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Abstract

When language models process syntactically
complex sentences, do they use their represen-
tations of syntax in a manner that is consistent
with the grammar of the language? We pro-
pose AlterRep, an intervention-based method
to address this question. For any linguistic
feature of a given sentence, AlterRep gener-
ates counterfactual representations by altering
how the feature is encoded, while leaving in-
tact all other aspects of the original represen-
tation. By measuring the change in a model’s
word prediction behavior when these counter-
factual representations are substituted for the
original ones, we can draw conclusions about
the causal effect of the linguistic feature in
question on the model’s behavior. We apply
this method to study how BERT models of
different sizes process relative clauses (RCs).
We find that BERT variants use RC boundary
information during word prediction in a man-
ner that is consistent with the rules of English
grammar; this RC boundary information gen-
eralizes to a considerable extent across differ-
ent RC types, suggesting that BERT represents
RCs as an abstract linguistic category.

1 Introduction

The success of neural language models, both in
NLP tasks and as cognitive models, has fueled tar-
geted evaluation of these models’ word prediction
accuracy on a range of syntactically complex con-
structions (Linzen et al., 2016; Gauthier et al., 2020;
Warstadt et al., 2020; Mueller et al., 2020; Marvin
and Linzen, 2018). What are the internal repre-
sentations that support such sophisticated syntactic
behavior? In this paper, we tackle this question
using an intervention-based approach (Woodward,
2005). Our method, AlterRep, is designed to study
whether a model uses a particular linguistic feature
in a manner which is consistent with the grammar
of the language. The method involves two steps:

∗Equal contribution.

first, it generates counterfactual1 contextual word
representations by altering the neural network’s rep-
resentation of the linguistic feature under consid-
eration; and second, it characterizes the change in
the model’s word prediction behaviour that results
from replacing the original word representations
with their counterfactual variants. If the resulting
change in word prediction aligns with predictions
from linguistic theory, we can infer that the model
uses the feature under consideration in a manner
consistent with the grammar of the language.

We demonstrate the utility of AlterRep using rel-
ative clauses (RCs). According to the grammar of
English, to correctly determine whether the masked
verb in (1) should be singular or plural, a model
must recognize that the masked verb is outside the
RC the officers love, and should therefore agree
with the subject of the main clause (the skater,
which is singular), rather than with the subject of
the RC (the officers, which is plural).

(1) The skater the officers love [MASK] happy.

To investigate whether a neural model uses RC
boundary representations as predicted by the gram-
mar of English, we use AlterRep to generate two
counterfactual representations of the masked verb:
one which encodes (incorrectly) the verb is inside
the RC, and another which encodes (correctly) that
the verb is outside the RC. Crucially, the difference
between the counterfactual and original representa-
tions is minimal: the aspects of the representation
which do not encode information about RC bound-
aries remain unchanged. Therefore, if the model
uses RC boundary information as dictated by the
grammar of English—and if our method success-
fully identifies the way in which RC boundary in-
formation is represented by the model—we expect

1We use the word counterfactual as it is used when re-
ferring to counterfactual examples (Verma et al., 2020): an
altered version of an element that is similar to the original
element in all aspects except one.
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Figure 1: Causal analysis with counterfactual interven-
tion. Given a representation h of a masked word, we
derive two new representations h−, h+ that differ in the
information they contain with respect to a specific lin-
guistic property. The predictions of the model over the
counterfactual representations are compared with the
original prediction Ŷ .

the incorrect counterfactual to cause the masked
verb to incorrectly agree with the noun inside the
RC, and the correct counterfactual to cause agree-
ment with the noun outside the RC, correctly.

We report experiments applying this logic to
BERT variants of different sizes (Devlin et al.,
2019; Turc et al., 2019). We found that while
all layers of the BERT variants encoded informa-
tion about RC boundaries, only the information
encoded in the middle layers was used in a man-
ner consistent with the grammar of English. This
contrast highlights the pitfalls of drawing behav-
ioral conclusions from probing results alone, and
motivates causal approaches such as AlterRep.

For BERT-base, we also found that counterfac-
tual representations learned solely from one type
of RC influenced the model’s predictions in sen-
tences containing other RC types, suggesting that
this model encodes information about RC bound-
aries in an abstract manner that generalizes across
different RC types. Going beyond our case study of
RC representations in BERT variants, we hope that
future work can apply this method to test linguisti-
cally motivated hypotheses about a wide range of
structures, tasks and models.

2 Background

2.1 Relative clauses (RCs)
An RC is a subordinate clause that modifies a noun.
The head of the RC needs to be interpreted twice—
once in the main clause, and once inside the RC—
but it is omitted from inside the RC, replaced by an
unpronounced “gap”. For example, in (2), the RC
(in bold) describes the subject of the main clause

the book. Since the book is the object of the em-
bedded clause, we say that the gap is in the object
position of the RC (indicated by underscores).

(2) The books that my cousin likes were in-
teresting. (Object RC)

RCs can structurally differ from the Object RC
in (2) in several ways: the overt complementizer
that can be excluded, as in (3); the gap can be in the
subject instead of object position of the embedded
clause, as in (4); and so on. The five types of RCs
we consider in this paper are outlined in Table 1.

