Who’s on First?: Probing the Learning and Representation Capabilities of
Language Models on Deterministic Closed Domains

David Demeter
Northwestern University

ddemeter@u.northwestern.edu

Abstract

The capabilities of today’s natural language
processing systems are typically evaluated us-
ing large datasets of curated questions and an-
swers. While these are critical benchmarks
of progress, they also suffer from weakness
due to artificial distributions and incomplete
knowledge. Artifacts arising from artificial dis-
tributions can overstate language model per-
formance, while incomplete knowledge limits
fine-grained analysis.

In this work, we introduce a complementary
benchmarking approach based on SimPlified
Language Activity Traces (SPLAT). SPLATSs
are corpora of language encodings of activ-
ity in some closed domain (we study traces
from chess and baseball games in this work).
SPLAT datasets use naturally-arising distribu-
tions, allow the generation of question-answer
pairs at scale, and afford complete knowledge
in their closed domains. We show that lan-
guage models of three different architectures
can answer questions about world states using
only verb-like encodings of activity. Our ap-
proach is extensible to new language models
and additional question-answering tasks.

1 Introduction

Language models (LMs) are pre-trained on running
text and have been shown to have a remarkable
ability to transform this raw observational data into
models that capture syntax, semantics, and certain
forms of world knowledge such as common sense
(Tenney et al., 2019; Rogers et al., 2020). However,
accurately measuring the models’ representation
and learning capabilities can be difficult because
the tasks that they are evaluated on can be sub-
jective, require expensive annotation, and suffer
from dataset artifacts that allow models to achieve
spurious high performance.

In this paper, we propose novel, complemen-
tary benchmarks for evaluating the potential of

Doug Downey
Allen Institute for Al
dougd@allenai.org

BALL STRIKE OUT

1 2 3 456 78910

GUEST
HOME

(a) Tradition Baseball Representation

v ©
gis.gwigguée
E53E2Z22E88¢
0002B719 <newbatter> (id_109)
1002B719 _ <bal>
20028B719 <bal>
21028B719 <strike>
6o0028B719 __ _ <hit>
0002B71 9

<advance> (plate) (first)

(b) World-State Representation and SPLAT Encoding

[start] <sog> ... <newbatter> (id 109)
<ball> <ball> <strike> <hit> <advance>
(plate) (first) [sep] Q1 (first) (id 109)
[end]

(¢) SPLAT Encoding of “Who’s On First?”

Figure 1: Baseball Illustration. A typical presentation
of baseball is a snapshot of the scoreboard and field
(a). We represent these as a sequence of world-states
and encode gameplay as a sequence of SPLAT tokens
that map to deterministic changes in world-states (b).
SPLAT encoding makes it possible to pose question-
answer pairs with complete knowledge in a language
modeling setting, where a single indicator represents
each question (c).

different language model architectures. Our ap-
proach involves pre-training and evaluating mod-
els on what we term SimPlified Language Activity
Traces (SPLAT): corpora of language encodings
of activity in a closed domain. SPLATS have three
characteristics that make them valuable for probing
the capabilities of LMs: (a) they are comprised
of data from existing, organic distributions not de-
signed by the experimenters, helping to prevent
spurious artifacts, (b) they can be acquired at scale,
enabling the construction of well-trained models,

210

Proceedings of the 25th Conference on Computational Natural Language Learning (CoNLL), pages 210-222
November 10-11, 2021. ©2021 Association for Computational Linguistics

and (c) they admit automatic construction of ques-
tions with known, objectively correct answers, that
probe the linguistic or cognitive potential of the
models.

We introduce two SPLAT datasets based on
language-like traces of chess and baseball games
(see Figure 1). The tokens in the datasets corre-
spond to actions in the domain. For example, mov-
ing a knight from square g1 to square {3 is encoded
as the SPLAT token g1f3 (see Appendix A). A
sequence of SPLAT tokens can represent entire
games in each domain.

We pre-train models for each domain on corpora
of raw game traces, and then probe the models’
capabilities by fine-tuning on synthetic question-
answering data sets. The mechanics of chess and
baseball can be captured by simple symbolic pro-
grams, meaning that, in contrast to real natural lan-
guage text, SPLATSs afford complete knowledge—
that is, it is possible to unambiguously determine
the relevant world (game) state at any point in the
activity trace. We show how this enables us to cre-
ate questions that probe key model capabilities, in-
cluding the ability to construct and maintain world
states, learn the rules that govern state transitions,
synthesize across states (to determine who is win-
ning), and generate multi-step paths of states to
reach a given goal. Further, due to the longstanding
popularity of chess and baseball, traces for pretrain-
ing and fine-tuning can be obtained at scale.

Many natural language processing (NLP) bench-
marks are built from large data sets of human-
annotated natural language questions. These data
sets often contain artifacts (Gururangan et al.,
2018), can be subjective, and are expensive to scale.
Prominent examples include GLUE (Wang et al.,
2018), decaNLP (McCann et al., 2018), SQuAD
2.0 (Rajpurkar et al., 2018) and CoQA (Reddy
et al., 2019), among many others. A number of
other benchmarks use natural or artificial language
in synthetic environments with well-defined under-
lying mechanisms (Weston et al., 2016; Lake and
Baroni, 2018; Hupkes and Zuidema, 2018; Chru-
pata and Alishahi, 2019). Tasks formulated on
these synthetic datasets can probe complex capabil-
ities like state-tracking, can be generated at scale,
and have unambiguous answers—but the mecha-
nisms and their distributional characteristics are de-
signed by the experimenters. SPLATSs by contrast

"We estimate that we can generate 1.3 billion and 150

million artifact-free question-answer pairs for SPLAT cpess
and SPLAT paseban datasets, respectively.

