = (x!,...,x*"), a sequence of k

dimensional embedding vectors.

Transformer Decoder Since the sequence Y is
a sequentialization of an AST, it does not have
explicit AST structure information for each token.
To help the model in understanding AST structure,
we embed this information. Two new blocks - Tree
Coordinates and Parent Attention - are introduced
for this purpose.

First, we embed target sequence Y to obtain an
embedded target sequence Z' = (zM!,... z!).
We then process Z' through L decoder layers in
an enhanced decoder stack to obtain Z”. A guided
generator head then produces the output sequence

Y =G,
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Figure 4: Embedding with Tree Coordinates: The one-
hot vectors from two different vocabularies are embed-
ded by the corresponding embedding matrices.To these,
along with the usual sinusoidal positional embedding,
we also embed and add the level of the node that gener-
ated the token.

2.1 Tree Coordinates

Once the AST is converted into a sequence, it is
difficult to extract level information from sequence
tokens. Level information is useful to know be-
cause certain nodes usually occur only at certain
levels in the AST. For instance, utility only
occurs at the first level. Therefore, we propose
Tree Coordinate embeddings to incorporate level
information about the nodes. Figure 4 explains the
procedure graphically.

2.2 Parent Attention

It is also difficult to extract parent information for
each token from the AST sequence. We hypothe-
size that adding attention only between the token
and its children tokens could help in generaliza-
tion. This parent attention block aids in the flow of
information from parent to children.

After obtaining initial embeddings for target se-
quence (Z' in Figure 4) the embedding sequence
is transformed via multiple stacked decoder layers.

For the [*" layer, given an embedding sequence
of length n, Z! = (2, ..., 2"!), the decoder layer
generates z°/ 1 as

Zi,l+1 — Hthlzi

Lh ilwV
=105 (ZJW)

Here ||F_, denotes concatenation over the out-
puts of H attention heads. The attention value % ]h
for head h, between tokens at positions ¢ and j is

computed as

I,h
Lh ea:p( )
(8 =

ij —h
N le 1exp( 'Lj/)

where ei oh

; are computed as

i\l iwK 0,0\ T
o ZIWE (W, + )
e = 7k

Here, Wl{(h, W?h and WXh € R¥*n transform
embeddings into keys, queries and values respec-
tively, al ¢ Rbn, ky, is the dimension of attention
head and kj, = k/H where H is the number of
heads.

In the above equation if one ignores a”*! term,
the attention function is the standard multi-head
attention. The trainable parameters, a! are intro-
duced to capture information flow from parent at
position j to child at position 7 and are non-zero
only for parent tokens.

2.3 Guidance Module

We propose an explainable guidance module that
guides the decoding process. We hypothesize that
user invocation and utility descriptions will share
similar n-grams, which can be easily captured by
convolution filters. These n-grams may help in
the translation process. Information from input
invocation and utility description of a utility w is
aggregated into the vectors v and w* respectively.
For doing so, r text convolution filters are applied,
followed by sigmoid activation and max-pooling
over time (Kim, 2014). Figure 5 explains this pro-
cedure for generating v. Then, the cosine similarity
between v and w" determines if the utility u is use-
ful for completing the task specified in invocation.
Using cosine similarity allows for an easy analysis
of the filters.

Obtaining invocation representation using
CNN Using zero padding wherever necessary
and defining a sliding window of size p over the
matrix of invocation embeddings, T € R¥7exk g5

T, = [tz‘—p—i-l;-- ti—1, ] 1 <i<#nlc
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Figure 5: Obtaining invocation representation in Guidance Module: The convolution filter F; passes over the
matrix of token embeddings T to output a feature map f'. This is followed by max pooling which results in the
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we have T, € RP*F. Here t; denotes the em-
bedding vector for token ¢; from nic and [...] de-
notes row-wise concatenation. From each filter
F; ¢ RP ¥k we calculate

fl.j = sigmoid((T;,F;)r + bF;)

Here ij is the bias term for filter F;. Concate-
nating these scalars, we obtain a feature map from
filter F;

F =113 il

Then a max pooling layer is applied to this vector,
to get v; = max; f7. Finally from r such filters we
obtain the embedding vector for input invocation:

v = [v1, V2, ...0,]

Obtaining utility representation using CNN
For a given utility u, let D, € R*¥** be the ma-
trix obtained by embedding its utility description
d. Here #d is the total number of tokens in all sen-
tences in d. In a manner similar as before, applying
r convolution filters on D,, followed by sigmoid ac-
tivation and max pooling gives us a representation
vector w* corresponding to utility w.

