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Abstract

Any attempt to integrate NLP systems to the
study of endangered languages must take into
consideration traditional approaches by both
NLP and linguistics. This paper tests different
strategies and workflows for morpheme seg-
mentation and glossing that may affect the po-
tential to integrate machine learning. Two ex-
periments train Transformer models on docu-
mentary corpora from five under-documented
languages. In one experiment, a model learns
segmentation and glossing as a joint step and
another model learns the tasks into two se-
quential steps. We find the sequential ap-
proach yields somewhat better results. In a
second experiment, one model is trained on
surface segmented data, where strings of texts
have been simply divided at morpheme bound-
aries. Another model is trained on canoni-
cally segmented data, the approach preferred
by linguists, where abstract, underlying forms
are represented. We find no clear advantage to
either segmentation strategy and note that the
difference between them disappears as training
data increases. On average the models achieve
more than a 0.5 F1-score, with the best mod-
els scoring 0.6 or above. An analysis of errors
leads us to conclude consistency during man-
ual segmentation and glossing may facilitate
higher scores from automatic evaluation but in
reality the scores may be lowered when eval-
uated against original data because instances
of annotator error in the original data are “cor-
rected” by the model.

1 Introduction

This paper examines the direct effects of vari-
ations in research design when integrating ma-
chine learning into the morphological analysis and
annotation of endangered languages. Morpheme
segmentation and glossing are traditionally the
first tasks undertaken by linguists after document-
ing a language’s sound system. Both tasks pro-

vide essential linguistic information. Segmenting
words into morphemes clarifies relationships be-
tween various word forms and can reduce con-
fusion caused by data sparsity in NLP models.
Glosses make implicit linguistic structures explicit
and accessible for analysis and they can be lever-
aged to improve NLP models in low-resource set-
tings, such as for machine translation (Shearing
et al., 2018; Zhou et al., 2020). Therefore, au-
tomating these tasks with NLP systems and inte-
grating those systems into the documentary and
descriptive workflow is important to both linguis-
tics and NLP.

When we bring together two disciplinary fields
for mutual benefit, different expectations or ac-
cepted conventions are also brought together. The
issues that this paper addresses stem from con-
ventional methods in natural language processing
(NLP) and linguistic analysis. The methods are
based or have led to differing expectations which
raise potentially conflicting issues. For example, it
is generally expected in NLP that textual data will
be orthographic representations and that the goal is
to process that form, whereas linguists may prefer
to work with phonetic representations and see their
goal to process underlying linguistic forms. These
differences can make the interdisciplinary collab-
oration unnecessarily slow or confusing. When
the differences affect overall research design, it is
easy to simply choose one or the other convention
without testing which choice might actually ben-
efit the task at hand or be more efficient for long-
term goals. This paper studies and compares the
short-term affect of two pairs of differing expec-
tations which have arisen during the authors’ re-
search.

The first study asks whether morpheme segmen-
tation and glossing should be done jointly or se-
quentially. In other words, are NLP systems more
accurate when trained to do these two tasks sepa-
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rately or when trained to do them jointly? Instead
of arbitrarily choosing one or the other method, we
could test whether one approach gives more accu-
rate results than the other. If the sequential ap-
proach is more accurate, then linguists might con-
sider adjusting their workflow in order to gain op-
timal benefit from the NLP system, but if the joint
task approach performs better, then perhaps NLP
would benefit by adjusting experiments to match
the linguists’ expectations about data annotation
methods.

This second issue we investigate is how mor-
pheme segmentation strategies affect NLP perfor-
mance. Linguistic theory assumes the existence
of underlying morpheme forms and generally the
goal to discover these forms determines research
design. The morphemes are often represented in
their theoretical, underlying forms, which also al-
lows orthographic changes triggered by surround-
ing phones to be ignored. This contrast with sur-
face segmentation which simply inserts morpheme
breaks in the orthographic representation. The two
segmentation strategies are compared in (1) where
the first two surface letters of each word in (1a)
are represented by identical canonical segments in
(1b). Since NLP almost always deals with ortho-
graphic representations, its systems are trained to
perform surface segmentation almost exclusively.
In practice, both strategies are encountered during
language documentation and description, the ini-
tial strategy depending in part on software tools.
For example, the older, but still popular, Toolbox1

allows surface segmentation whereas ELAN (Auer
et al., 2010) supports both but as separate tasks,
while FLEx (Baines, 2018) requires surface seg-
mentation but facilitates simultaneous canonical
segmentation. It might seem reasonable that lin-
guists who want to integrate automated assistance
would adjust their strategy to match NLP expecta-
tions. But without testing, are we sure that NLP
systems perform better at surface or at canonical
segmentation?