211

COMPLETE
NATURAL GENERATE KNOW-
DISTRIB. AT SCALE LEDGE
Natural Lang. QA
Synthetic Lang. QA v v
Unsupervised LMs v v
SPLAT v v v

Table 1: Comparison of Selected Benchmarks. Nat-
ural Language QA includes benchmarks like GLUE
(Wang et al., 2018), decaNLP (McCann et al., 2018),
SQuAD 2.0 (Rajpurkar et al., 2018) and CoQA (Reddy
et al., 2019), among others. Synthetic Language QA
includes benchmarks like bAbI (Weston et al., 2016)
and other artificial language-based tasks (Lake and Ba-
roni, 2018; Hupkes and Zuidema, 2018; Chrupata and
Alishahi, 2019). Unsupervised LMs include autoregres-
sive and masked language models like GPT-2 (Radford
et al., 2019) and T5 (Raffel et al., 2020), among others.
SPLAT benchmarks fulfill all of our desiderata, mak-
ing them complementary to the human-annotated and
synthetic datasets used for NLP tasks.

have a potential advantage in that they correspond
to natural, pre-existing distributions of activity that
may result in fewer artifacts. A benchmark which
maintains a natural distribution, can be generated
at scale, and affords complete knowledge of its do-
main is desirable. While some existing datasets
have a number of these qualities, we present the
first benchmarks with all three (see Table 1).

Results on these probing tasks show that lan-
guage models perform surprisingly well, surpass-
ing random baselines by wide margins in almost
all cases. However, the models still fall short of
the performance that could be achieved by short,
human-authored symbolic programs for each do-
main, highlighting room for improvements and new
architectures in language modeling.

Our contributions are twofold:

¢ We introduce the SPLAT benchmarks, the first
extensible code and datasets® where it is pos-
sible to generate artifact-free question-answer
pairs at scale on closed domains with com-
plete knowledge, and

* We show empirical findings across three
different architectures highlighting language
models’ learning and representation capabili-
ties along four dimensions.

2github .com/daviddemeter/splatbenchmarks

2 Related Work

Multiple benchmark tasks exist to probe the rep-
resentation and learning capabilities of language
models.

2.1 Natural Language Question Answering

Many benchmarks evaluate a variety of capabil-
ities on large datasets comprised of natural lan-
guage. GLUE (Wang et al., 2018) is one such
prominent example, which consists of nine under-
lying datasets and measures language model capa-
bilities in determining semantic equivalence, per-
forming natural language inference, and estimating
sentiment. Other popular benchmarks include de-
caNLP, SQuAD 2.0, CoQA (McCann et al., 2018;
Rajpurkar et al., 2018; Reddy et al., 2019) and open-
domain question answering (Chen et al., 2017). To
achieve high performance on any individual task,
language models must possess a diverse collection
of capabilities such as syntax, lexical semantics,
reasoning, knowledge acquisition and language un-
derstanding, among others. QA evaluations often
conflate these capabilities into a single task, making
fine-grained analysis of language models’ learning
and representation capabilities intractable.

Many of these benchmarks use large quantities
of running natural language text, but human an-
notators craft the specific questions and answers
used for evaluation. This risks the introduction of
unintended artifacts and limits the scale of these
datasets (Gururangan et al., 2018). Further, since
the evaluation data consists of hand-labeled natural
language, the evaluations can be subjective.

2.2 Synthetic Question Answering

The introduction of benchmarks based upon syn-
thetic datasets addresses some of our concerns
about scale, subjective evaluations, and fine-
grained analysis. The bAbI dataset (Weston et al.,
2016) is one prominent example. bAbI is a text-
based adventure game that simulates a world with
entities and actions that operate on these entities.
Natural language descriptions of and questions
about these simulated events are generated using
various templates to form question-answer pairs.
Although these question-answer pairs can be effi-
ciently generated at scale, the resulting text does
not follow a natural distribution, risking artifacts
that language models can exploit to overstate per-
formance.

However, bAbI does have the advantage of op-
erating in a closed domain where complete knowl-
edge is possible. There are deterministic outcomes
traceable to explicit entities and actions. In other
words, complete knowledge enables fine-grained
analysis of every answer, which is virtually impos-
sible in open-domain question-answering (Chen et
al., 2017) due to the size of the source corpora and
the imprecise nature of language.

Another family of benchmarks is used to probe
discrete language model capabilities on artificial
or pseudo languages. SCAN (Lake and Baroni,
2018) evaluates the semantic compositional ca-
pabilities of language models using a highly re-
stricted set of natural language commands which
map to a smaller set of artificial action sequences.
Other works probe the ability of neural networks
to learn compositional and hierarchical semantics
(Hupkes and Zuidema, 2018) and to represent sym-
bolic semantics (Chrupata and Alishahi, 2019) on
simple languages of nested arithmetic expressions.
While bAbI uses artificially-generated but natural-
language questions, these benchmarks use com-
pletely artificial questions.

