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Abstract

Text discourse parsing weighs importantly in
understanding information flow and argumen-
tative structure in natural language, making it
beneficial for downstream tasks. While pre-
vious work significantly improves the perfor-
mance of RST discourse parsing, they are not
readily applicable to practical use cases: (1)
EDU segmentation is not integrated into most
existing tree parsing frameworks, thus it is
not straightforward to apply such models on
newly-coming data. (2) Most parsers cannot
be used in multilingual scenarios, because they
are developed only in English. (3) Parsers
trained from single-domain treebanks do not
generalize well on out-of-domain inputs. In
this work, we propose a document-level mul-
tilingual RST discourse parsing framework,
which conducts EDU segmentation and dis-
course tree parsing jointly. Moreover, we
propose a cross-translation augmentation strat-
egy to enable the framework to support mul-
tilingual parsing and improve its domain gen-
erality. Experimental results show that our
model achieves state-of-the-art performance
on document-level multilingual RST parsing
in all sub-tasks.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) is one of the predominant the-
ories for discourse analysis, where a document is
represented by a constituency tree with discourse-
related annotation. As illustrated in Figure 1, the
paragraph is split to segments named Elementary
Discourse Units (EDUs), as the leaf nodes of the
tree, and they are further connected by rhetor-
ical relations (e.g., Elaboration, Attribution) to
form larger text spans until the entire document
is included. The spans are further categorized
to Nucleus (the core part) or Satellite (the sub-
ordinate part) based on their relative importance
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e1[ The European Community’s consumer price index rose a
provisional 0.6% in September from August ] e2[ and was up
5.3% from September 1988, ] e3[ according to Eurostat, the
EC’s statistical agency. ] e4[ The month-to-month rise in the
index was the largest since April, ] e5[ Eurostat said. ]

Figure 1: One constituency tree with RST discourse
annotation. ei, N and S denote elementary discourse
units, nucleus, and satellite, respectively. Nuclearity
and discourse relations are labeled on each span pair.

in the rhetorical relations. Thus, document-level
RST discourse parsing consists of four sub-tasks:
EDU segmentation, tree structure construction, nu-
clearity determination, and relation classification.
Since discourse parsing provides structural infor-
mation of the narrative flow, downstream natural
language processing applications, such as reading
comprehension (Gao et al., 2020), sentiment anal-
ysis (Bhatia et al., 2015), and text summarization
(Liu and Chen, 2019), can benefit from incorporat-
ing semantic-related information.

RST discourse parsing has been an active re-
search area, especially since neural approaches and
large-scale pre-trained language models were intro-
duced. On the test set of the English RST bench-
mark (Carlson et al., 2002), the performance of
automatic parsing is approaching that of human
annotators. However, compared with other off-
the-shelf text processing applications like machine
translation, RST parsers are still not readily appli-
cable to massive and diverse samples due to the
following challenges: (1) Most parsers take EDU
segmentation as a pre-requisite data preparation
step, and only conduct evaluations on samples with
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gold EDU segmentation. Thus it is not straight-
forward to utilize them to parse raw documents.
(2) Parsers are primarily optimized and evaluated
in English, and are not applicable on multilingual
scenarios/tasks. Human annotation under the RST
scheme is labor-intensive and requires specialized
linguistic knowledge, resulting in a shortage of
training data especially in low resource languages.
(3) Data sparsity also leads to limited generaliza-
tion capabilities in terms of topic domain and lan-
guage variety, as the monolingual discourse tree-
banks usually concentrate on a specific domain.
For instance, the English RST corpus is comprised
of Wall Street Journal news articles, thus its parser
might not perform well on scientific articles.

In this paper, to tackle the aforementioned chal-
lenges, we propose a joint framework for document-
level multilingual RST discourse analysis. To
achieve parsing from scratch, we enhance a top-
down discourse parsing model with joint learning
of EDU segmentation. Since the well-annotated
RST treebanks in different languages share the
same underlying linguistic theory, data-driven ap-
proaches can benefit from joint learning on multilin-
gual RST resources (Braud et al., 2017a). Inspired
by the success of mixed multilingual training (Liu
et al., 2020), we further propose a cross-translation
data augmentation strategy to improve RST parsing
in both language and domain coverage.