(1) a. il-legal in-capable im-mature

b. in-legal in-capable in-mature

c. NEG-legal NEG-capable NEG-mature

This paper describes experiments that test re-
sults of Transformer models (Vaswani et al., 2017)
trained on segmented and glossed data and then

1https://software.sil.org/toolbox/

compare those results between a joint and sequen-
tial approach to segmentation and glossing and be-
tween a surface and canonical strategy to segmen-
tation. After a review of related literature in § 2,
§ 3 introduces the data used by the models that are
described in § 4. The experiments are described in
§ 5 and results are presented in § 6 and analyzed
in § 7.

2 Related Work

Many NLP models have been applied to segmenta-
tion and glossing of low-resource languages. Au-
tomatic morpheme segmentation was introduced
by Harris (1970) and much segmentation research
since then has implemented this in an unsuper-
vised fashion (Goldsmith, 2001; Creutz and La-
gus, 2002; Poon et al., 2009). This is probably
motivated by the difficulty of finding high qual-
ity amounts of segmented data that is needed for
supervised learning. A recent supervised segmen-
tation experiment (Ansari et al., 2019) had to first
manually segment a Persian corpus before being
able to conduct the experiment.

NLP experiments with low-resource languages
often treat segmentation and glossing as separate
tasks. Their approach seems to assume that the
two tasks are performed sequentially and that it
is reasonable to expect morpheme segments to be
available before glosses. However, our field expe-
riences indicates that it is not uncommon for lin-
guists to segment a morpheme and gloss it imme-
diately.

Glossing-only experiments make the assump-
tion that the data is already segmented into mor-
phemes or that it does not need to be segmented.
McMillan-Major (2020) trained conditional ran-
dom field (CRF) systems to produce a gloss line
for several high-resource languages and three low-
resource languages. The systems incorporated
predictions made directly from the segmented line
and predictions made with information from the
free translation line that was enriched with IN-
TENT (Georgi, 2016). The low-resource language
data came from field projects, as does the data in
this paper. Both McMillan-Major and Samardzic
et al. (2015) used information from other lines of
interlinearized texts such as translation and part-
of-speech tags, whereas our work assumes the
texts have not yet been annotated with any other
information.

In general, joint learning is characterized by
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training on different types of information and is
based on the intuition that one type of linguis-
tic knowledge (e.g. syntax) can improve results
in another domain (e.g. morphology) (Goldsmith
et al., 2017). Joint learning of segmentation and
glossing, or labeled segmentation, is less common
but has been successful in low-resource languages
(Cotterell et al., 2015; Moeller and Hulden, 2018),
usually with non-neural models. The authors’ pre-
vious work on Lezgi (Moeller and Hulden, 2018)
used the same corpus as the current work and
compared sequential vs. joint models as well as
feature-based vs. deep learning models. The re-
ported F1-scores were nearly .9. However, a di-
rect comparison between the two studies cannot be
made because the previous work only segmented
and glossed affixes while the current work in-
cludes root and affixes.

The segmentation strategies that an NLP project
implements may depend on available data or the
type of learning model employed. Unsuper-
vised learning of morphology naturally leans to-
wards surface segmentation. Supervised mod-
els depend on annotated data provided by lin-
guists and preprocessed to reduce inconsistencies.
Moeller and Hulden (2018) trained a joint sys-
tem with good results on canonical morphemes in
language with little allomorphy or morphophono-
logical processes. In languages with more
complicated morphophonology and allomorphy—
including null morphemes that must be “seg-
mented” and glossed, or circumfixation—the ef-
fect of canonical segementation may be unclear.