The use of artificial questions with known un-
derlying mechanisms allows tasks with objective
outcomes to be generated at scale. However, this
comes at a cost, as the language does not come
from a natural distribution.

2.3 Chess and Baseball Tasks

Most prior work in the chess and baseball domains
is concerned with either training agents to play the
game (David et al., 2016; Schrittwieser et al., 2020)
or predicting outcomes using statistical methods.
We seek to do neither. Instead, we train language
models to operate over these domains and probe the
learning and representation capabilities of language
models using question-answer pairs.

The closest work to ours (Toshniwal et al., 2021)
also trains language models on the verb-like en-
coding of chess and focuses on legal moves and
world-state tracking. Our work uses more stringent
evaluation on both of these tasks and incorporates
additional tasks related to the synthesis of informa-
tion and the ability of language models to make
multi-hop decisions, and we also generalize the
SPLAT evaluation method to the baseball domain.

212

3 Methods

In this section we present the methodology and
motivation used to design our probing tasks. One
of our objectives is to provide an extensible frame-
work for other researchers to evaluate new models
and create new probes on SPLAT.

3.1 Commonsense Motivation for Probes

Our probing tasks are motivated, in part, by con-
structs in commonsense reasoning. A key common-
sense reasoning task involves determining which fu-
ture states are more plausible in the world (Zellers
et al., 2018). Our first SPLAT task tests models on
distinguishing possible from impossible—i.e. de-
termining which moves are legal from any context,
and which are illegal. This motivates our Legal
Verbs probing task.

Commonsense knowledge graph completion
(Malaviya et al., 2020) is another core capabil-
ity in commonsense reasoning and is character-
ized by extracting implicit knowledge from run-
ning text to form knowledge base triples. Predict-
ing state-space variable assignments is a parallel
task in SPLAT. For example, populating a series of
triples for chess of the form (square, IsAt,
piece) is equivalent to constructing and main-
taining a representation of the state-space. This
motivates our Variable Assignment probing task.

The ability to learn how to perform reasoning
using implicit knowledge, specifically compari-
son and multi-hop compositionality (Talmor et al.,
2019), provides the basis for our third and fourth
probing tasks. An important concept for games
like chess and baseball is which player is winning
at any point in the game, which can be estimated
by a piece-value system for chess or simply the
relative team scores in baseball. For SPLAT encod-
ings, these quantities are not directly observable
and must be derived from activity traces. Sepa-
rately, determining a sequence of actions that yields
a specified goal state requires estimating the net re-
sults of composing multiple actions, and searching
for a satisfactory action sequence. These consid-
erations motivate our Who’s Winning and Goal
State probing tasks.

3.2 Formal Description of SPLAT Encoding

Each chess or baseball game G consists of a se-
quence of world-states Sp.7. The world-state is
defined by n domain-specific variables e,,, which
are assigned a unique value from a set of k variable-

specific assignments algn). For example, the queen

@ occupying the square at coordinate d1 would
be expressed as eg; =). There are sixty-four
variables for chess (e.g. all possible coordinates
on an 8 x 8 board) and thirteen possible assign-
ments. We follow common notation use upper-case
letters for white pieces, lower-case letters for black
pieces and Empty for unoccupied squares. A sim-
ilar construction applies to baseball. Detailed set
definitions are presented in Appendices A and B.

The gameplay for chess and baseball is encoded
as a sequence of 1" verbs V = {vg,v1,...vr}.
Each verb (and associated arguments) v; represents
a discrete action at time ¢ and has a deterministic
impact on a world-state S;. There exists a symbolic
program f() which maps verbs v, to deterministic
changes in the world-state, such that:

Sy = f(ve, St—1) (D
by making assignments a,(cn)
ables e,,.

Consider a baseball example in which player 109
advances from the plate to first base (see Figure 1).
The verb encoding v for this event is:

(advance) (plate) (first)

for one or more vari-

The player advancing from the plate to first is
known from the prior world-state S;_;. Using the
symbolic program to execute these actions yields
world-state S;:

© © Balls
Strikes

© © Quts
N N |nning

W w Half
~ < Away
= = Home
© Plate

First
Second

Third

O O
O |

_ <advance> (plate) (first)

It is important to note that not all actions are legal
at every time ¢. For instance, in this example, it
would be an illegal action for a verb to specify that
a player advances from second to third since there
is no player on second base at time ¢ — 1. This
limitation forms the basis for one of our four tasks.

3.3 Definition of SPLAT Probing Tasks

The world-states and symbolic programs are not ob-
servable by the language model. Our objective is to
measure the extent to which language models can
construct and maintain world-states by learning la-
tent versions of the symbolic program. To perform
our evaluations, we present a language model with

213

a sequence of verbs vg.; and then present a question-
answer pair about a world-state. We probe these
capabilities with four types of questions:

* Legal Verbs: At an arbitrary time ¢ we
present the language model with the verb se-
quence vg:; as the input and evaluate the out-
put distribution of the language model over the
vocabulary for its ability to rank legal verbs
higher than other verbs. This task measures
the power of a language model to recognize
deterministic constraints that may exist in the
world-state (e.g., a pawn blocking the queen’s
path), making it distinct for the language mod-
eling objective of assigning probability based
upon a historical context.

e Variable Assignment: In this task the lan-
guage model is presented with the verb se-
quence vg:, a question indicator and a label
for variable e,, as input, while the probabil-

ity distribution over possible assignments a,(cn)

forms the output. With this probe it is possible
reconstruct the entire state-space by iterating

over all possible variables.