(3) The books my cousin likes were interest-
ing. (Reduced Object RC)

(4) My cousin that likes the books was inter-
esting. (Subject RC)

These differences do not affect the strategy that a
system that follows the grammar of English should
use to determine the number of the verb: regardless
of the internal structure of the RC, a verb outside
the RC should agree with the subject of the main
clause, whereas a verb inside the RC should agree
with the subject of the RC. Thus, a model that does
not properly identify the boundaries of the RC will
often predict a singular verb where a plural one is
required, or vice versa.

2.2 Iterative Null Space Projection (INLP)
INLP (Ravfogel et al., 2020) is a method for selec-
tively identifying and removing user-defined con-
cept features from a contextual representation. Let
T be a set of words-in-context, and let H be the set
of representations of T , such that ~ht ∈ Rd is the
contextualized representation of the word t ∈ T .
Let F be a linguistic feature that we hypothesize
is encoded in H . Given H and the values ft of the
feature F for each word, INLP returns a set of m
linear classifiers, each of which predicts F with
above-chance accuracy. Each of these classifiers
is a vector in Rd, and corresponds to a direction
in the representation space. The m vectors can be
arranged in a matrix Wm×d. Since the m classi-
fiers are mutually orthogonal, so are the rows of W.
Each linear classifier can be interpreted as defining
a separating plane, which is intended to partition
the space, as much as possible, according to the
values of the feature F . In our case, F can take
one of two values—whether or not a given word t
is in an RC—and each direction in W is intended
to separate words that are inside RCs from words
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Abstract structure Example

Unreduced Object RC (ORC) The conspiracy that the employee welcomed divided the beautiful country.
Reduced Object RC (ORRC) The conspiracy the employee welcomed divided the beautiful country.
Unreduced Passive RC (PRC) The conspiracy that was welcomed by the employee divided the beautiful country.
Reduced Passive RC (PRRC) The conspiracy welcomed by the employee divided the beautiful country.
Active Subject RC (SRC) The employee that welcomed the conspiracy quickly searched the buildings.

P/OR(R)C-matched Coordination The conspiracy welcomed the employee and divided the beautiful country.
SRC-matched Coordination The employee welcomed the conspiracy and quickly searched the buildings.

Table 1: Examples of sentences generated from the 5 RC structures, the 2 coordination structures. Elements which
only occur in a subset of the examples are indicated in grey. This table is copied from Prasad et al. (2019).

Figure 2: Generating counterfactual representations. A
representation ~ht of a word outside of an RC is trans-
formed to create counterfactual mirror images ~h−t , ~h+t
with respect to an empirical RC subspace. The RC sub-
space here is a 1-dimensional line for illustrative pur-
poses; in practice we use an 8-dimensional subspace.

that are outside them.2

The feature subspace—the space spanned by
all the learned directions (R = span(W))—is a
subspace of the original representation space that
contains information useful to linearly decode F
with high accuracy. The orthogonal complement
of R (the null space; N ) is a subspace in which it
is not possible to predict F with high accuracy.

3 AlterRep: Generating Counterfactual
Representations

The goal of AlterRep is to generate, based on
a model’s contextual representations of a set of
words, a set of counterfactual representations that
modify the encoding of a feature F while leav-

2In this paper, we make the simplifying assumption that
sentences do not contain RCs that are nested within one an-
other (cf. Lakretz et al. 2021). To accommodate such sen-
tences in future work, an integer feature could be used whose
value would be 0 if the word is outside any RC; 1 if it is inside
an RC of depth 1; 2 if it is inside an RC of depth 2; and so on.
As long as we specify a bound on the embedding depth, this
feature would still be categorical, and a variant of our method
could still be used.

ing all other aspects of the representations intact.3

If swapping these counterfactual representations
for the model’s original representations changes
the model’s probability distribution over predicted
words in a way that aligns with the feature’s lin-
guistic functions, we say that the model uses F for
word prediction in a manner that is consistent with
the grammar of English.

For our case study, we use a feature with two
possible values: ‘+’ if the word is inside an RC and
‘−’ if it is not.4 We generate two counterfactual
representations: h+t , which encodes that the word t
is inside an RC—regardless of its actual syntactic
position in the sentence—and h−t , which is similar
to h+t in all respects except it encodes that t is not
in an RC. Our method allows us to generate h+t and
h−t irrespective of the feature value encoded in the
original representation ht. If the model uses this
feature appropriately, we expect h+t and h−t to lead
to different predictions in contexts where correct
word predictions depend on determining whether
or not the word is inside an RC.

Row-space and Null-space Recall that INLP de-
fines a feature space R where the property of in-
terest is encoded, and a complement subspace N
where it is not.

We can project any word representation ~ht to
the feature subspace (here, the RC subspace) or to
the null space, resulting in the vectors ~hRt and ~hNt ,
respectively: ~hRt maintains the information needed
to predict F from ~ht, while ~hNt maintains all in-
formation which is not relevant for predicting F .
INLP can be used to generate “amnesic counterfac-

3We aim to propose a concrete instantiation that approxi-
mates the counterfactual.