3 Data

The selected data represent a range of documen-
tary and descriptive projects that manually inter-
linearized several texts. Each project’s unique pri-
orities and workflow resulted in different amounts
of data and percentages of segmented and glossed
tokens, as shown in Table 1. We selected only
projects that interlinearized with FLEx, since the
software always includes both surface and canon-
ical segmentations. Less effort was made to rep-
resent various typological features, geographic ar-
eas, or language families. The corpora were
shared in the form of backup flextext XML
files.2

2Rights holders gave informed consent to use the data for
this research.

Language Tokens Seg/Gloss
Alas 4.5k 3,775 85%
Lamkang 101k 49,465 49%
Lezgi 14k 13,262 94%
Manipuri 12k 11,904 98%
Natügu 16.5k 13,925 84%

Table 1: The approximate total token considers multi-
ple word expressions (when parsed as such) as single
tokens. The percentage and total number of tokens that
are both segmented (canonical and surface) and glossed
are shown.

Alas [btz] (Alas-Kluet, Batak Alas, Batak Alas-
Kluet) is an Austronesian language spoken by
200,000 people on the Indonesian island of Suma-
tra (Eberhard et al., 2020). The selected corpus is
from the Alas dialect and features reduplication,
infixation, and circumfixation.

Lamkang [lmk] is a Northern Kuki-Chin
(Tibeto-Burman) language with an estimated 4
to 10 thousand speakers, primarily in Manipur,
India but also in Burma (Thounaojam and Chel-
liah, 2007). It tends toward agglutination with
stem-stem patterns that signal syntactic categories
and some bound morphemes that are written as
separate words. The data is accessible through
the Computational Resources for South Asian
Languages (CoRSAL) digital archive at the
University of North Texas.3

Lezgi [lez] (Lezgian) is a highly agglutinative
language belonging to the Lezgic branch of the
Nakh-Daghestanian (Northeast Caucasian) family.
It is spoken by over 400,000 speakers in Russia
and Azerbaijan. It features suffixing morphology
with one rare negation prefix.4

Manipuri [mni] (Meitei, Meetei) is a Tibeto-
Burman language spoken by nearly two million
people, primarily in the state of Manipur, and is
one of India’s official languages. It nonetheless
has been classified as vulnerable to extinction by
UNESCO (Moseley, 2010). It is a tonal language
with weakly suffixing, agglutinative morphology
(Chelliah, 1997). The data is stored at CoRSAL.5

3https://digital.library.unt.edu/
explore/collections/SAALT

4The Lezgi is currently being deposited at the SIL Lan-
guage and Cultures Archives.

5https://digital.library.unt.edu/
explore/collections/MDR

https://digital.library.unt.edu/explore/collections/SAALT
https://digital.library.unt.edu/explore/collections/SAALT
https://digital.library.unt.edu/explore/collections/MDR
https://digital.library.unt.edu/explore/collections/MDR
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Natügu [ntu] belongs to the Reefs-Santa Cruz
group in the Austronesian family spoken by about
4,000 people in the Temotu Province of the
Solomon Islands. It has mainly agglutinative
morphology with complex verb structures (Åshild
Næss and Boerger, 2008). The data is stored at
SIL Language & Culture Archives.6

Gold standard data was assembled by filtering
out tokens that were not completely segmented
and glossed as far as could be determined automat-
ically by assuring that the surface, canonical, and
gloss lines aligned with each other. Morpheme
boundary markers such as hyphens and equal signs
were preserved to distinguish clitics from bound
morphemes and to indicate relative ordering of
morphemes (i.e. pre-/suf/infixing); angle brackets
(〈 〉) were used to denote circumfixes.