* Who’s Winning: The language model is pre-
sented with the verb sequence vg;; and ques-
tion indicator as input. The output of the lan-
guage model is a probability distribution over
special tokens representing white, black or
tied. This task evaluates a language model’s
ability to synthesize information about as-
signments in a world-state at t. In chess, a
weighted point value of pieces remaining on
the board for each side is used to make this
determination, while "[away]" and "[home]"
scores are used for baseball. This informa-
tion is only implicitly represented in the verb-
encoding used by the language model.

Goal State: In this task the language model
is presented with the verb sequence v, a
label for variable e,, and an assignment aén)
of a future world-state S;; A;. The language
model output is a sequence of verbs vey1:t4A¢
which results in the assignment at time (¢ +
At). This task evaluates a language model’s
ability to make multi-hop decisions.

4 Datasets

4.1 The Chess Dataset

We derive our chess dataset from lichess.org, a free,
open-source chess-playing site that attracts amateur
and professional chess players. There are approx-
imately 2.2 billion historical games published on
the site. Each game consists of the series of moves
made by each player, the game results, and selected
metadata. Moves are expressed in standard alge-
braic notation (SAN), in which the destination co-
ordinates encodes the move. When this is ambigu-
ous, a character denoting the piece is prepended to
the move. While compact, this notation requires
knowledge of the current board configuration. To
avoid this constraint, we elected to use universal
chess interface notation (UCI), which specifies a
move’s starting and ending board coordinates. Ad-
ditional characters are appended to denote castling
and promotions. Having direct access to starting
and ending coordinates is convenient for our evalu-
ation tasks. Metadata includes information about
the players, including Elo ratings, where a rating
of 2000 or above is considered expert level.

We apply several filters to games from 2014
to arrive at a manageable yet representative chess
dataset. We only consider games with more than
ten and less than 150 moves where both players
have Elo ratings of 2000 or above. We believe that
this filtering methodology helps to ensure that we
are training and evaluating on valid games. This
results in a raw dataset of roughly 850,000 games,
divided into pre-training and fine-tuning datasets
of 400,000 games each, a test set of 25,000 games
and a validation set of 25,000 games. (see Table 2
for summary statistics).

Chess Baseball

400K 15K
Number of Games 850K 32K
Avg. SPLAT Tokens per Game 73.5 704.2
Number of Pre-training Tokens 29.4M 10.6M
Number of Fine-tuning Questions 300K 73K
Vocabulary Size 4390 144
TLM Pre-training perplexity 6.8 2.0
LSTM Pre-training Perplexity 13.4 1.9

Table 2: Dataset Summary Statistics. The chess and
baseball datasets used in this work are comparable in
size to popular human-annotated question answering
datasets. Question answer pairs for each dataset can
be scaled by 10® without additional raw data.

214

4.2 The Baseball Dataset

Our baseball dataset is sourced from the Major
League Baseball Gameday files. These files are
publically available in XML format from 2008
through 2018 and contain detailed pitch-level plays
for approximately 32,000 games. We parse the
XML files into a sequence of nullary, unary and
binary operators of our own construction. Each of
these operators maps to deterministic changes in
world-states (see Equation 1 and Figure 1).

We eliminate games with parsing errors or with
sequence lengths greater than 1,000 to arrive at a
dataset of 31,603 games. These are divided into pre-
training and fine-tuning datasets of 15,000 games
each, a test set of 800 games and a validation set of
800 games.

4.3 Comparison of Datasets

The coordinates of pieces on the board completely
specify the world-state for chess. A sequence of
legal moves, which are defined by the pattern in
which piece can move and any constraints on des-
tinations (e.g. a bishop can move an unlimited
number of squares diagonally until it reaches the
edge of the board, captures an opponent’s piece or
is block by a piece of the same color) express the
gameplay of chess. Moves deterministically result
in new piece locations and potentially a capture
which removes an opponent’s piece from the board.
A game concludes when a player captures the op-
ponent’s king or the allotted game time expires.

The gameplay of baseball is distinct from chess,
particularly in that the vocabulary of actions
and world-state representations are more compact,
while rules governing updates to world-states are
more complex. Certain variables of the world-state
will increment or reset conditioned upon the verb
and other variables of the world-state. Vocabular-
ies and world-state representations for chess and
baseball are presented in Appendices A and B, re-
spectively.’

5 Experiments and Results

5.1 Language Models

We probe the learning and representation capabil-
ities of language models using three existing lan-
guage model architectures. Since we formulate the

3Please see en.wikipedia.org/wiki/Rule_of chess and
https://en.wikipedia.org/wiki/Baseball for more detailed de-
scriptions of chess and baseball, respectively.

evaluations as question-answer probes, our method-
ology is model-agnostic and can be applied to any
language model capable of estimating the proba-
bility of a sequence of tokens up to the maximum
sequence length of a single chess or baseball game.