4In the experiments below, we will only apply this pro-
cedure to sets of representations of words that are all in a
particular type of RC (for example, Object RCs). We do,
however, test whether the representations of RC boundary
generalize across RC types; see Prediction 3 in §5.
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tuals” (Elazar et al., 2021), which do not encode a
given property, even if the original representation
did encode that property. In the next paragraph we
propose a way to use this algorithm to manipulate
the value of the feature, rather than remove it.

Generating Counterfactual Representations
We obtain the counterfactual representations ~h+t
and ~h−t as follows. As we discussed in Section 2.2,
INLP identifies planes—one for each direction
(row) in W—each of which linearly divides the
word-representation space into two parts: words
that are in an RC and words that are not. From
the representation ~ht of a word t that is not in an
RC, we can generate ~h+t by pushing ~ht across the
separating plane towards the representations of
words that are inside an RC . Similarly, we can
generate ~h−t by moving ~ht further away from that
plane (see Figure 2).5

How do we move the representation of a word
away from or towards the separating planes? Re-
call that the feature subspace R and the nullspace
N are orthogonal complements, and consequently
any vector ~v ∈ Rn can be represented as a sum
of its projections on R and N . Further, by defini-
tion, the vector’s projection on R is the sum of its
projections on the RC directions ~w ∈ W. Thus,
we can decompose ~ht as follows, where ~hwt is the
orthogonal projection of ~ht on direction ~w:

~ht =
~hNt + ~hRt = ~hNt +

∑
~w∈W

~hwt (1)

For any word t, we expect a positive counterfac-
tual ~h+t to be classified as being inside an RC, with
high confidence, according to all original RC di-
rections w ∈W — that is, ∀ w ∈W, wT ~h+t > 0.
Conversely, we expect a negative counterfactual
to be classified as not being in an RC, i.e., ∀ w ∈
W, wT ~h−t < 0.

To enforce these desiderata, we create positive
and negative counterfactuals as follows, where
SIGN(x) = 1 if x ≥ 0 and 0 otherwise, and α
is a positive scalar hyperparameter that enhances
or dampens the effect of the intervention.

5For a word t that is inside an RC, the reverse computations
would be required: to generate h+

t we would move ~ht further
away from the separating plane, whereas to generate h−

t we
would move ~ht across the separating plane.

~h−t = ~hNt + α
∑
~w∈W

(−1)SIGN(wT ~ht) ~hwt (2)

~h+t = ~hNt + α
∑
~w∈W

(−1)1−SIGN(wT ~ht) ~hwt (3)

In both cases, we subtract a direction ~hwt , flip-
ping its sign, if the sign constraints are violated,
that is, ifwT ~ht > 0 for ~h−t and ifwT ~ht < 0 for ~h+t .
Geometrically, flipping the sign of a direction ~hwt
in Equations 2 and 3 is equivalent to taking a mir-
ror image with respect to a direction w (Figure 2).
This enforces the sign constraints: all classifiers w
predict the negative or positive class, respectively
(see Appendix §A.1 for a formal proof).

4 Experimental Setup

Our overall goal is to assess the causal effect of RC
boundary representations on our models’ agree-
ment behavior when subject-verb dependencies
span an RC (that is, where an RC intervenes be-
tween the head of the subject and the corresponding
verb). We test whether we can modify the represen-
tation of the masked verb outside the RC such that,
compared to the original representations, the model
assigns higher probability to either the correct form
(after negative intervention) or to the incorrect one
(after positive intervention). We first describe the
models we use (§4.1), then the dataset we use to
obtain RC subspaces and generate counterfactual
representations (§4.2), and finally the dataset we
use to measure the models’ agreement prediction
accuracy in sentences containing RCs, before and
after the counterfactual intervention (§4.3).

4.1 Models
We use BERT-base (12 layers,768 hidden units) and
BERT-large (24 layers, 1024 hidden units) (Devlin
et al., 2019), as well as the smaller BERT mod-
els released by Turc et al. (2019): BERT-medium
(8 layers × 512 hidden units), BERT-small (4 lay-
ers, 512 hidden units), BERT-mini (4 × 256), and
BERT-tiny (2 × 128). In all experiments, we in-
tervene on a single layer at a time, and continue
the forward pass of the original model through the
following layers.

4.2 Generating Counterfactual
Representations

Datasets To create the training data for the INLP
classifiers, we used the templates of Prasad et al.
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(2019) to generate five lexically matched sets of
semantically plausible sentences, one for each type
of RC outlined in Table 1, as well as two additional
sets of sentences without RCs; these included sen-
tences with nearly the same word order and lexical
content as the sentences in the other sets. Each set
contained 4800 sentences. All verbs in the training
sentences were in the past tense; this ensured that
the subspaces we identified did not contain infor-
mation about overt number agreement, making it
unlikely that AlterRep will alter agreement-related
information that does not concern RCs.

Identifying and Altering RC Subspaces To
identify RC subspaces, we used INLP with SVM
classifiers as implemented in scikit-learn. We iden-
tified different subspaces for each of the five types
of RCs listed in Table 1. For example, in (5), the
bolded words were considered to be in the RC.