4 Models

All tasks are treated as a problem of converting
an input sequence of characters x = (x1, . . . , xn)
to an output sequence of labels y = (y1, . . . , yn).
The output sequence of labels indicate the (canon-
ical or surface) morpheme and/or the morpheme’s
gloss. Since Conditional Random Fields (CRF)
(Lafferty et al., 2001), the state-of-art non-neural
sequence labeling model, has not performed as
well as neural models on low-resource sequence-
to-sequence tasks since about 2016 (Liu and Mao,
2016), we selected the Transformer (Vaswani
et al., 2017) as our model. The Transformer is a
supervised deep learning system that has achieved
promising results for NLP in low-resource lan-
guages (Abbott and Martinus, 2018; Martinus
and Abbott, 2019). It is a stateless encoder-
decoder model that uses additional attention lay-
ers to boost speed and performance. We used
the Fairseq (Ott et al., 2019) implementation
with the modifications and code described by Wu
et al. (2020) which have been successful in low-
resource character-level morphological tasks.7

5 Segmentation and Glossing
Experiments

The experiments assume access to field data that
has only been segmented and glossed. Therefore,
no other information was leveraged from the in-

6https://www.sil.org/resources/search/
language/ntu

7Code available here: github.com/shijie-wu/
neural-transducer

terlinearized glossed texts or elsewhere. The data
was arranged so as to accommodate both joint and
sequential learning. That is, after withholding ten
percent of the corpus as a test set, the remaining
data was split into two equal training sets. It is
assumed that segments and glosses exist for the
first part which can be used for training in the se-
quential system, but not for the second part. Ten
percent of each part was used as a development
set. For easier comparison, the joint model was
trained on only one part, the same part used for
training the segmentation step in the sequential
system. One additional experiment was run with
the joint model that trained on both parts together,
minus the held-out data. For each experiment, a
ten-fold cross validation was run.

5.1 Joint versus Sequential System

The first experiment tested whether joint or se-
quential segmentation and glossing is a better ap-
proach to interlinearization when integrating au-
tomated assistance. Joint segmentation assumes
that segmented data without glosses is unlikely
because identifying a morpheme usually means
there has already been an identification of the mor-
pheme’s meaning. Joint segmentation requires the
model to learn the morpheme boundary and gloss
simultaneously for each segment. The sequen-
tial system–glossing after segmenting the whole
text—assumes that segmentation is easier to do by
hand or that unsupervised segmentation tools such
as Morfessor (Smit et al., 2014) are available for
low-resource languages.

For joint learning, the input is a character-level
representation of a word, shown in (2a). Each
character is treated as as separate symbol by the
model. The output is a sequence of labels, one la-
bel per morpheme, shown in (2b). The label com-
bines the morpheme’s shape and gloss. The com-
bination allows the system to perform segmenta-
tion and glossing simultaneously.

(2) a. IN: t a x e s

b. OUT: tax#levy -es#PL

The sequential system trains two models: one
model learns morpheme segments and the other
learns to gloss the predicted morphemes. In the
sequential system the first equal part of the data
was used for the segmentation step and its output
was the training input for the glossing step. The

https://www.sil.org/resources/search/language/ntu
https://www.sil.org/resources/search/language/ntu
github.com/shijie-wu/neural-transducer
github.com/shijie-wu/neural-transducer
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output to the first model is a sequence of segments
only, shown in (3b).

(3) a. IN: t a x e s

b. OUT: tax -es

The output of the segmentation model is used as
input to the second model, as shown in (4a.) The
glossing model then outputs the predicted glosses,
shown in (4b).

(4) a. IN: tax -es

b. OUT: levy PL

5.2 Segmentation Strategy
The second experiment compares the Trans-
former’s performance when trained on different
segmentation strategies. Both systems described
above are trained on both strategies. Canonical
segmentation gives more information about a lan-
guage’s underlying morphological structure. At
the same time, it reduces the number of unique
labels in languages that reflect allomorphy and
morphophonological processes in the orthography.
On the other hand, surface segmentation does not
require computational models to learn allomor-
phy or morphophonology (Goldsmith et al., 2017)
and does not provide a thorough analysis of the
language’s morphology by annotators. It sim-
ply divide strings of text into segments known as
“morphs” (Virpioja et al., 2011) without regard to
potential relationships between the segments.

The intention of this study is not to provide a
direct comparison, since technically the corpora
of surface and canonical segments are different
datasets. The study assumes that if one strategy
was conducted first, then the other type of segmen-
tation might be more easily learned from it. For
example, if a corpus could be surface segmented
very quickly with very high accuracy based on ini-
tial hypotheses of morpheme shapes, then having
the predicted surface segments for the whole cor-
pus might make the discovery of canonical, under-
lying morphemes easier and faster for linguists, as
well as matching a common expectation in NLP.