Obtaining Guidance Vector We assume that
the similarity between user invocation and utility
description determines if the utility is necessary for
performing the task specified in the invocation. For
the invocation representation, v, the similarity is
computed for all utility-utility description, (u;, d;),

pairs in man-page data, and aggregated in the form
of a guidance vector as follows:

g= [gulvguu-'wguuw]

Here g, = % Each coordinate of the guid-

ance vector is the cosine similarity between invoca-
tion representation and utility representation. This
guidance vector is used to guide the command gen-
eration process.

2.3.1 Analyzing Guidance Filters for
Explanation

From Figure 5 observe that each coordinate in the
representation vector v corresponds to an n-gram in
the input invocation. This is true because each coor-
dinate in a feature map f* corresponds to a window
over certain n-gram in the invocation text and dur-
ing the max-pooling step we copy the maximum of
these coordinates in the corresponding coordinate
of v. Same is true for w* and n-grams in utility
description. Since cosine similarity is proportional
to the dot product of the embedding vectors, we
can find out the embedding vector coordinates that
increase the cosine similarity score. Then, the n-
grams in the corresponding texts can be obtained.
These n-grams are important for predicting whether
the utility is needed for a given task. Figure 6 ex-
plains the procedure to construct alignment matrix
from these n-grams.
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2.4 Guided Decoding

Guidance information is incorporated during the
generation step. For each time step in the genera-
tion process, a probability distribution over either
the structure vocabulary or the value vocabulary is
obtained. Beam search is used for decoding, result-
ing in a sequentialized AST representation. This
representation is converted back to an AST, from
which the final prediction command is obtained.

Let Z = (z',...,z") be the sequence of vec-
tors produced by final decoder layer. For ¢ € N,
on z' we apply a linear transformation followed
by softmax to obtain the distribution y" over struc-
ture tokens. This is the usual transformer decod-
ing process. For i € N,, we selectively add the
guidance at the correct time-step during genera-
tion. The selective addition of guidance informa-
tion is possible because of the manner in which the
AST sequence is generated. We know the struc-
ture attribute of the node prior to generating its
value attribute. So for i € N,, we first apply a
linear transformation on z’ to obtain a logit vector
p € RI"2l. We introduce a trainable row vector
s € RIV2l. Then if argmax §°~* is the index for

(2
utility token, we modify p’ < p’ +s©® R(g)
where R : RIM| — RIV2l maps the guidance vec-
tor from the space of utilities to value vocabulary.
Intuitively, R aligns the guidance vector to match
the indexing of value vocabulary. For non-utility to-
kens it fills in the output vector with zeros. Finally,
we apply softmax over p’ to obtain the probability

distribution §° over value tokens.

2.5 Loss

LetY = (§',...,§") be the output obtained after
guided decoding (Section 2.4).

Fori € N,, §' € RVl are probability distribu-
tions over structure tokens. For ¢ € N, §'i e RI"2
are probability distributions over value tokens.

The model is trained by back-propagation on
loss L:

L= Lstructure + AlLvalue + A2Lguide

where Lgirycture and Lygue are standard cross-
entropy functions over corresponding index in tar-
get and output and Lg,;qe is the cosine embedding
loss.

i+1

Lstructure = %/2 ZiENe E‘J‘ﬂ (y]' In 5’;)
75 e, S g

Lguide ‘Tl/ﬂz(u,d)eMlu

where I, = I(u € U(c)) * (1 — cos(v,w")) +
I(u ¢ U(c)) *x maz(0, cos(v,w")). Here Ul(c) is
the set of utilities in command ¢ and I(-) is the
indicator function.

Lvalue =

3 Experiments

3.1 Dataset

We tested our method on the data from NLC2CMD
competition (Agarwal et al., 2021). This
data was filtered to remove all commands that
had pipe, command substitution and
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process substitution. Filtering resulted
in 3203 invocation-command pairs. Then the data
was split into ten folds to perform multiple runs.
In a single run, one fold was kept hidden for test-
ing, and the remaining nine folds were pooled and
split for training and validation purposes in the ra-
tio of 9:1. All the results mentioned in Section 4
were obtained by averaging over these ten runs.
For generating documentation data, we parsed the
linux manual pages to get utility - utility descrip-
tion pairs. To these, we also appended the parsed
and cleaned utility descriptions from tldr pages,
which are community collected manuals for Bash
utilities. The natural language parallel data was
normalized to remove file paths and regex. We per-
formed similar normalization on target side data
as well. This normalization is performed for all
models mentioned in Table 1.