We generate our main results using a
transformer-based language model (TLM)
based upon the original Transformer (Vaswani
et al., 2017) using only the decoder side of the
architecture as in (Radford and Narasimhan,
2018). A LSTM language model (Zaremba
et al., 2014) is also evaluated. Although more
sophisticated LSTM architectures exist (Merity
et al., 2018; Yang et al., 2018), we elect to use a
basic architecture since our goal is not to maximize
performance but to identify which models exhibit
competencies or deficiencies relative to a random
baseline.

Lastly, we evaluate using GPT-2, which is ar-
chitecturally analogous to the TLM. Our primary
motivation in using GPT-2 is to evaluate the impact
of pre-training on a large open-domain natural lan-
guage corpus. Specifically, we seek to determine
if a language model’s ability to learn and represent
chess can leverage the commonsense knowledge
implicit in large training corpora.

5.2 Hyperparameters and Training

The language models are trained using established
hyperparameters. The transformer-based language
model uses a 512-dimensional embedding space
with tied embeddings, eight attention heads and
six attention layers, with a 0.1 dropout probabil-
ity. The LSTM language model also uses a 512-
dimensional embedding space with tied embedding,
two LSTM layers, 30 time steps, a dropout rate of
0.5 and gradients are clipped at a norm of 2.0. The
hyperparameters for these models closely follow
the original architectures (Vaswani et al., 2017;
Zaremba et al., 2014). We use the pre-trained GPT-
2 small configuration.

Following established methodologies (Radford
et al., 2019) we pre-train language models on a cor-
pus of completed games and then fine-tune these
models on partial games with question-answer
pairs. These question-answer pairs are inserted
at random times t. The transformer-based and
LSTM language models are each pre-trained for
100 epochs and fine-tuned for 25 epochs. We also
fine-tune from random initialization to evaluate the
benefit of pre-training. The GPT-2 models are only

215

Chess Dataset Baseball Dataset
Model Legal Assign- Who’s Goal- Model Legal Assign- Who’s Goal-
Params Verbs ment Win. state Params Verbs ment Win. state
TLM Pretrained 23.4 75.8 19.1 50.7
TLM Finetuned 23.4 73.1 97.6 90.8 74.5 19.1 48.7 79.8 90.4 28.7
TLM Randomized 23.4 66.1 97.2 79.4 68.2 19.1 54.5 82.9 90.4 20.8
LSTM Finetuned 8.7 55.2 62.9 40.3 14.6 4.4 53.2 68.3 45.6 6.6
LSTM Randomized 8.7 47.9 63.8 63.7 15.9 4.4 52.8 74.3 49.4 10.9
GPT-2 Pretrained 115.0 5.0 2.0 23.3 n/a
GPT-2 Finetuned 115.0 23.3 69.2 76.0 n/a
Random Baseline 0.8 39.1 35.2 1.0 11.8 36.1 37.5 0.4

Table 3: Probing Question Results. Fine-tuned models outperform random baselines on the chess and baseball
domains. Model parameters are reported in megabytes, legal verbs are reported as R-Precision percent, and all

other metrics are in percent accuracy.

fine-tuned on the models pre-trained on a web-scale
natural language corpus.

5.3 Experimental Setup

Each task is framed as a multiple-choice question-
answer pair. In the case of the legal actions and
goal-state tasks, the answer space is large and con-
sists of all possible events.

To encode a question-answer pair about world-
state S;, we construct a sequence beginning with
a [start] token, followed by all verbs vg.; up to lo-
cation ¢, followed by a [sep] token, the question
indicator and arguments, the answer indicator is
terminated with an [end] token (see Appendices
A and B for examples). During fine-tuning, we
present these sequences to the model with “gold”
answer tokens. For evaluation, we construct se-
quences with every possible answer and rank these
according to the probability assigned to the each
sequence by the language model.

For the legal action evaluation, R-Precision
(Manning et al., 2005) is calculated over the top
R verbs, where R is the number of possible legal
verbs. For all other tasks, we evaluate accuracy de-
fined by the number of correct answers divided by
the number of questions. The world-state assign-
ment (i.e., "Variable Assignment") and world-state
synthesis task (i.e., "Who’s Winning?") use the
top-ranked assignment a,(cn) token as the answer.
Actions for the goal-state task are generated using
greedy decoding. The verb generated for ¢ — 1 is
appended to the decoded sequence and is used to
generate the verb at ¢, for up to a maximum of five
predicted verbs.

Our evaluation framework is designed to be eas-
ily extensible. A number of “spare” indicators for

questions, answers and values exist in the vocabu-
lary for each dataset. It is simple to construct new
question-answer pairs using the symbolic program
to generate world-state Sy, analyzing this world-
state to identify the “gold” answer and then encod-
ing the entire sequence as described above.

5.4 Results

Our main results are shown in Table 3. The per-
formance of fine-tuned models surpassed random
baselines on both the chess and baseball datasets,
providing strong support that language models can
construct and maintain world-state representations
and learn at least a portion of the functionality of
the symbolic program for each domain. TLMs gen-
erally outperform LSTM language models, which
may be related to the number of model parame-
ters or differences in underlying architectures. In-
terestingly, TLMs consistently outperform GPT-2,
despite almost identical architectures and fewer
parameters. We construct random baselines by ran-
domly sampling answers for each probing question
on the validation set. Language models are trained
on the 400K and 15K datasets for chess and base-
ball, respectively.