(5) My cousin that liked the book hated movies.

For the negative examples, we took represen-
tations of words outside of the RC, either from
outside the bolded region of the same sentence,
or from inside or outside the bolded region of the
coordination control sentence.

(6) My cousin liked the book and hated movies.

We selected the negative examples in this manner
for two reasons: first, to ensure that the same word
served as a positive example in some context and as
a negative example in others (e.g., book in (5) and
(6)); and second, to ensure that the same RC sen-
tence included both positive and negative examples
(e.g., book and cousin in (5)).

Hyperparameters INLP has a hyperparameter
m which sets the dimensionality of the RC sub-
space; this parameter trades off exhaustivity against
selectivity.6 We set m = 8; In Appendix §A.3 we
demonstrate that the trends we observe are not sub-
stantially affected by this parameter.

AlterRep has an hyperparameter, α, that deter-
mines the magnitude of the counterfactual inter-
vention (§4.2). We use α = 4; In Appendix §A.4
we show that the trends we observe are similar for
other values of α.

6In particular, running INLP for 768 iterations—the dimen-
sionality of BERT representations—yields the original space,
which is exhaustive but not useful in distilling RC information.

4.3 Measuring the Effect of the Intervention
on Agreement Accuracy

Dataset We measure the models’ agreement pre-
diction accuracy using a subset of the Marvin and
Linzen (2018) dataset in which the subject is mod-
ified by an RC. The noun inside the RC either
matched (7) or mismatched (8) the subject of the
matrix clause in number:

(7) The skater that the officer loves is/are happy.

(8) The skater that the officers love is/are happy.

The Marvin and Linzen dataset contains sentences
where the intervening RC is either a subject RC or a
(reduced or unreduced) object RC. We augmented
this dataset with lexically matched sentences with
(reduced or unreduced) passive RC interveners,
using attribute varying grammars (Mueller et al.,
2020). Finally, we only considered sentences with
copular main verbs (is and are) to ensure that both
the singular and plural forms of the verb are highly
frequent. We used 1750 sentences per construction.

Computing Agreement Accuracy We per-
formed masked language modeling (MLM) on the
dataset described earlier in this section. In each sen-
tence, we masked the copula, started the forward
pass, performed the intervention on the represen-
tation of the masked copula in the layer of inter-
est, and continued with the forward pass to obtain
BERT’s distribution over the vocabulary for the
masked token. We repeated this process for each
layer separately. We then computed the probability
of error, normalized within the two copulas is and
are (Arehalli and Linzen 2020):

P (Err) =
P (VerbIncorrect)

P (VerbIncorrect) + P (VerbCorrect)
(4)

In Appendix §A.5, we present results where the
metric of success is accuracy, that is, the percentage
of cases where the model assigned a higher proba-
bility to the verb with the correct number (Marvin
and Linzen, 2018). These results are qualitatively
similar.

5 Predictions

As discussed earlier, a system that computed agree-
ment in accordance with the grammar of English
would determine the number of the masked verb
in a sentence like (9) based on the number of offi-
cers, because both officers and the [MASK] token
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(a) RC sentences with attractors. In the right panel,
the test sentence included an RC of the type used to
generate the counterfactual representations; in the left
panel, counterfactual representations were generated
based on sentences with different RC types from those
in the agreement test sentences.
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(b) Sentences without RCs and sentences with an RC
but without attractors.
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(c) Sentences where before the intervention the model
assigned a higher probability to the ungrammatical than
the grammatical verb. Note the y-axis differs from other
plots (reflecting the higher original error probability).
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(d) Intervention from counterfactual representations gen-
erated from 10 random subspaces.

Figure 3: Change in probability of error with negative and positive counterfactual BERT-base representations (red
circle and cyan triangle respectively). Horizontal lines indicate probability of error with the original representations
without any intervention: the middle line is the mean accuracy across all items prior to intervention and the upper
and lower lines indicate accuracy two standard errors away from the mean accuracy. Error bars reflect two standard
errors from the mean probability of error after intervention.

are outside the RC; the number of the RC-internal
noun skater should be ignored.

(9) The officers that love the skater [MASK]
nice.

We can derive the following predictions for apply-
ing AlterRep to a system that follows this strategy:

Prediction 1: Impact on Error Probability
in RC Sentences with Attractors. In RC sen-
tences where the main clause subject differs in
number from the RC subject, error probability will
be higher with the counterfactual h+MASK, which en-
codes (incorrectly) that [MASK] is inside the RC,
than with the original representation hMASK. Con-
versely, error probability will be lower with h−MASK,

which encodes (correctly) that [MASK] is outside
the RC, than with the original hMASK.

Prediction 2: No Impact on Other Sentences.
We do not expect a difference in error probability
between the original and counterfactual representa-
tions in all other sentences. This should be the case
for sentences with RCs where the nouns inside and
outside the RC match in number, as in (10):

(10) The officers that love the skaters [MASK]
nice.