We conduct extensive experiments on RST
treebanks from six languages: English, Spanish,
Basque, German, Dutch, and Portuguese. Experi-
mental results show that our framework achieves
state-of-the-art performance in different languages
and on all sub-tasks. We further investigate the
model’s zero-shot generalization capability, by as-
sessing its performance via language-level cross
validation. Additionally, the proposed framework
can be readily extended to other languages with
existing treebanks. The pre-trained model is built
as an off-the-shelf application, and can be applied
in an end-to-end manner.

2 Related Work

RST Discourse Parsing Discourse structures de-
scribe the organization of documents/sentences in
terms of rhetorical/discourse relations. The Rhetor-
ical Structure Theory (RST) (Mann and Thompson,
1988) and the Penn Discourse TreeBank (PDTB)
(Prasad et al., 2008) are the two most prominent the-
ories of discourse analysis, where they are at doc-

ument level and sentence level respectively. The
structure-aware document analysis has shown to
be useful for downstream natural language pro-
cessing tasks, such as sentiment analysis (Bhatia
et al., 2015) and reading comprehension (Gao et al.,
2020). Many studies focused on developing auto-
matic computational solutions for discourse pars-
ing. Statistical approaches utilized various linguis-
tic characteristics such as N -gram and lexical fea-
tures, syntactic and organizational features (Sagae,
2009; Hernault et al., 2010; Li et al., 2014; Heil-
man and Sagae, 2015), and had obtained substan-
tial improvement on the English RST-DT bench-
mark (Carlson et al., 2002). Neural networks have
been making inroads into discourse analysis frame-
works, such as attention-based hierarchical encod-
ing (Li et al., 2016) and integrating neural-based
syntactic features into a transition-based parser (Yu
et al., 2018). Lin et al. (2019) explored encoder-
decoder neural architectures on sentence-level dis-
course analysis, with a top-down parsing procedure.
Recently, pre-trained language models were intro-
duced to document-level discourse parsing, and
boosted the overall performance (Shi et al., 2020).

Multilingual Parsing Aside from the English
treebank, datasets in other languages have also been
introduced and studied, such as German (Stede and
Neumann, 2014), Dutch (Redeker et al., 2012), and
Basque (Iruskieta et al., 2013). The main challenge
of multilingual discourse parsing is the sparsity of
annotated data. Braud et al. (2017a) conducted a
harmonization of discourse treebanks across anno-
tations in different languages, and Iruskieta and
Braud (2019) used multilingual word embeddings
to train systems on under-resourced languages. Re-
cently, Liu et al. (2020) proposed a multilingual
RST parser by utilizing cross-lingual language
model and EDU segment-level translation, obtain-
ing substantial performance gains.

EDU Segmentation EDU segmentation identi-
fies the minimal text spans to be linked by dis-
course relations. It is the first step in building dis-
course parsers, and often studied as a separated
task in discourse analysis. Existing segmenters
on the English discourse corpus achieve sentence-
level results with 95% F1 scores (Li et al., 2018),
while document-level segmentation is more chal-
lenging. Muller et al. (2019) proposed a discourse
segmenter that supports multiple languages and
schemes. Recently, taking segmentation as a se-
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Figure 2: The architecture of the proposed joint document-level neural parser. A segmenter is first utilized to
predict the EDU breaks, and a hierarchical encoder is used to generate the EDU representations. Then, the pointer-
network-based decoder and the relation classifier predict the tree structure, nuclearity, and rhetorical relations. t, e
and h denote input tokens, encoded EDU representations, and decoded hidden states. The stack S is maintained
by the decoder to track top-down depth-first span splitting. With each splitting pointer k, sub-spans ei:k and ek+1:j

are fed to a classifier Φ for nuclearity and relation determination.

quence labeling task was shown to be effective
in reaching strong segmentation results. Fusing
syntactic features to language models was also in-
troduced (Desai et al., 2020). In this work, to the
best of our knowledge, we are the first to build a
joint framework for document-level multilingual
RST discourse analysis that supports parsing from
scratch, and can be potentially extended to any lan-
guage by text-level transformation.

3 Methodology

In this section, we elaborate on the proposed joint
multilingual RST discourse parsing framework.
We first integrate EDU segmentation into a top-
down Transformer-based neural parser, and show
how to leverage dynamic loss weights to control
the balance of each sub-task. We then propose
cross-translation augmentation to improve the mul-
tilingual and domain generalization capability.