The difference in the methodology of the two
strategies is their outputs. Their input does not
change and it is the same as the models described
in section 5.1. The output for surface segmenta-
tion is shown (5a), and the corresponding output
for canonical segmentation is in (5b).

Surface Canonical
Joint Seq Joint Seq

Alas .4280 .4565 .5166 .5291
Lamkang .7091 .7391 .5414 .5785
Lezgi .5489 .6062 .4993 .5371
Manipuri .4719 .5067 .6401 .6675
Natügu .5423 .5263 .6083 .6335
Average .5400 .5670 .5011 .5895

Table 2: F1-scores of Transformer joint and sequential
models on both segmentation strategies. Scores are an
average across a 10-fold cross-validation. The bottom
row shows the average score across all languages.

(5) a. SURFACE: tax#levy -es#PL

b. CANON.: tax#levy -s#PL

In addition to the alternation between sur-
face morphs and underlying morpheme represen-
tations, the data was handled slightly differently
for the two strategies. The most obvious difference
is the handling of circumfixes. Surface represen-
tation only preserves the ordering of morphs and
does not require knowledge of morpheme types,
so the two parts of each circumfix were treated as
two different prefix and suffix morphs. Canonical
segmentation represents the circumfix as a single
morpheme that repeats before and after the stem.
These changes are shown in (6).

(6) a. SURFACE: ke- STEM -en

b. CANON.: ke〈〉en- STEM -ke〈〉en

6 Results

Performance was evaluated by a cross-validation
on ten training and development sets that were
randomly split from the part of the data used for
each experiment. The system predictions were
automatically evaluated against the gold standard.
Scores were calculated as a micro-average on all
labels, independent of word accuracy. Since the
system may predict more or fewer labels for a
word, both precision and recall are calculated. Ta-
ble 2 compares the average F1-scores across a 10-
fold validation. For joint learning, the scores in-
dicate morphemes that were correctly segmented
and glossed. For the sequential system, the score
is a weighted average of the scores from both the
segmentation and glossing models.
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6.1 Joint vs Sequential Results

Overall, sequential learning does better than joint
learning, but the differences are not great. The
maximum improvement is less than 0.06 points
on Lezgi [lez]. The best models achieved over
0.60 F1 on all but the smallest corpus. Lamkang
[lmk], which has the largest number of tokens by
far, achieved over 0.70 average F1 score.

The performance on the Natügu data is the
only case where the sequential system is not con-
sistently an improvement over the joint system.
When considering word-level accuracy, Natügu
joint learning outperformed sequential learning on
canonical segmentation. Interestingly, it also has
the smallest change in the number of unique la-
bels between surface and canonical segmentation
(an increase of 14 labels, compared to next lowest
of 46). With so few languages, it is difficult to say
whether the relative number of unique labels affect
the relative performance when trained on surface
vs. canonical segmentation. More corpora should
be included for this question to be explored fur-
ther.

6.2 Surface vs. Canonical Results

When half of the total data is used, the compari-
son of surface and canonical segmentation paints
a less clear picture. The differences when going
from surface to canonical segmentation are shown
in Table 3. The general trend when comparing
segmentation strategies is that languages with a
higher ratio of unique labels to total tokens do
better with canonical segmentation. The differ-
ences are quite small for Alas [btz], Lezgi, and
Natügu [ntu]. The biggest differences are found in
Lamkang and Manipuri [mni], but their improve-
ment goes in opposite directions. Surface seg-
mentation gives higher scores for Lamkang data
while Manipuri has higher scores with canoni-
cal. Interestingly, these two languages have the
largest difference of the number of unique labels
between surface and canonically segmented data.
In Lamkang and Manipuri training data, the av-
erage number of unique joint labels increased by
over 500 and 400, respectively, and in the seg-
mentation step of the sequential system the num-
ber of segments increased by over 350. In the
other languages the largest average increase of la-
bels is 88 but usually the differences are less than
15. Since Lamkang and Manipuri belong to the
same family, it is possible that significant differ-

Joint Seq
Alas -.0886 -.0726
Lamkang .1677 .1606
Lezgi .0496 .0691
Manipuri -.1682 -.1608
Natügu -.0660 -.1072

Table 3: Average F1 differences between surface and
canonical segmentation strategies. Positive scores
mean surface segmentation outperformed canonical
segmentation.