Since both officers and skaters are plural, most
plausible agreement prediction strategies would
make the same predictions regardless of whether
[MASK] is analyzed as being inside the RC or out-



200

side it. Consequently, intervening on the encoding
of RC boundaries is not expected to systematically
change the model’s predictions.

Likewise, since the interventions are designed
to modulate the encoding of RC-related properties,
we do not expect the interventions to impact num-
ber prediction in sentences without RCs such as
(11) and (12):7

(11) The officer [MASK] nice.

(12) The bankers knew the officer [MASK] nice.

Prediction 3: Generalization Across RC Types.
If RC boundaries are represented in an abstract
way that is shared across different RC types, then
the counterfactual representations will affect error
probability in the same way regardless of whether
the counterfactual representations were generated
from subspaces estimated from sentence with the
same RC type as the target sentences, or from sen-
tences with different RC types.

6 Results

Counterfactual Intervention in the Middle Lay-
ers of BERT-base Modulates Agreement Error
Rate in RC Sentences with Attractors. We be-
gin by discussing experiments where subspaces
were estimated from sentences with the same type
of RC as the test sentences with agreement; we
report results averaged across the five RC types.
Interventions using counterfactual representations
generated from the middle layers of the BERT-base
(5–8 out of 12) resulted in changes in the proba-
bility of error which partially aligned with Predic-
tion 1 (Figure 3a). In sentences with attractors,
using the positive counterfactual h+MASK resulted in
an increase in the probability of error (a maximum
increase of 14 percentage points in layer 7). Con-
versely, using the negative counterfactual h−MASK
generated from layers 5 and 6 resulted in a de-
crease in the probability of error. This decrease
was much smaller (a maximum decrease of 2 per-
centage point in layer 6) and there was overlap in
the error bars for the probability of error before and
after intervention.

It is likely that the smaller effects of the nega-
tive counterfactual intervention are due to the fact
that accuracy before the intervention was very high
(95%) and the probability of error very low (8%),

7If models encoded boundaries of all embedded clauses
similarly we would expect a change in prediction for (12).

leaving very little room for change: in most cases,
the original representation already correctly en-
coded the verb is outside the RC. In a follow-up
analysis, we only considered sentences in which
the model originally assigned a higher probability
to the ungrammatical than the grammatical form.
In these examples the decrease in probability of
error was larger (a maximum decrease of 16 per-
centage points in layer 6; see Figure 3c).

While only RC interventions in the middle layers
elicit the expected behavioral outcomes, probing
accuracy for RC information was high for all lay-
ers (Appendix §A.2), giving further evidence to
the dissociation between correlational and causal
methods: probing can identify aspects of the repre-
sentations that do not affect the model’s behavior.

Interventions on RC Boundary Representa-
tions Generalize Across RC Types, but not Fur-
ther. In line with Prediction 3, we observed a
qualitatively similar pattern of change in error prob-
abilities even when the counterfactuals were gen-
erated from subspaces estimated from a different
RC type than the RC in the agreement test sen-
tences. The effects were smaller, however. This
suggests that while BERT’s representation of RC
boundaries is partly shared across different RC
types, there are also structure-specific RC bound-
ary representations. The effect of the interven-
tion also aligned with Prediction 2: in construc-
tions where we do not expect RC boundaries to af-
fect predictions—sentences without attractors and
those without RCs—we did not observe significant
changes in error probability (Figure 3b).

Intervention Based on Random Subspaces Does
Not Produce Interpretable Results. To tease
apart the effect of the RC-targeted intervention
from intervening on any subspace with the same
dimensionality, we generated counterfactual rep-
resentations from 10 random subspaces and re-
peated our analysis.8 While we observed very
small changes in probability of error in some cases,
the pattern of changes resulting from this interven-
tion did not align with any of our predictions (see
Figure 3d). This suggests that the change in proba-
bility of error that resulted from intervening with
RC subspaces was not merely a by-product of in-
tervening on a large enough subspace of BERT’s
original representation space.

8We generated a random subspace by sampling standard
Gaussian vectors instead of the INLP matrix W, and then
employing the same procedure described in §3.
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Figure 4: Change caused by counterfactual represen-
tations in agreement error probability across RCs with
attractors for different BERT variants. Note that the
baseline performance prior to intervention (marked by
black horizontal lines) is different between models.

Intervening on the Middle Layers of Other
BERT Variants Yielded Qualitatively Similar
Results. We repeated the experiments on BERT-
large and four smaller versions of BERT, trained on
the same amount of data as the BERT-base model
(Turc et al., 2019). As with BERT-base, interven-
ing on the middle layers of BERT-large (12–17 out
of 24) with the RC subspaces—but not the ran-
dom subspaces—resulted in predicted changes in
the probability of error. Compared to BERT-base,
the smaller models showed a greater change in the
probability of error as a result of intervention with
counterfactuals generated from random subspaces.
However, when the counterfactual representations
were generated from particular layers—4 and 5
(out of 8) in BERT-medium, 3 (out of 4) in BERT-
mini and 2 (out of 4) in BERT-small—the change
in error probability aligned with Prediction 1 over
and above the changes from intervening with ran-
dom subspaces. In all of these layers, intervening
with the positive but not the negative counterfactual
resulted in an increase in the probability of error.
No such layer was observed for BERT-tiny, which
has only 2 layers (see Figure 4).