3.1 Transformer-based Neural Parser
The neural model consists of an EDU segmenter,
a hierarchical encoder, a span splitting decoder
for tree construction, and a classifier for nuclear-
ity/relation determination.

3.1.1 EDU Segmentation
The EDU segmentation aims to split a document
into continuous units and is usually formulated to
detect the span breaks. In this work, we conduct
it as a sequence labeling task (Muller et al., 2019;
Devlin et al., 2019). Given a document containing

n tokens, an embedding layer is employed to gener-
ate the token-level representations T = {t1, ..., tn},
in particular, a pre-trained language backbone is
used to leverage the resourceful prior knowledge.
Instead of detecting the beginning of each EDU
as in previous work (Muller et al., 2019), here we
propose to predict both EDU boundaries via token-
level classification. In detail, a linear layer is used
to predict the type of each token in one EDU span,
i.e., at the begin/intermediate/end position.1 For
extensive comparison, we also implement another
segmenter by using a pointer mechanism (Vinyals
et al., 2015). Results in Table 3 show that the token-
level classification approach consistently produces
better performance.

3.1.2 Hierarchical Encoding
To obtain EDU representations with both local
and global views, spans are hierarchically mod-
eled from token and EDU-level to document-level.
For the document containing n tokens, the initial
EDU-level representations are calculated by av-
eraging the token embeddings ti:j of each EDU,
where i, j are its boundary indices. Then they are
fed into a Bidirectional-GRU (Cho et al., 2014) to
capture context-aware representations at the docu-
ment level. Boundary information has been shown
to be effective in previous discourse parsing studies
(Shi et al., 2020), thus we also incorporate bound-
ary embeddings from both ends of each EDU to

1For the EDU that only contains one token, its begin and
end position are the same.



157

implicitly exploit the syntactic features such as part-
of-speech (POS) and sentential information. Then,
the ensemble representations are fed to a linear
layer, and we obtain the final contextualized EDU
representations E = {e1, ..., em}, where m is the
total number of EDUs.

3.1.3 Tree Structure Construction
The constituency parsing process is to analyze
the input by breaking down it into sub-spans also
known as constituents. In previous studies (Lin
et al., 2019; Shi et al., 2020), with a generic
constituency-based decoding framework, the dis-
course parsing results of depth-first and breadth-
first manner are similar. Here the decoder builds
the tree structure in a top-down depth-first man-
ner. Starting from splitting a span with the entire
document, a pointer network iteratively decides the
delimitation point to divide a span into two sub-
spans, until it reaches the leaf nodes with only one
EDU. As the parsing example illustrated in Figure
2, a stack S is maintained to ensure the parsing
is conducted under the top-down depth-first man-
ner, and it is initialized with the span containing all
EDUs e1:m. At each decoding step, the span ei:j
at the head of S is popped to the pointer network
to decide the split point k based on the attention
mechanism (Bahdanau et al., 2015).

st,u = σ(ht, eu) for u = i...j (1)

at = softmax(st) =
exp(st,u)∑j
u=i exp(st,u)

(2)

where σ(x, y) is the dot product used as the atten-
tion scoring function. The span ei:j is split into two
sub-spans ei:k and ek+1:j . The sub-spans that need
further processing are pushed to the top of the stack
S to maintain depth-first manner. The decoder iter-
atively parses the spans until S is empty.

3.1.4 Nuclearity and Relation Classification
At each decoding step, a bi-affine classifier is em-
ployed to predict the nuclearity and rhetorical rela-
tions of two sub-spans ei:k and ek+1:j split by the
pointer network. More specifically, the nuclearity
labels Nucleus (N) and Satellite (S) are attached
together with rhetorical relation labels (e.g., NS-
Evaluation, NN-Background). In particular, the
EDU representations are first fed to a dense layer
with Exponential Linear Unit (ELU) activation for
latent feature transformation, and then a bi-affine

layer (Dozat and Manning, 2017) with softmax ac-
tivation is adopted to predict the nuclearity and
rhetorical relations.