3.2 Maetric

To evaluate the model, we use the metric defined
in Agarwal et al. (2021). This was the metric for
NLC2CMD competition. This metric ignores com-
mand arguments but considers the order of pre-
dicted utilities and flags for each utility.

A model A outputs top-5 translations as fol-
lows: A nlc — {ql¢ = (¢,9)}. Here the
tuple (¢, 0) represents the predicted command ¢
with associated confidence score . We assume
that |A(nlc)| < 5 and there is only one ground
truth command ¢ corresponding to an invocation
nlc.

The normalized score of a single prediction is
calculated as follows:

S(0) = Siepn & x (H(U(én — U())

L (13 XIFU(@)NF (U (0)) |- F(U (@)U

FUE)) 10 £ U()) )

Here, U(c) is the sequence of Bash utilities in
the command ¢, F'(u) is the set of flags for utility u
in respective command, 7' = max (|U(c)|, |U(é)|)
and N; = max (|[F(U(c);)|, [F(U(€);)]). 1(-) is
the indicator function.

Overall score of the prediction is given by:

if S(g) > 0
MaXge A(nic) S(¢q),  for some
Score = q € A(nlc);
m Z S(q), otherwise.

geA(nlc)

3.3 Baselines

Following baselines are considered for comparison:

* Magnum: This is the winner’s solution to
NLC2CMD challenge (Teng and Fu, 2020)
and the state of the art on this dataset. The
model is an ensemble of multiple transformer
models trained with multiple seeds and batch
sizes. They also use a pre-processing routine
to normalize file paths and regex patterns in
both English text and Bash commands. We
compare with a single model from the ensem-
ble for a fair comparison.

* TS: TS5 is a transformer based model proposed
by Raffel et al. (2019). It is pre-trained on
vast amounts of data. We fine tune TS5 on our
dataset. The T5-small model by huggingface
(Wolf et al., 2020) performed the best among
T5-small, T5-large and T5-base. We report the
results for T5-small. The input to this model
was "translate English to Bash:" followed by
the input invocation, and the target was the
normalized Bash command.

* Seq2Seq: Sequence to sequence with atten-
tion was proposed by Bahdanau et al. (2015).
It is an LSTM based encoder-decoder model
that uses the attention mechanism to dynami-
cally generate context for decoding.

We use beam search for decoding all models
with a beam size of 10. Predictions are sorted by
beam search score. The metric score is calculated
with top-5 predictions, with prediction confidence
(9) equal to 1 for top-t predictions and equal to
exp(beam_score)/2 for bottom 5 — ¢t. We tune
all the models on the validation set to find the best
setting of ¢ for each model.

3.4 Hyper-parameters

We train our method with a batch size of 10 exam-
ples and gradient accumulation over 50 steps with
default settings for Adam optimizer. Both encoder
and decoder process 512 dimensional vectors. We
have 6 encoder layers, 6 decoder layers and 8 atten-
tion heads in both layers. For the guidance module,
200 filters with window sizes 1,2,3,4,5 and 6 were
used. In the loss function we set Ay equal to 1
and Ao to 10. Magnum is a 512 dimensional trans-
former model with 6 encoder layers, 6 decoder
layers and 8 attention heads in both encoder and
decoder layers. It was trained for 2500 steps with
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Figure 7: Alignment Matrices: Invocation is on the left, and utility description is at the top in both sub-figures.
Lighter sub-matrices denote that more filters picked up corresponding n-grams.

each batch consisting of 14000 tokens and gradient
accumulation over 2 steps and a warm-up sched-
uler. For Seq2Seq, we used two 256 dimensional
bidirectional LSTM layers for the encoder and two
256 dimensional LSTM layers for the decoder with
attention in between encoder and decoder. For T5,
we fine tuned the T5-small model on our dataset.

4 Results and Analysis

Results are mentioned in Table 1. Our method
performs comparable to the state of the art solution
(Magnum) and better than other baselines like T5
and Seq2Seq.

We hypothesize that since the AST sequence is
at least twice the length of the original command, it
is, therefore, more challenging to generate an AST
sequence. However, this sequentialization helps
by making the model explainable. Even when all
baselines directly generate the Bash command, our
method performs better than two of them. More-
over, T5 is trained on massive amounts of parallel
data, and our model trained on only 2,600 examples
and 116 utility descriptions surpasses T5. There-
fore, domain-specific data, like manual pages, is
helpful for Bash command generation.