Language model performance on Legal Verbs
is strong, with R-Precision for chess and baseball
exceeding 50% for TLMs and LSTM. This is not
surprising since this task is very similar to the lan-
guage modeling objective used in pre-training. The
difference in performance between the chess and
baseball datasets may result from the pre-training
dataset for chess being approximately 3x larger.
Also, the gameplay of baseball contains several
rare and hard to predict events, such as stolen bases
and player substitutions.

216

Performance on the Variable Assignment task
is also very strong for language models in each
domain. This task is the most direct measure of
a language model’s ability to construct and main-
tain world-states. Prior works on chess (Toshniwal
et al., 2021) perform a similar task but evaluate
only on the piece location resulting from the most
recent move. We select arbitrary world-state vari-
ables e, regardless of how recently the assignment

a,g") was made.

The transformer-based language models (includ-
ing GPT-2) performed better on the Who’s Winning
task than the LSTMs. This suggests that an explicit
attention mechanism may be helpful when making
implicit calculations and comparisons over world-
states.

Our most unexpected result is the strong TLM
performance on the Goal State task for chess. We
would expect it to be non-trivial to decode a se-
quence of up to five moves that achieves a given
goal. Conversely, task performance on baseball
is worse than we expected, particularly given that
there are a wider variety of non-unique paths lead-
ing to the same world-state. For example, many
combinations of balls, strikes, fouls, etc. could re-
sult in a batter being out. Additional analysis is
needed to explain these performance differences
and is an item of future research.

We evaluated on GPT-2 to determine the extent
to which the model already “knows how to play
chess” based upon pre-training on a web-scale nat-
ural language corpus. Results using UCI chess
notation are not materially different from baselines.
We did not evaluate GPT-2 on the Goal State task
for chess since it would require approximately 105
inference passes. We did not evaluate GPT-2 on
the baseball dataset since our SPLAT encoding is
unique to this dataset.

Lastly, performance on Legal Verbs for the fine-
tuned TLM models is lower than for the pre-trained
TLM models. This indicates that fine-tuning can
sometimes cause the pre-trained model to forget,
which is consistent with other findings (Ott, 2021).

6 Discussion and Analysis

To better understand two important aspects of our
results, we conduct additional analyses of (i) a lan-
guage models’ ability to learn the "rules" of each
game, and (ii) the extent to which memorization
drives performance on probing tasks.

6.1 Legal Action Constraints

In our experiments above we evaluate the ability
of language models to learn the “rules” of a world-
state by measuring the R-Precision of legal actions
at an arbitrary time ¢ conditioned on the previous
world-state .S;_1. This measures the ability of the
language model to rank all legal actions higher than
all other actions collectively.

TLM TLM LSTM GPT-2

Pre Fine Fine Fine

Legal (r-prec) 75.8 73.1 55.2 23.3
In-Pattern (mass) 97.8 93.7 57.5 30.0
Legal (mass) 95.8 91.9 46.2 254
Blocked (mass) 2.0 1.7 11.3 4.6

Table 4: Error Analysis of Legal Actions on the
Chess Dataset. Language models assign high prob-
ability mass to Legal Moves. At the same time, the
R-Precision of Legal Moves is lower, indicating that
language models may be focusing on the “best” moves
rather than all possible moves. The low probability
mass assigned to Blocked Moves, calculated as the
difference between probability masses assigned to In-
Pattern Moves and Legal Moves, indicates that the lan-
guage model may be aware of rules constraining moves
based upon the current world-state.

This evaluation may form an incomplete picture.
The language model may allocate a large portion
of the probability mass to a few verbs representing
the most likely moves. This allocation is consistent
with the language model training objective, where
the model learns from only “positive” examples
presented during training, and empirical next-move
distribution is typically highly peaked on a few
likely choices. The training data does not include
many unlikely moves, which may make it diffi-
cult for the models to learn to distinguish between
unlikely and truly impossible moves that would
violate the rules, lowering legal-move R-precision.

This appears to be the case with transformer-
based language models where the probability mass
assigned to legal actions is above 90%, while R-
Precision is lower (see Table 4).

The probability mass assigned to blocked ac-
tions is a complementary metric to R-Precision.
We define Blocked actions as actions that would
otherwise be legal except for some constraint in
the world-state. One example is a pawn blocking
the trajectory of its own queen. We measure the
probability mass assigned to blocked actions by
subtracting the probability mass assigned to Le-
gal Moves for a given world-state S; from the In-

217

Assignment

Synthesis

0.95

Goal State
: 10 15

Distance to Finetuning World States

(a) Chess Dataset

20 08 9 1 2 3 4 s

Distance to Finetuning World States

(b) Baseball Dataset

Figure 2: Memorization Analysis. Average accuracy (darker is more accurate) on probing tasks for chess and
baseball does not materially decline as the distance to the closest world-state in the fine-tuning dataset increases,
indicating that memorization is not a strong factor in model performance. We calculate chess dataset accuracy as
the rolling average of the previous five distance metrics to reduce noise. On the baseball dataset, we normalize by

the maximum performance on each task.

Pattern probability mass assigned to actions in a
world-state without blocked moves (i.e., as if the
moving piece were alone on an otherwise empty
chessboard). We see that the transformer-based lan-
guage model assigns a small probability to blocked
actions.