3.2 Dynamic Weighted Loss

The training objective of our framework is to min-
imize the sum of the loss Le of document-level
EDU segmentation, the loss Ls of parsing the cor-
rect tree structure, and the loss Ll of predicting the
corresponding nuclearity and relation labels:

Le(θe) = −
N∑
n=1

logPθe(yn|X) (3)

Ls(θs) = −
T∑
t=1

logPθs(yt|y1, ..., yt−1, X) (4)

Ll(θl) = −
M∑
m=1

R∑
r=1

logPθl(ym = r|X) (5)

Ltotal(θ) = λ1Le(θe) + λ2Ls(θs) + λ3Ll(θl) (6)

where X is the given document, θe, θs and θl are
the parameters of the EDU segmenter, the tree struc-
ture decoder, and the nuclearity-relation classifier,
respectively. N and T are the total token number
and span number. y1, ..., yt−1 denote the sub-trees
that have been generated in the previous steps. M
is the number of spans with at least two EDUs,
and R is the total number of pre-defined nuclearity-
relation labels.

To find the balance of training multiple objec-
tives, we adopt the adaptive weighting (Liu et al.,
2019) to dynamically control the weights of multi-
ple tasks. Specifically, each task k is weighted by
λk, where λk is calculated as:

wk(i− 1) =
Lk(i− 1)

Lk(i− 2)
(7)

λk(i) =
K · exp(wk(i− 1)/Temp)∑

j exp(wj(i− 1)/Temp)
(8)

where i is the training iterations, K is the task num-
ber, and Temp represents the temperature value
that smooths the loss from re-weighting. In our
experimental settings, adopting dynamic weighted
loss brought about relative 2.5% improvement on
all sub-tasks.

3.3 Cross Translation Augmentation

Data augmentation is an effective approach to
tackle the drawbacks of low resource training by
creating additional data from existing samples. For
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Figure 3: Overview of single direction translation (a)
and cross-translation strategy (b). Here we take 4 lan-
guages as an example. Arrows denote the translate di-
rections.

English (Source Text)
e1[ The European Community’s consumer price index rose a
provisional 0.6% in September from August ] e2[ and was up
5.3% from September 1988, ] e3[ according to Eurostat, the EC’s
statistical agency. ] e4[ The month-to-month rise in the index
was the largest since April, ] e5[ Eurostat said. ]

Dutch (Translated Text)
e1[ De consumentenprijsindex van de Europese Gemeenschap
is in september met een voorlopige 0,6% gestegen ten opzichte
van augustus ] e2[ en steeg met 5,3% ten opzichte van september
1988, ] e3[ volgens Eurostat, het statistiekbureau van de EC. ]
e4[ De maand-op-maand stijging van de index was de grootste
sinds april, ] e5[ aldus Eurostat. ]

Spanish (Translated Text)
e1[ O índice de preços ao consumidor da Comunidade Europeia
subiu 0.6 % provisório em setembro ante agosto ] e2[ e aumentou
5.3 % em relação a setembro de 1988, ] e3[ de acordo com o
Eurostat, a agência de estatísticas da CE. ] e4[ A alta mensal do
índice foi a maior desde abril, ] e5[ Eurostat disse. ]

Table 1: One example of EDU segment-level transla-
tion. The three text samples share the same discourse
tree structure, nuclearity, and relation annotation.

instance, back translation, a popular data augmenta-
tion method, is widely applied to tasks like machine
translation (Edunov et al., 2018). Since the well-
annotated RST treebanks in different languages
share the same underlying linguistic theory, data-
driven approaches can benefit from joint learning
on multilingual RST resources. In previous work,
Liu et al. (2020) uniformed the multilingual task to
a monolingual one by translating all discourse tree
samples at the EDU level to English.

In this paper, we propose a cross-translation data
augmentation strategy.2 The method with single
direction translation converts all samples to one lan-
guage in both the training and the inference stage
(see Figure 3(a)). This approach cannot exploit the
capability of multilingual language backbones. It
also increases the test time due to additional compu-
tation for translation. In contrast, cross-translation

2The neural machine translation engine from Google is
used: https://cloud.google.com/translate.

Treebank Lang. Train No. Dev No. Test No.

English (En)
- English RST-DT 309 38 38
- English GUM-DT 78 18 18

Portuguese (Pt) 256 38 38
Spanish (Es) 203 32 32
German (De) 142 17 17
Dutch (Nl) 56 12 12
Basque (Eu) 84 28 28

Table 2: The collected RST discourse treebanks from 6
languages. We use the split of train, developmental and
test set, as well as the data pre-processing following
(Braud et al., 2017a).

will convert samples from one language to other
languages, to produce multilingual training data
(see Figure 3(b)). Thus the model is able to process
multilingual input during inference. As shown in
Table 1, adopting segment-level translation retains
the original EDU segmentation as the source text,
thus the converted sample in a target language will
share the same discourse tree structure and nuclear-
ity/relation labels. We postulate that this text-level
transformation will bridge the gaps among differ-
ent languages. Moreover, since different RST tree-
banks use articles from different domains (Liu et al.,
2020), we speculate that adopting cross-translation
can also increase domain coverage in the monolin-
gual space, and further improve the model’s overall
generalization ability.