7 Discussion

We proposed an intervention-based method, Al-
terRep, to test whether language models use the
linguistic information encoded in their representa-
tions in a manner that is consistent with the gram-

mar of the language they are trained on. For a
given linguistic feature of interest, we generated
counterfactual contextual word representations by
manipulating the value of the feature in the original
representations. Then, by replacing the original
representations with these counterfactual variants,
we characterized the change in word prediction
behaviour. By comparing the resulting change in
word prediction with hypotheses from linguistic
theory about how specific values of the feature are
expected to influence the probabilities over pre-
dicted words, we investigated whether the model
uses the feature as expected.

As a case study, we applied this method to study
whether altering the information encoded about
RC boundaries in the contextual representations
of masked verbs in different BERT variants influ-
ences the verb’s number inflection in a manner that
is consistent with the grammar of English. We
found that while all layers of the BERT variants
encoded information about RC boundaries, only
the information in the middle layers influenced the
masked verb’s number inflection as predicted by
English grammar. We also found that in BERT-
base, counterfactual representations based on sub-
spaces that were learned from sentences with one
type of RC influenced the number inflection of the
masked verb in sentences with other types of RCs;
this suggests that the model encodes information
about RC boundaries in an abstract manner that
generalizes across the different RC types.

Caveat: Linear Analysis of a Non-linear Net-
work AlterRep interventions are based on con-
cept subspaces identified using linear classifiers,
but most neural networks components, including
BERT layers, are non-linear. It is possible, then,
that subsequent non-linear layers transform the
counterfactual representation in a way that is not
amenable to analysis using our methods. As such,
while we can conclude from a positive result that
the feature in question causally affects the model’s
behavior, negative results should be interpreted
more cautiously.

Future Work Future work can apply this method
to test linguistically motivated hypotheses about a
wide range of structures and tasks. For example,
linguistic theory predicts that information about
semantic roles (like agent and patient) is crucial for
tasks such as natural language inference (NLI) that
require reasoning about sentence meaning. To test
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if NLI models use semantic roles as predicted by
linguistic theory, we can use AlterRep to replace
the original representations with counterfactual rep-
resentations where the patient is encoded as the
agent (and vice versa), and measure the change in
performance on NLI, especially on challenge sets
such as HANS (McCoy et al., 2019) that evaluate
sensitivity to these properties.

8 Related Work

Probing and Causal Analysis Behavioral tests
of neural models, such as the ability of the model to
master agreement prediction (Linzen et al., 2016;
Gulordava et al., 2018; Goldberg, 2019), have ex-
posed both impressive capabilities and limitations.
These paradigms focus on the model’s output, and
do not link the behavioral output with the infor-
mation encoded in its representations. Conversely,
probing (Adi et al., 2017; Conneau et al., 2018;
Hupkes et al., 2018) does not reveal whether the
property recovered by the probe affects the orig-
inal model’s prediction in any way (Hewitt and
Liang, 2019; Tamkin et al., 2020; Ravichander
et al., 2021). This has sparked interest in iden-
tifying the causal factors that underlie the model’s
behavior (Vig et al., 2020; Feder et al., 2020; Voita
et al., 2020; Kaushik et al., 2020; Slobodkin et al.,
2021; Pryzant et al., 2021; Finlayson et al., 2021).

Counterfactuals The relation between counter-
factual reasoning and causality is extensively dis-
cussed in social science and philosophy literature
(Woodward, 2005; Miller, 2018, 2019). Attempts
have been made to generate counterfactual exam-
ples (Maudslay et al., 2019; Zmigrod et al., 2019;
Ross et al., 2020; Kaushik et al., 2020; Hvilshøj
et al., 2021) and recently to derive counterfactual
representations (Feder et al., 2020; Elazar et al.,
2021; Jacovi et al., 2021; Shin et al., 2020; Tucker
et al., 2021). Contrary to our approach, previ-
ous attempts to generate counterfactual represen-
tations were either limited to amnesic operations
(i.e., focused on the removal of information and
not on modifying the encoded information) or used
gradient-based interventions, which are expressive
and powerful, but less controllable. Our linear ap-
proach is guided by well-defined desiderata: we
want all linear classifiers trained on the original
representation to predict a specific class for the
counterfactual representations, and we prove that
is the case in Appendix §A.1.

Representations and Behavior Previous work
bridging the gap between representations and be-
havior includes Giulianelli et al. (2018), who
demonstrated that back-propagating an agreement
probe into a language model induces behavioral
changes and improve predictions. Lakretz et al.
(2019) identified individual neurons that causally
support agreement prediction. Prasad et al. (2019)
used similarity measures between different RC
types extracted using behavioural methods to inves-
tigate the inner organization of information within
the model. Closest to our work is Elazar et al.
(2021), where the authors applied INLP to “erase”
certain distinctions from the representation, and
then measured the effect of the intervention on
language modeling. We extend INLP to generate
flexible counterfactual representations (§3) and use
these to instantiate hypotheses about the linguistic
factors that guide the model’s behavior.