6.2 Memorization

Large transformer-based language models are of-
ten introduced simultaneously with new web-scale
corpora. This makes it difficult to determine if per-
formance gains are a result of an improved model
architecture or simply having additional content to
memorize. It is challenging to test this hypothe-
sis given the unstructured and open-domain nature
of these corpora. The overlap of 8-grams among
the training and test sets is examined in one recent
work (Radford et al., 2019). We seek to build upon
this approach by analyzing memorization more di-
rectly, which is possible in our restricted SPLAT
domains.

To evaluate the impact of memorization on prob-
ing questions, we construct a distance metric be-
tween the world-state S; at the time of the probing
question and the closest world-state observed in the
fine-tuning dataset.

We examine how this distance varies with
question-answering accuracy, across the Variable
Assignment, Who’s Winning, and Goal State tasks.
If results are driven primarily by memorization, we
expect to see significant attenuation in performance
as distance increases. This is not generally the case
(Figure 2). We see some attenuation for Goal State,
but for the other two tasks performance stays high
even for the world-states most distant from those
in the fine-tuning dataset.

Similar results are obtained for baseball at the
50% accuracy threshold, although the pattern of

results is less regular than for baseball.

7 Conclusion

We introduce the SPLAT approach and novel chess
and baseball datasets, and use them to probe lan-
guage models’ learning and representation capa-
bilities. We perform these probes by pre-training
language models on SPLAT encodings of gameplay
and then fine-tuning on question-answers pairs con-
structed to evaluate language model capabilities.
Probes are designed to evaluate a language model’s
ability to learn the “rules” of each game, construct
and maintain world-states, synthesize across states
and generate multi-step paths to each a given goal.
We show that language models of different archi-
tectures possess the learning and representation
capabilities to perform well on these tasks.

These datasets are different from existing
datasets in that (i) question-answer pairs can be
generated at scale while maintaining the natural
distribution properties of the gameplay data, (ii)
accompanying symbolic programs can map verbs
to deterministic changes in world-state, and (iii)
complete knowledge is available throughout the
question-answering process. We demonstrate a
probing methodology that is extensible to differ-
ent language models and additional probing ques-
tions. Lastly, we note that SPLATSs can be con-
structed for other domains such as WOZ dialogues
(Budzianowski et al., 2018) or quantitative behav-
ior finance (Ramiah et al., 2015).

Acknowledgments

This work was supported in part by a Microsoft
Research Faculty Fellowship and NSF grant IIS-
2006851. We thank the anonymous reviewers for
their insightful comments.

218

References

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, I. Casanueva, Stefan Ultes, Osman Ramadan,
and Milica Gasic. 2018. Multiwoz - a large-scale
multi-domain wizard-of-oz dataset for task-oriented
dialogue modelling. ArXiv, abs/1810.00278.

Dangi Chen, Adam Fisch, J. Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Grzegorz Chrupata and A. Alishahi. 2019. Correlating
neural and symbolic representations of language. In
ACL.

O. David, N. Netanyahu, and L. Wolf. 2016.
Deepchess: End-to-end deep neural network for au-
tomatic learning in chess. ArXiv, abs/1711.09667.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in nat-
ural language inference data. In NAACL.

Dieuwke Hupkes and Willem H. Zuidema. 2018. Vi-
sualisation and ’diagnostic classifiers’ reveal how re-
current and recursive neural networks process hierar-
chical structure. ArXiv, abs/1711.10203.

B. Lake and Marco Baroni. 2018. Generalization with-
out systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In ICML.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In AAAL

Christopher D. Manning, P. Raghavan, and Hinrich
Schiitze. 2005. Introduction to information retrieval.

Bryan McCann, N. Keskar, Caiming Xiong, and
R. Socher. 2018. The natural language decathlon:
Multitask learning as question answering. ArXiv,
abs/1806.08730.

Stephen Merity, N. Keskar, and R. Socher. 2018.
Regularizing and optimizing Istm language models.
ArXiv, abs/1708.02182.

Myle Ott. 2021. Analyzing the forgetting problem
in pretrain-finetuning of open-domain dialogue re-
sponse models. In EACL.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners.

Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Explor-
ing the limits of transfer learning with a unified text-
to-text transformer. ArXiv, abs/1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In ACL.

Vikash Ramiah, Xiaomin Xu, and I. Moosa. 2015.
Neoclassical finance, behavioral finance and noise
traders: A review and assessment of the literature.

International Review of Financial Analysis, 41:89—
100.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249-266.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842-866.

Julian Schrittwieser, loannis Antonoglou, Thomas
Hubert, K. Simonyan, L. Sifre, Simon Schmitt,
A. Guez, Edward Lockhart, D. Hassabis, T. Graepel,
T. Lillicrap, and D. Silver. 2020. Mastering atari, go,
chess and shogi by planning with a learned model.
Nature, 588 7839:604-609.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL-HLT.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In ACL.

Shubham Toshniwal, Sam Wiseman, Karen Livescu,
and Kevin Gimpel. 2021. Learning chess blind-
folded: Evaluating language models on state track-
ing. ArXiv, abs/2102.13249.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

J. Weston, Antoine Bordes, S. Chopra, and Tomas
Mikolov. 2016. Towards ai-complete question an-
swering: A set of prerequisite toy tasks. arXiv: Arti-
ficial Intelligence.