4 Experimental Results

In this section, we elaborate on experiment settings
of the multilingual RST segmentation and parsing
task, compare our proposed framework with previ-
ous models, and conduct result analysis.

4.1 Multilingual Dataset

We constructed a multilingual data collection by
merging RST treebanks from 6 languages: En-
glish (En) (Carlson et al., 2002), Brazilian Por-
tuguese (Pt)3 (Cardoso et al., 2011; Pardo and
Nunes, 2004; Collovini et al., 2007; Pardo and
Seno, 2005), Spanish (Es) (Da Cunha et al., 2011),
German (De) (Stede and Neumann, 2014), Dutch
(Nl) (Redeker et al., 2012), and Basque (Eu) (Iruski-
eta et al., 2013), and their details are shown in Table

3The Portuguese RST dataset consists of 140 samples from
CST-News (Cardoso et al., 2011), 100 samples from Cor-
pusTCC (Pardo and Nunes, 2004), 50 samples from Summ-it
(Collovini et al., 2007), and 40 samples from Rhetalho (Pardo
and Seno, 2005).
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English (En) Portuguese (Pt) Spanish (Es) German (De) Dutch (Nl) Basque (Eu)

Braud et al. (2017b) 89.5 82.2 79.3 85.1 82.6 -
Muller et al. (2019) 93.7 91.3 88.2 94.1 90.7 85.8
Pointer-Net Segmenter 91.8 92.5 93.6 93.4 94.9 87.3
Boundary CLS Segmenter (Ours) 96.5 92.8 93.7 95.1 95.5 88.7

Table 3: Document-level multilingual EDU Segmentation performance on 6 languages. Micro F1 scores are
reported as in (Muller et al., 2019).

English (En) Portuguese (Pt) Spanish (Es)
Model Sp. Nu. Rel. Sp. Nu. Rel. Sp. Nu. Rel.

Yu et al. (2018) 85.5 73.1 60.2 - - - - - -
Iruskieta and Braud (2019) 80.9 65.5 52.1 79.7 62.8 47.8 85.4 65.0 45.8
Cross Rep. (Liu et al., 2020) 87.5 74.7 63.0 86.3 71.7 60.0 86.2 71.1 54.4
Segment Trans. (Liu et al., 2020) 87.8 75.4 63.5 86.5 72.0 60.3 87.9 71.4 56.1
DMRST w/o Cross Trans. 87.9 75.3 64.0 86.5 73.3 61.5 88.2 73.7 60.3
DMRST (Our Framework) 88.2 76.2 64.7 87.0 74.3 62.1 88.7 75.7 63.4

German (De) Dutch (Nl) Basque (Eu)
Model Sp. Nu. Rel. Sp. Nu. Rel. Sp. Nu. Rel.

Cross Rep. (Liu et al., 2020) 83.6 62.2 45.1 85.9 64.5 49.4 85.1 65.8 47.7
Segment Trans. (Liu et al., 2020) 82.3 58.9 41.0 84.6 62.7 47.2 84.4 65.5 47.3
DMRST w/o Cross Trans. 83.1 62.2 45.9 85.5 64.4 50.6 80.2 59.8 42.1
DMRST (Our Framework) 84.3 64.1 47.3 85.6 66.3 52.3 85.1 67.2 48.3

Table 4: Document-level multilingual RST parsing comparison of baseline models and our framework. Sp., Nu.,
and Rel. denote span splitting, nuclearity determination, and relation classification, respectively. Micro F1 scores
of RST Parseval (Marcu, 2000) are reported. Here gold EDU segmentation is used for baseline comparison.