Surface Canon
Alas .4280 .5166
Alas all .6771 .6902
Lamkang .7091 .5414
Lamkang all .8547 .8573
Lezgi .5489 .4993
Lezgi all .7834 .7735
Manipuri .4719 .6401
Manipuri all .8693 .8903
Natügu .5423 .6083
Natügu all .8965 .8995

Table 4: Results the joint model with surface and
canonical segmentation strategies when using half the
training data compared to all training data.

ences in segmentation strategies are due to charac-
teristics of their familial morphological structure,
but it could be due to other factors such as idiosyn-
cratic choices in the orthographic representation.

The differences in the results in both joint and
sequential systems are shown in Table 3. The ef-
fect of the segmentation strategy is roughly the
same in both systems.

The segmentation strategies were also com-
pared using all available data in the joint system.
Table 4 shows the how doubling the training data
affects the performance. Doubling the training
data always improves F1-scores by about .2 to
.4 points. While the difference between the two
strategies becomes less noticeable when the data
is increased, canonical segmentation tends to out-
perform surface segmentation, but in all languages
the difference between the strategies becomes al-
most negligible (less than .15 points).

7 Error Analysis

A closer look at the results reveals interesting pat-
terns. One significant factor in system perfor-
mance is sparsity of data. Unsurprisingly, most
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errors occur on rarer forms. Another factor is the
amount of inconsistencies or errors in the manu-
ally annotated data. Annotation quality can am-
plify data sparsity.

Allomorphy and isomorphy (same character se-
quence, different meaning) caused repeated errors
during the glossing step and joint learning, where
it becomes quite obvious that the model must deal
with multiple options. For example, the Lezgi suf-
fix -di8 has five possible glosses as shown by the
joint labels in (7). These morphological phenom-
ena are a moot issue during the segmentation step.

(7) -ди#ENT

-ди#DIR

-ди#ERG

-ди#OBL

-ди#SBST

Sometimes multiple glosses are not due to
morphological structure, but because the same
morph(eme) was given different glosses. For
example, interchanging ‘be’ and ‘is’ and ‘COP’
for copular verbs or alternating between lexical
glosses (e.g. ‘you’) and grammatical glosses (e.g.
‘2SG.ERG’). Sometimes different glosses appear
because the item can be translated by different En-
glish words depending on the context. For ex-
ample, one Lezgi word can be, and is, translated
as ‘be’ in some context or ’happen’ in others. If
alternative labels such as bahaye#danger and ba-
haye#dangerous are equally frequent, the model
must choose randomly. Such inconsistency is to
be expected from manual work and could be re-
duced with more automated assistance from ma-
chine learning.

Another pattern of errors is caused by tokens
that were only partially segmented (and therefore,
not correctly glossed). We knew that many such
tokens were included in the gold standard data but
there was no reliable way to eliminate them au-
tomatically. It is unclear how many exist in each
corpus, although Alas and Natügu seem to have
the least. Manipuri [mni] and Lezgi seem to have
most incomplete segmentation. This became clear
for Manipuri during another project when a lan-
guage expert was asked to the correct the glosses
for several inflected words. It appears that, in
the data set, the annotators had been focused only
on segmented and glossing certain morphemes on

8In running text, Lezgi text is transliterated from the
Cyrillic orthography for the reader’s convenience.

each word, leaving other affixes on the word un-
segmented. The Lezgi data was annotated by a
non-linguist who was trained to use FLEx and did
not fully grasp Lezgi’s unique morphology or sim-
ply did not finish segmenting all words.