5 Qualitative Analysis

Analyzing the A™¢ matrix in Figure 7, it is seen
that the convolution filters align "recursively print
all files" from user invocation to "list” from utility
description for t ree. Here both of these n-grams

Model Test score

Seq2Seq (Bahdanau et al., 2015) 0.594 £+ 0.032
T5 (Raffel et al., 2019) 0.639 £ 0.027
Magnum (Agarwal et al., 2021) 0.685 £ 0.027
Proposed Method - Parent Attention ~ 0.503 £ 0.154
Proposed Method - Tree Coordinates ~ 0.597 £ 0.052
Proposed Method - Guidance Module 0.630 £ 0.072
Proposed Method 0.651 £0.017

Table 1: NLC2CMD Competition metric on test set.
Values range from -1 to 1. Higher is better. All en-
tries are averaged over 10 runs and in the form mean +
standard deviation.

do not share any common token but are semanti-
cally similar. This relationship is captured by the
guidance module which then predicts that the utility
tree is needed for completing the task specified in
user invocation. It is also observed that the n-grams
"current directory tree" from invocation and "the
current directory” from manual text are captured
by convolution filters. Thus, n-grams sharing com-
mon tokens are also matched accurately. These are
semantically similar and hence picked up by con-
volution filters. Such alignment matrices provide a
level of confidence in the system’s predictions.

Summing up A € R¥ex#d along the nic di-
mension, we obtain a #d-dimensional vector. This
vector represents important n-grams in the utility
description d. We calculate this vector for every
invocation, average them and apply softmax to get

265



Utility Utility Description (from manual pages and t/dr)

wget the noninteractive network downloader download files from the web supports http https and ftp
md5sum compute and check mdS message digest calculate md5 cryptographic checksums
sleep [BIEEERE < «=cution for an interval delay for a specified amount of time

rev reverse lines characterwise reverse a line of text

bzip2 a blocksorting file [compressor

Table 2: Averaged alignment distributions: The text is concatenated descriptions from manual pages and tldr.

Darker tokens have more weight.

an importance distribution over all tokens in the
utility description. This distribution captures the
distinguishing features of a utility. For example, in
Table 2 the filters correctly capture "network down-
loader" for wget, which is a two-word summary
of what wget does. Such auto-generated sum-
maries are useful pedagogical tools for learning
Bash.

6 Ablation Study

We propose three components, namely Tree Coor-
dinates (Section 2.1), Parent Attention (Section 2.2)
and Guidance Module (Section 2.3). In Table 1 we
show the results obtained when each of these com-
ponents was removed from the system and resulting
architecture trained till convergence. It is observed
that removing parent attention affects the model the
most with a huge drop in the score. Removing tree
coordinates also leads to a drop in performance.
Finally, without guiding our model performs worse
than the final model. It is also observed that the
variance of performance score increases as we re-
move any component from the model with the most
increase obtained by removing parent attention.

7 Related Work

Agarwal et al. (2021) provide a comprehensive re-
port on the NLC2CMD contest. Agarwal et al.
(2020) propose a recurrent neural net based archi-
tecture for Natural Language to Bash translation
task that sets the baseline for NLC2CMD contest.

Shaw et al. (2018) propose relative attention as
an alternative to sinusoidal positional embeddings
(Vaswani et al., 2017) for Transformers. Our parent
attention is inspired by their relative attention.

Yin and Neubig (2017) propose a novel RNN
based architecture for code generation. Their
method uses a grammar model to explicitly cap-
ture the target syntax as prior knowledge. Unlike

their method, our method works without access
to grammar rules and is based on the Transformer
architecture.

Shiv and Quirk (2019) design sinusoidal embed-
dings for incorporating tree structure. Their method
works only for binary trees. Ziigner et al. (2021)
propose a method to jointly learn code context and
structure of source code for code summarization
task. Kim et al. (2021) propose several ways of
communicating code structure to Transformer for
code completion task.

Jacovi et al. (2018) present an analysis of convo-
lutional neural networks for text. They show that
filters in such networks capture different semantic
classes of n-grams.

8 Future Work

In future work, we would experiment with different
sequential representations of the AST. Linux man-
page is a rich source of information for this task.
Exploring it further might be useful. An interesting
idea is to split the invocations into constituent tasks.
Planned prediction, proposed in Hong et al. (2020),
is also an exciting idea to explore.

9 Conclusion

This work explores the use of manual page data for
natural language to Bash translation and proposes a
cognitively inspired transformer based architecture
for generating Abstract Syntax Trees for Bash. Our
method also explains its predictions by alignment
matrices between user invocation and manual page
text. Additionally, we obtain insights about the dis-
tinguishing features of each utility from these align-
ment matrices. We test our method on NLC2CMD
data.
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