2. We conducted label harmonization (Braud et al.,
2017a) to uniform rhetorical definitions among dif-
ferent treebanks. The discourse trees were trans-
formed into a binary format. Unlinked EUDs
were removed. Following previous work, we re-
organized the discourse relations to 18 categories,
and attached the nuclearity labels (i.e., Nucleus-
Satellite (NS), Satellite-Nucleus (SN), and Nucleus-
Nucleus (NN)) to the relation labels (e.g., Elabo-
ration, Attribution). For each language, we ran-
domly extracted a set of samples for validation. The
original training size was 1.1k, and became 6.7k
with cross-translation augmentation. The sub-word
tokenizer of the ‘XLM-RoBERTa-base’ (Conneau
et al., 2020) is used for input pre-processing.

4.2 Evaluation Metrics

For EDU segmentation evaluation, micro-averaged
F1 score of token-level segment break classifica-
tion as in (Muller et al., 2019) was used. For tree
parsing evaluation, we applied the standard micro-
averaged F1 scores on Span (Sp.), Nuclearity-
Satellite (Nu.), and Rhetorical Relation (Rel.),
where Span describes the accuracy of tree structure
construction, Nuclearity-Satellite and Rhetorical
Relation assesses the ability to categorize the nu-
clearity and the discourse relations, respectively.

We also adopted Full to evaluate the overall per-
formance considering both Nuclearity-Satellite and
Relation together with Span as in (Morey et al.,
2017). Following previous studies, we adopted the
same 18 relations defined in (Carlson and Marcu,
2001). We reported the tree parsing scores in two
metrics: the Original Parseval (Morey et al., 2017)
and the RST Parseval (Marcu, 2000) for ease of
comparison with previous studies.

4.3 Training Configuration

The proposed framework was implemented with
PyTorch (Paszke et al., 2019) and Hugging Face
(Wolf et al., 2019). We used ‘XLM-RoBERTa-base’
(Conneau et al., 2020) as the language backbone,
and fine-tuned its last 8 layers during training. Doc-
uments were processed with the sub-word tokeniza-
tion scheme. The dropout rate of the language
backbone was set to 0.2 and that of the rest layers
was 0.5. AdamW (Kingma and Ba, 2015) optimiza-
tion algorithm was used, with the initial learning
rate of 2e-5 and a linear scheduler (decay ratio=0.9).
Batch size was set to 12. We trained each model for
15 epochs, and selected the best checkpoints on the
validation set for evaluation. For each round of eval-
uation, we repeated the training 5 times with differ-
ent random seeds and averaged their scores. The
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English (En) Portuguese (Pt) Spanish (Es)
Model Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg.

Original Parseval (Morey et al., 2017)
DMRST (Gold Seg.) 76.7 66.2 56.5 100.0 72.5 61.8 53.1 100.0 79.2 70.3 57.1 100.0
DMRST (Predicted Seg.) 70.4 60.6 51.6 96.5 62.5 51.6 44.7 92.8 71.2 60.1 50.9 93.7
w/o Cross Trans. (Predicted Seg.) 70.3 60.4 51.3 96.4 65.3 53.6 46.3 93.7 70.2 59.3 51.1 93.7

RST Parseval (Marcu, 2000)
DMRST (Gold Seg.) 88.2 76.2 64.7 100.0 87.0 74.3 62.1 100.0 88.7 75.7 63.4 100.0
DMRST (Predicted Seg.) 83.2 71.1 60.5 96.5 77.8 64.9 53.2 92.8 79.5 67.4 56.7 93.7
w/o Cross Trans. (Predicted Seg.) 83.0 70.8 60.7 96.4 78.4 65.3 54.7 93.7 79.4 66.9 56.5 93.7

German (De) Dutch (Nl) Basque (Eu)
Model Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg.

Original Parseval (Morey et al., 2017)
DMRST (Gold Seg.) 68.6 45.9 37.1 100.0 71.2 54.1 43.1 100.0 66.6 48.3 34.7 100.0
DMRST (Predicted Seg.) 58.1 40.1 32.3 95.1 62.3 46.6 39.4 95.5 53.3 39.1 31.2 88.7
w/o Cross Trans. (Predicted Seg.) 56.3 39.6 31.2 94.6 63.1 44.9 37.8 95.5 44.4 31.1 23.3 87.8

RST Parseval (Marcu, 2000)
DMRST (Gold Seg.) 84.3 64.1 47.3 100.0 85.6 66.3 52.3 100.0 85.1 67.2 48.3 100.0
DMRST (Predicted Seg.) 76.4 57.8 41.8 95.1 80.2 62.3 49.4 95.5 71.2 52.7 37.2 88.7
w/o Cross Trans. (Predicted Seg.) 75.4 57.0 41.1 94.6 80.1 61.9 48.3 95.5 66.0 47.5 33.0 87.8