Many quality issues unpredictably increase
the number of possible labels and amplify
data sparsity. An example is repeated mis-
pelling of glosses (e.g. apperance—appereance—
appearance, fourty—forty). Other misspellings
originate in transcription. In the Lezgi test
data, over 50 misspelled or incorrectly segmented
strings were found in the first 200 hundred unique
segments, although a few spelling changes are rep-
resentation of dialectical variations.

The results from the Alas corpus were quite
good when compared to the much larger corpora.
However, the errors are less predictable and more
random. It seems likely that the small data set
increased the noise to signal ratio and obscured
general patterns. One noticeable confusion was
caused by the canonical representation of circum-
fixes. This is shown in (8) where the model pre-
dicted a prefix n-. This prefix is a correct surface
allomorph of the circumfix at that position.

(8) a. GOLD: n〈〉ken- nindekh -n〈〉ken
OUTPUT: n- nindekh -n〈〉ken

Nevertheless, error analysis shows that the mod-
els deal with data sparsity quite well. Even in-
correct segments often have very similar character
sequences to the correct choice, particularly when
the difference is due to a change in the root vowel
(e.g. dakhi ∼ dikhi). One of the most interest-
ing errors, indicating the model’s strong ability to
learn patterns even in the face of data sparsity, oc-
curred in Lezgi. The transcribed oral speech has a
few dozen codeswitched Russian words. The test
data include one or two examples, and in one case
the model substituted one codeswitched word with
another codeswitched word.

Many errors noted during error analysis were
not actually errors. Since the annotation was orig-
inally done by hand, sometimes by multiple an-
notators, the glosses varied due to misspellings or
synonomous glossing choices (e.g. ’BE.PST’ vs.
’was’). There was a clear pattern in all datasets
for one of the variants to be predicted rather than
a random, unrelated label. These cases would
not be considered errors by human annotators but
were evaluated automatically as errors in the test
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data. For instance, one Lezgi demonstrative pro-
noun was sometimes glossed as ‘these’ and some-
times as ‘this -ABS.PL’. In at least once case, the
second (and more linguistically precise) analysis
was predicted. Unfortunately, because we did not
have access to language experts for every corpora,
we were not able to normalize our scores based on
this knowledge; however, in the future it may be
useful to consider that the performance of mod-
els trained on field data may, for all practical pur-
poses, be better than the initial scores indicate.

In other cases, the labels in the test data were
evaluated as errors, but closer examination re-
vealed that the original human annotation were
incorrect in that particular instance and the pre-
dicted label was actually the best fit to the data.
So, an human error had been “corrected”. Word
instances that had been incorrectly segmented by
the human annotators were sometimes correctly
segmented by the model, although again these ex-
amples were evaluated as incorrect because they
did not match the gold standard data. For Lezgi,
these examples of “correction” by the model were
more frequent in the sequential system, and may
explain why biggest improvement by the sequen-
tial system over the joint system is found in the
Lezgi data, which we know had many incorrect or
incomplete segmentations. Again, due to the lack
of language experts, we are unable to say whether
this holds true for all corpora but this should be
explored deeper in future research.

8 Discussion and Conclusions

This paper is aimed at smoothing the road to more
interdisciplinary work with NLP and linguistics by
articulating and examining the results of different
research designs. Different research designs arise
from different expectations or conventions in the
two fields. Although they do not present barri-
ers to mutually beneficial research, different ex-
pectations, such as in segmentation strategies, and
different workflows, such as joint or separate seg-
mentation/glossing, should not be dismissed when
they arise. This paper tests the possible effects of
these two differences.

The small difference between surface and
canonical segmentation for three of the five lan-
guages suggests either strategy is a useful ap-
proach with minimal data, although this changes
when data is increased in the joint model. Even
though surface segmentation increases the num-

ber of labels in a dataset, this appears to be bal-
anced by the by the abstract character of canonical
morphemes, most noticeably by circumfixes. The
fact that the difference almost disappears when the
data size is doubled indicates that the question of
segmentation strategy can be eliminated by sim-
ply annotating more data with whatever strategy
suits the project at hand. However, larger dif-
ferences on Lamkang and Manipuri corpora in-
dicate that the reasons why segmentation strate-
gies does sometimes differ in performance on the
same corpsu should be explored more across other
Tibeto-Burman languages. Testing the differences
in related languages might indicate whether cer-
tain linguistics features influence the results of
different segmentation strategy when integrating
NLP systems.