9 Conclusions

We proposed an intervention-based approach to
study whether a model uses a particular linguistic
feature as predicted by the grammar of the lan-
guage it was trained on. To do so, we generated
counterfactual representations in which the linguis-
tic property under consideration was altered but all
other aspects of the representation remained intact.
Then, we replaced the original word representa-
tion with the counterfactual one and characterized
the change in behaviour. Applying this method
to BERT, we found that the model uses informa-
tion about RC boundaries that is encoded in its
word representations when inflecting the number
of masked verb in a manner consistent with the
grammar of English. We conclude that AlterRep is
an effective tool for testing hypotheses about the
function of the linguistic information encoded in
the internal representations of neural LMs.
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A Appendix

A.1 Correctness of the Counterfactual
Generation

In this appendix, we prove that the method pre-
sented in §3 is guaranteed to achieve its goal: the
negative counterfactual ~h−t would be classified as
belonging to the negative class, and the positive
counterfactual ~h+t would be classified as belong-
ing to the positive class, according to all the linear
classifiers trained on the original representation.

We base our derivation on the decomposition
presented in §3:

~ht =
~hNt + ~hRt = ~hNt +

∑
~w∈W

~hwt (5)

Where N is the nullspace of the INLP matrix
W, R is its rowspace, and ~hNt and ~hRt are the or-
thogonal projection of a representation ~ht to those
subspaces, respectively.

We focus on the negative counterfactual; The
proof for the positive counterfactual is similar. In
the proceeding discussion, wj ∈ Rd is an arbitrary
linear classifier trained on the jth iteration of INLP
(one of the rows in the matrix W). wj predicts
a negative or positive class ŷ ∈ {0, 1} according
to the decision rule ŷ = SIGN(wT

j ht)
9. We

denote by ~ht
w

the orthogonal projection of ~ht on a
direction w, given by (~ht

T
w)~w.

Claim A.1. For the negative counterfactual de-
fined by ~h−t = ~hNt +α

∑m
i=0 (−1)SIGN(wT

i
~ht) ~hwt i,

it holds that ~h−t would always be classified to the
negative class: wT

j h
−
t < 0 for every wj in the

original INLP matrix W.

Proof.

wT
j
~h−t = wT

j (
~hNt + α

m∑
i=0

(−1)SIGN(wT
i
~ht) ~hwt i)

(6)

= wT
j (α

m∑
i=0

(−1)SIGN(wT
i
~ht) ~hwt i) (7)

= αwT
j ((−1)

SIGN(wT
j
~ht) ~h

wj

t ) (8)

Where the transition from 6 to 7 stems from
~hNt being in the nullsapce of W, so ∀w ∈ W :

wT ~hNt = 0; and the transition from 7 to 8 stems
9For simplicity, we define SIGN(x) = 1 if x ≥ 0 else 0.

0 corresponds to the negative class.

from the mutual orthogonality of the INLP clas-
sifiers (proved in Ravfogel et al. (2020)): since
∀ j 6= i, wT

i wj = 0, it holds that wT
j
~hwi
t =

wT
j ((

~ht
T
wi)wi) = (~ht

T
wi)w

T
j wi = 0.

Now, we consider two cases.

• Case 1: wT
j
~ht > 0, that is, the classifier pre-

dicted the positive class on the original repre-
sentation. Then, by 8,

wT
j
~h−t = αwT

j ((−1)
SIGN(wT

j
~ht) ~h

wj

t ) (9)

= αwT
j (−1)h

wj

t (10)

= −αwT
j h

wj

t (11)

Since α is a positive scalar and by assumption
wT
j
~ht > 0, it holds that wT

j
~h−y < 0.

• Case 2: SwT
j
~ht < 0, that is, the classifier

predicted the negative class on the original
representation. Then, by 8,

wT
j
~h−t = αwT

j ((−1)
SIGN(wT

j
~ht) ~h

wj

t ) (12)

= αwT
j h

wj

t (13)

= αwT
j h

wj

t (14)

Since α is a positive scalar and by assumption
wT
j
~ht < 0, it holds that wT

j
~h−y < 0.

We have proved that regardless of the originally
predicted label, all INLP classifiers would predict
the negative class on the negative counterfactual,
which concludes the proof.

A.2 Probing Accuracy
In this appendix, we provide probing results for
the task on which we run INLP: detecting whether
representation was taken over a word inside or out-
side of an RC. As INLP iteratively trains linear
probes, this accuracy is equivalent to the accuracy
of the first INLP classifier. In all contextualized
layers, we observe probing accuracy of over 90%
for all RC types (Figure 5). This contrasts with the
intervention results in §6. While it is possible to
linearly decode the RC boundary in all layers, only
in the middle layers do we find that this concept
causally influences the model’s behavior. In other
words, good probing performance does not indicate
main-task relevancy.
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Figure 5: Probing accuracy for the presence of words
within or outside of RCs, vs. BERT-base layers, for all
the different RC types in our experiments.