Zhilin Yang, Zihang Dai, R. Salakhutdinov, and
William W. Cohen. 2018. Breaking the softmax bot-
tleneck: A high-rank rnn language model. ArXiv,
abs/1711.03953.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
ArXiv, abs/1409.2329.

219

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A large-scale adversarial dataset
for grounded commonsense inference. In EMNLP.

220

A. Overview of Chess Dataset

Vocabulary Count 3
Moves a2a3, aza4,.h7hé6 4,272
Pieces R, N, B, 0, K, P, 13 7
r, n, bl ql k/ pr
Squares al, a2, .. h8 64 6
Special Tokens [start], [sepl, [end], 9
0-1c, 1-0c, .. 1/2-1/2n 5
Questions 01, 02, .. Qlé 16 \
Answers Al, A2, .. Al6 16
4,390 3
(a) Vocabulary of Chess Dataset 5

-

Notation Example: ~ SAN: Nf3 UCI: glf3

a b c d e f g h
(b) Notation Variations to Move Knight (c) Chess World-State and Coordinates

Natural Language Question: Which piece is in square d7 after the 215 move of the game?
Fine-tuning Sequence: [start] d2d4 g8f6 ... g5h4 b8d7 hdg3 a7a6 alcl [sep] 03 d7 n [end]

Inference Sequence: [start] d2d4 g8f6 ... g5h4 b8d7 h4g3 a7a6 alcl [sep] Q3 d7 <?2>

(d) Question Encoding Example

Figure 3: Chess Representations and Question Encoding Example. The gameplay of chess is encoded with
4,390 specialized tokens and forms the vocabulary for this dataset (see Panel a). Verb-like tokens in UCI notation
encode moves by specifying the “from-square” and “destination square” coordinates using two characters each
and account for most of the vocabulary. Canonical alphabetic letters designate pieces, with capital and lower-case
letters signifying white and black pieces, respectively, and periods encoding Empty squares. Squares are mapped
to the 2 x 2 coordinate grid of the board, as shown in Panel (c). Special tokens designate starting, ending and
separation boundaries for question-answer pairs and include canonical tokens identifying the winning player or
tied and whether the game-ending was “normal” or a “clock forfeiter”. Single indicator tokens designate questions
and answers, where such encoding maintains the closed domain nature of the dataset. During fine-tuning, a partial
game sequence is presented to the language model, followed by a separator token, a question indicator (including
arguments) and an answer token or indicator (see Panel d). During inference, the answer token or indicator is
replaced with all possible answers for the question (illustrated and <? > above). The language model assigns a
probability to each sequence and selects the most probable sequence as the answer.

221

B. Overview of Baseball Dataset

Vocabu]ary Count BALLS STRIKES OUTS
Nullary Verbs <strike>, <ball>, <foul>, 8
y <out>, <atbat>, <hit>, <sog>, IRZXIRIRSNCNIATRINO
<eog> GUEST
UnaryVerby <newbatter> (player id) 2 HOME
<caught_stealing> (location)
Binary Verbs <sub> (player id) (player_id) 2
<advance> (from base)
(to_base)
Elements [inning], [half], [balls], 11
[strikes], [outs], [away],
[home], [plate], [first],
[second], [third]
Special Tokens [start], f[sep]l, [end], *__ ' 4
Locations (plate), (first), (second), 5
(third), (score) .l .
Player IDs (id_100, id_101,.. id_147) 48 (b) Traditional Baseball Representation
: n °
Questions iir ij: iiz 16 Cof 38y 62
Answers 0,1 '-3"1 16 =E53E2228R8£8F
Values o 32 0002B719 <hit>
144 0002B71_ 9 _ _ <advance> (plate) (first)
(a) Vocabulary of Baseball Dataset (c) World-State Elements and Assignments
Natural Language Question: Who’s on first?
Fine-tuning Sequence: [start] <sog> ... <newbatter> (id_109) <ball> <ball> <strike> <hit>
<advance> plate) (first) [sep] Q1 (first) (id 109) [end]
Inference Sequence: [start] <sog> ... <newbatter> (id 109) <ball> <ball> <strike> <hit>

<advance> (plate) (first) [sep] Q1 (first) ('))

(d) Question Encoding Example

Figure 4: Baseball Representations and Question Encoding Example. The gameplay of baseball is encoded
with 144 tokens and forms the vocabulary for the for the dataset (see Panel a). Events that occur during gameplay
are encoded as a set of nullary, unary and binary verbs (including associate arguments). Variable represent labels
for each variable in the world-state. Possible assignments for each variable of a world-state include Locations,
Player IDs and Values. Special tokens designate starting, ending and separation boundaries for question-answer
pairs, and also includes a ‘___’ token for an empty base. The world-state of baseball is commonly presented as
a snapshot of the scoreboard and field (see Panel b). We represent these world-states as a set of eleven variables
(see Panel c¢). These gameplay and world-state representations are formulated specifically for this dataset. Single
indicator tokens designate questions and answers, where such encoding maintains the closed domain nature of the
dataset. During fine-tuning, a partial game sequence is presented to the language model, followed by a separator
token, a question indicator (including arguments) and an answer token or indicator (see Panel c). During inference,
the answer token or indicator is replaced with all possible answers for the question (illustrated and <? > above).
The language model assigned a probability to each sequences and selects the most probable sequence as the answer.

222