Table 5: Multilingual parsing performance comparison of using gold and predicted EDU segmentation. Sp., Nu.,
Rel. and Seg. denote span splitting, nuclearity classification, relation determination, and segmentation, respectively.
Micro F1 scores of RST Parseval (Marcu, 2000) and Original Parseval (Morey et al., 2017) are reported. Scores
from the proposed framework are in bold for better readability.

total trainable parameter size was 91M, where 56M
parameters were from fine-tuning ‘XLM-RoBERTa-
base’. All experiments were run on a single Tesla
A100 GPU with 40GB memory.

4.4 EDU Segmentation Results
EDU segmentation is the first step of discourse
analysis from scratch, and its accuracy is important
for the follow-up parsing steps. Thus in this section,
we evaluate the performance of our boundary de-
tection segmenter, and compare it with state-of-the-
art document-level multilingual EDU segmenters
(Braud et al., 2017b; Muller et al., 2019). Addi-
tionally, we implemented our model with a pointer
mechanism (Vinyals et al., 2015; Li et al., 2018) as
a control study.

From the results shown in Table 3, our segmenter
outperforms baselines significantly in all languages.
This potentially results from adopting the stronger
contextualized language backbone (Conneau et al.,
2020). Moreover, conducting EDU segmentation
in a sequence labeling manner is more computation-
ally efficient, and achieves higher scores than the
pointer-based approach, which is consistent with
the observation from a recent sentence-level study
(Desai et al., 2020).

4.5 Multilingual Parsing Results
We compare the proposed framework with several
strong RST parsing baselines: Yu et al. (2018)

Model Sp. Nu. Rel. Full

(Zhang et al., 2020) 62.3 50.1 40.7 39.6
(Nguyen et al., 2021) 68.4 59.1 47.8 46.6
DMRST (only EN) 69.8 59.4 49.4 48.6
DMRST (Multilingual) 70.4 60.6 51.6 50.1

Table 6: Performance comparison on the English RST
treebank with predicted EDU segmentation.

proposed a transition-based neural parser, obtain-
ing competitive results in English. Iruskieta and
Braud (2019) introduced a multilingual parser
for 3 languages (English, Portuguese, and Span-
ish). Liu et al. (2020) proposed a multilingual
parser that utilized cross-lingual representation
(Cross Rep.), and adopted segment-level transla-
tion (Segment Trans.), and produced state-of-the-
art results on 6 languages. Aside from the proposed
model (DMRST), we added an ablation study on
the cross-translation strategy (DMRST w/o Cross
Trans.). In this section, we use the gold EDU
segmentation during the inference stage for a fair
comparison to the baselines.

From the results shown in Table 4: (1) Adopting
multilingual pre-trained language backbone signif-
icantly boosts the RST parsing performance. (2)
The multilingual model obtains further improve-
ment with the cross-translation augmentation in
all sub-tasks and languages. (3) All sub-tasks are
improved substantially compared to previous mul-
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English (En) Portuguese (Pt) Spanish (Es)
Model Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg.

Original Parseval (Morey et al., 2017)
DMRST w/o Cross Trans. 36.9 26.2 17.8 78.4 39.2 29.5 23.1 80.9 40.0 33.0 26.4 76.6
DMRST (Our Framework) 43.9 30.8 23.3 82.7 44.7 35.8 28.9 83.7 48.1 36.8 29.5 82.2

RST Parseval (Marcu, 2000)
DMRST w/o Cross Trans. 57.8 40.7 27.0 78.4 60.4 44.4 31.8 80.9 58.1 42.8 28.3 76.6
DMRST (Our Framework) 63.4 46.5 30.2 82.7 64.5 50.0 37.7 83.7 65.2 49.3 34.3 82.2

German (De) Dutch (Nl) Basque (Eu)
Model Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg. Sp. Nu. Rel. Seg.