A.3 Influence of the Dimensionality of the
RC Subspace

In this appendix, we analyze the influence of the
dimensionality m of the RC subspace. Recall that
INLP is an iterative algorithm (§2.2). On the ith
iteration, the method identifies a single direction
~wi—the parameter vector of a linear classifier—
which is predictive of the concept of interest (in
our case, RC). The different directions are mutu-
ally orthogonal, and after m iterations, the “con-
cept subspace” is the subspace spanned the rows
of the matrix W = [ ~w1

T , ~w2
T , . . . , ~wm

T ]. In the
ith iteration of INLP, the subspace identified so far
is removed from the representation (by the opera-
tion of nullspace projection), and the next classifier
~wi+1 is trained to predict the concept over the resid-

ual representation. As such, accuracy is expected
to decrease with the number of iterations: as the
number of iterations increases, the algorithm iden-
tifies directions which have a weaker association
with the concept. This creates a trade-off between
exhaustively – identifying all the directions which
are at least somewhat predictive of the concept, and
selectivity – identifying only directions which have
a meaningful association with the concept.

Figure 6a presents positive intervention results
for different RC-subspace dimensionality on sen-
tences with agreement across RC with attractors;
Figure 6b present negative intervention results on
sentences on which the model was originally mis-
taken. Generally, we observe the same trends un-
der all settings, suggesting our method is relatively
robust to the dimensionality of the manipulated
subspace. In figure 6c we present the results of
intervening on subspaces of different dimensional-

(a) Positive intervention results on sentences with
agreement across RC with attractors.

(b) Negative intervention results on sentences with
agreement across RC on which the model originally
predicted incorrectly.

(c) Positive intervention results on sentences with
simple agreement and sentences with sentential com-
plements.

ity, for sentences where we do not expect an effect:
sentences without attractors, and sentences without
RCs. For all contextualized layers we do not see
an effect, as expected. For m = 32 and m = 64,
we see an effect on the uncontextualized embed-
ding layer. This effect may hint towards a spurious
information encoded in this uncontexualized layer
which is used by the model when predicting agree-
ment, but studying this possibility is beyond the
scope of this work.

A.4 Influence of α
In this appendix, we analyze the influence of the
parameter α in the AlterRep algorithm (Section §3)
on the BERT-base model. Recall that α dictates the
step size one takes when calculating the counter-
factual mirror image: α = 1 corresponds to exact
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(a) Positive intervention results on sentences with
agreement across RC with attractors.

(b) Positive intervention results on sentences with
simple agreement and sentences with sentential com-
plements.

(c) Negative intervention results on sentences with
agreement across RC on which the model originally
predicted incorrectly.

Figure 7: Influence of α on the probability of error post
intervention.

mirror image, while α > 1 over-emphasizes the
RC components over which we take the counterfac-
tual mirror image.

In Figures 7a and 7b we focus on the positive in-
tervention, which is expected to increase the prob-
ability of error, making the model act as if the
masked verb is within the RC; and in Figure 7c we
focus on the negative intervention on sentences on
which the model was originally mistaken, which is
expected to decrease the probability of error.

In Figure 7b we present the results on the con-
trol sentences: sentences without agreement across
RC. Overall, the trends we observe are similar for
different values of α, indicating that AlterRep is

relatively robust to the value of this parameter. One
exception is the large values of α = 8 and to a
lesser degree α = 6, which result in some increase
in the probability of error also in the control sen-
tences, where we do not expect such effect (Fig-
ure 7b), albeit this increase is much smaller than
the increase on sentences with agreement across
RC. With a large-enough α, the new counterfactual
representation might diverge too-much from the
distribution of the original representations. Notice
that when compared with gradient-based methods
for generating counterfactuals (Tucker et al., 2021),
our linear approach has the advantage of being able
to control the magnitude of the intervention with
a single controlled parameter, which has a clear
geometric interpretation: the extent to which one
pushes the representations to one direction or an-
other when taking the mirror image.

A.5 Influence on Accuracy

Figure 8: Influence of the negative intervention on ac-
curacy (the percentage of cases where the model favors
the correct form), on sentences on which the model was
originally mistaken.

In this appendix, we evaluate the impact of the
intervention by its influence on the model’s accu-
racy, calculated as the percentage of cases where
the model assigned higher probability to the correct
form than to the incorrect form. We focus on the
cases on which the model originally predicted in-
correctly, Thus, the original accuracy on this group
of sentences is 0%. We use a negative intervention,
pushing the model to act as if the verb is (correctly)
outside of the RC, which is expected to increase its
accuracy.

In Section §4.3 we use an alternative measure:
probability-of-error. The probability of error is a
more sensitive measure, as it might change even
when the model’s absolute preference for one form



209

over the other has not. However, it is the absolute
ranking which eventually dictates the model’s top
prediction.

Figure 8 presents the results for different dimen-
sionalities of the RC subspace. The trends are sim-
ilar to the trends shown by the probability-of-error
evaluation measure. Notably, in up to 30% of the
cases, it is possible to flip the model’s preference
from the incorrect to the correct form solely by
manipulating a low-dimensional subspace within
the 768-dimensional representation space.