The consistent improvement of the sequential
system over joint learning may be a reason to con-
sider separating segmentation and glossing tasks
in order to leverage the higher accuracy of seg-
mentations , and a more completely segmented
corpus, when glossing the corpus. The strenght of
the sequential system might be applied when a cor-
pus cannot be completely segmented and glossed
due to budget or time constraints. Instead, a strat-
egy would be to prioritize segmenting and benefit
from computational assistance when glossing.

Finally, these studies could serve as a foun-
dation towards more efficient use of computa-
tional methods in linguistic analysis and annota-
tion. This paper shows, for example, that the
glossing-only model performs well even on in-
accurate segmentation predictions and can even
“correct” manual segmentation errors. The study
presented here assumes that the model’s segmen-
tation is not corrected by the language experts be-
fore training the glossing model. If a human-
in-the-loop workflow was introduced to first cor-
rect segmentations, then the glossing-only model
could improve even more. Such methodological
considerations should be tested to see to what ex-
tent linguistic analysis and annotation of endan-
gered language might benefit.

Finally, as McMillan-Major (2020) noted in
glossing research, consistency of the annotations
has a strong effect on system performance. This
is most clearly seen in Lezgi which is known
to be particularly noisy. Random strange char-
acters were found at morpheme boundaries (e.g.
* instead of -). The human annotators fre-
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quently segmented one pair of characters when-
ever it occurred because it matched a frequent suf-
fix. Allomorphs were frequently glossed as if they
were different morphemes, undoing the benefit of
canonical segmentation. Finally, its unique case-
stacking caused confusion both to the human an-
notator and to the system results, in particular be-
cause one morpheme with several semantically-
motivated allomorphs is (incorrectly) glossed one
way when it stands as a single case marker and
glossed another way when it precedes additional
case markers.

So what would happen if linguists emphasized
quality over quantity? We can answer this ques-
tion by comparing Lezgi to Alas. According to the
accounts of the linguists involved, and evidenced
by our experimental results, the Alas data was an-
notated much more consistently and meticulously.
With a corpus one third the size of the Lezgi cor-
pus, the Alas model performs almost equally well.
It is possible but seems unlikely that this is due to
differing morphological structure. Unlike Lezgi—
which is overwhelmingly suffixing and has fairly
limited morphophonological changes—Alas fea-
tures prefixing, suffixing, circumfixing, and infix-
ing with various morphophonological processes.
The main difficulty for the Alas systems was the
sparsity of stems, compared to oft-repeated af-
fixes.

Interestingly, Alas showed the least marked
preference between sequential and joint learning.
This may indicate that higher consistency may
eliminate the need to consider any change to seg-
mentation/glossing workflow, but it should be in-
vestigated with further experiments focused on
differences in annotation quality. Preferably these
experiments would conducted on closely related
languages to reduce effects due to different typol-
ogy.

When considering low-resource settings, con-
sistency for machine learning seems more impor-
tant than data size, strategy, or workflow. Ruthless
consistency is not something linguists have had
reason to put high value on and it is not something
to be expected by manual annotation, Consistency
can be provided by machine learning integration,
but ironically, supervised machine learning needs
high consistency in annotated data before it can
perform accurately enough to assist human anno-
tators by increasing their speed or accuracy. Our
best estimate of the accuracy threshold for practi-

cal integration of machine learning into annotation
is 60% (Felt, 2012). This threshold on F1-scores
was soundly passed by Lamkang because it over
18k manually annotated tokens for training but it
was barely reached by the corpora with 4.5k-5.5k
tokens. However, the meticulously annotated Alas
corpus came close to this threshold with only 1.5k
training tokens. If linguists wish to successfully
integrate machine learning into the documentation
and description of underdocumented and endan-
gered languages, then they must adopt from NLP
an emphasis on highly consistent annotation.

References
Jade Z. Abbott and Laura Martinus. 2018. Towards

neural machine translation for African languages.
arXiv:1811.05467 [cs, stat].
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