Original Parseval (Morey et al., 2017)
DMRST w/o Cross Trans. 43.8 29.3 21.7 87.6 51.8 35.3 27.2 89.0 30.7 17.7 8.5 80.5
DMRST (Our Framework) 49.0 30.7 22.8 88.2 56.5 36.0 27.1 91.0 41.0 30.1 21.3 79.1

RST Parseval (Marcu, 2000)
DMRST w/o Cross Trans. 66.1 45.4 30.1 87.6 70.6 50.6 36.4 89.0 55.5 32.5 16.8 80.5
DMRST (Our Framework) 68.9 46.2 30.3 88.2 73.9 52.3 36.1 91.0 60.3 43.3 28.3 79.1

Table 7: Zero-shot performance comparison of models w/ and w/o cross-translation strategy. Sp., Nu., Rel. and
Seg. denote span splitting, nuclearity classification, relation determination, and segmentation, respectively. Micro
F1 scores of RST Parseval (Marcu, 2000) and Original Parseval (Morey et al., 2017) are reported.

tilingual baselines (Braud et al., 2017a; Liu et al.,
2020). Moreover, our model also outperforms the
state-of-the-art English RST parsers (see Table 6),
demonstrating that fusing multilingual resources is
beneficial for monolingual tasks.

4.6 Parsing from Scratch

In most previous work on RST parsing, EDU
segmentation is regarded as a separate data pre-
processing step, and the test samples with gold
segmentation are used for evaluation. However,
in practical cases, gold EDU segmentation is un-
available. Thus in this section, we assess the
proposed framework with the predicted segmen-
tation, simulating the real-world scenario. We
compare our model DMRST to the model with-
out cross-translation augmentation (DMRST w/o
Cross Trans.). Aside from the common metric
RST Parseval (Marcu, 2000) used in many prior
studies, we also report test results on the Original
Parseval (Morey et al., 2017).

From the results shown in Table 5, we observe
that: (1) EDU segmentation performance of the
two models are similar. This is likely because us-
ing lexical and syntactic information is sufficient
to obtain a reasonable result. (2) For both met-
rics, our framework achieves overall better perfor-
mance in all sub-tasks and languages, especially
in the lower resource languages like Basque and
Dutch. (3) Since the tree structure and nuclear-
ity/relation classification are calculated on the EDU
segments, their accuracy are affected significantly

by the incorrect segment predictions. For instance,
when gold segmentation is provided, DMRST out-
performs DMRST w/o Cross Trans. at all fronts.
However, the former produces slightly lower scores
than the latter in Portuguese, due to its suboptimal
segmentation accuracy (92.8 vs. 93.7). This also
emphasizes the importance of EDU segmentation
in a successful end-to-end RST parsing system.

5 Analysis on Zero-Shot Generalization

Incorporating discourse information is beneficial
to various downstream NLP tasks, but only a small
number of languages possess RST treebanks. Such
treebanks have limited annotated samples, and it is
difficult to extend their sample size due to annota-
tion complexity. To examine if our proposed mul-
tilingual framework can be adopted to languages
without any monolingual annotated sample (e.g.,
Italian, Polish), we conducted a zero-shot analysis
via language-level cross validation.

In each round, we select one language as the tar-
get language, and RST treebanks from the remain-
ing 5 languages are used to train the multilingual
parser. We then evaluate it on the test set from
the target language. For example, we assume that
a small set of Portuguese articles is to be parsed,
and we only have training samples from the other
5 languages (i.e., En, Es, De, Nl, and Eu). Then
zero-shot inference is conducted on Portuguese.
As shown in Table 7, compared with full training
(see Table 5), all the zero-shot evaluation scores
drop significantly, especially on English, since the
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English corpus is the most resourceful and well-
annotated RST treebank. Aside from English, the
other 5 languages result in acceptable performance
for zero-shot inference. With the cross-translation
augmentation, the proposed multilingual discourse
parser achieves higher scores, this is because (1)
the text transformation helps language-level gen-
eralization, and (2) the mixed data have a larger
domain coverage. For example, combining sam-
ples from Basque (science articles) with English
(finance news) makes model perform better on Por-
tuguese (science and news articles). This also sug-
gests that the multilingual parser can be extended to
other languages via cross-translation augmentation
from existing treebanks of 6 languages.

6 Conclusions

In this work, we proposed a joint framework for
document-level multilingual RST discourse pars-
ing, which supports EDU segmentation as well
as discourse tree parsing. Experimental results
showed that the proposed framework achieves state-
of-the-art performance on document-level multi-
lingual discourse parsing on six languages in all
aspects. We also demonstrated its inference capa-
bility when limited training data is available, and it
can be readily extended to other languages.
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