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Abstract

Indirect answers are replies to polar questions
without the direct use of word cues such as
‘yes’ and ‘no’. Humans are very good at un-
derstanding indirect answers, such as ‘I gotta
go home sometime’, when asked ‘You wanna
crash on the couch?’. Understanding indirect
answers is a challenging problem for dialogue
systems. In this paper, we introduce a new
English corpus to study the problem of under-
standing indirect answers. Instead of crowd-
sourcing both polar questions and answers, we
collect questions and indirect answers from
transcripts of a prominent TV series and man-
ually annotate them for answer type. The re-
sulting dataset contains 5,930 question-answer
pairs. We release both aggregated and raw
human annotations. We present a set of ex-
periments in which we evaluate Convolutional
Neural Networks (CNNs) for this task, includ-
ing a cross-dataset evaluation and experiments
with learning from disagreements in annota-
tion. Our results show that the task of interpret-
ing indirect answers remains challenging, yet
we obtain encouraging improvements when ex-
plicitly modeling human disagreement.

1 Introduction

Humans are very good at interpreting indirect an-
swers to polar questions. In conversations, even
if direct answers are possible, humans often pre-
fer indirect answers due to cooperativeness and
to advance the dialogue (Stenström, 1984). For
dialogue systems and Natural Language Process-
ing (NLP) more generally, however, interpreting
indirect answers remains a challenge (Clark et al.,
2019). Recent seminal work introduced CIRCA, a
new large-scale dataset containing pairs of polar
questions and indirect answers in English (Louis
et al., 2020). This allows for data-driven experi-
ments in this question-answering domain.

♥The authors contributed equally to this work.

Q: Hey. Everything ok?
A: I’m just mad at my agent.
L: NO, NO, YES

Q: Are you back from Minsk?
A: Well, just for a couple of days.
L: YES, NO, YES, SUBJECT TO SOME CONDITIONS

Table 1: Examples from the dataset with polar question
(Q), indirect answer (A) and annotator labels (L).

Understanding indirect answers is a pragmatic
problem, and even though humans typically have
little difficulty in interpreting indirect answers, they
may not all agree on a possible interpretation. Work
on learning from human disagreement has shown
that incorporating disagreement from human anno-
tation is not only noise, but can provide valuable
information (Plank et al., 2014; Aroyo and Welty,
2015; Rodrigues and Pereira, 2018).

Motivated by these two lines of research, we pro-
pose a new dataset for studying indirect answers.
We provide both aggregated (ground truth/gold)
annotations and the raw annotations. This allows
us to study the effect of learning to integrate hu-
man disagreement into understanding indirect an-
swers. Our dataset, called FRIENDS-QIA, was
created by collecting question and answer pairs
from transcripts of a popular TV series. The data
collection differs in comparison to the recently in-
troduced CIRCA corpus. In their study, a set of
10 dialogue prompts were defined, and both ques-
tions and answers were collected by crowdsourc-
ing (Louis et al., 2020). Following this step, the
annotation was crowdsourced again, resulting in
a set of labels which was later conflated into a re-
laxed set of six classes. Instead, we opted to collect
the data from transcripts and manually annotate the
question-answer pairs in house (by three of the au-
thors of this paper, all highly proficient in English).
Examples from our dataset are provided in Table 1.
A data statement is provided in Appendix A.
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Contributions In this paper, we a) introduce
a new dataset, FRIENDS-QIA, with 5,930 polar
question-indirect answer pairs in English;1 b) study
the effectiveness of neural classifiers based on Con-
volutional Neural Networks, both with traditional
pre-trained word embeddings and contextualized
BERT embeddings; c) provide results on cross-
dataset evaluation, for which we train a model on
both CIRCA and FRIENDS-QIA; and d) show that
modeling human disagreement via deep learning
from crowds is beneficial for this task.

2 Related Work

The task of understanding indirect answers in Nat-
ural Language Processing is relatively new and
has not been attempted by many yet. To enable
progress on the task, Louis et al. (2020) created
and released the first large-scale English language
corpus, CIRCA, consisting of 34,268 polar ques-
tions and their corresponding indirect answers. The
difficulty of interpreting indirect answers is, how-
ever, widely studied in some early papers, (e.g.
Green and Carberry, 1992, 1999). Following this
work, de Marneffe et al. (2009) propose a logical
inference model with probabilistic methods. They
realize the influence of discourse conditions as well
as the difference between the literal meaning of the
answer and the interpretation by the two speakers.
Hockey et al. (1997) further underline the complex-
ity of interpreting indirect answers to polar ques-
tions. They explore the existing Edinburgh map
task corpus (Thompson et al., 1993) which consists
of two-person dialogues already coded for dialogue
structure. Clark et al. (2019) recently also explore
the understanding of indirect answers and report on
the difficulty of the task. They create a new dataset,
BOOLQ, by combining search queries from the
Google search engine as questions and passages on
Wikipedia pages as answers. They attempt to clas-
sify such indirect answers by training BERT-based
neural models. Louis et al. (2020) further experi-
ment with training BERT models from scratch and
by transfer learning from BOOLQ, building on top
of Clark et al. (2019). Their newly created dataset,
CIRCA, includes 10 question prompt types, span-
ning a wide variety of communication situations.
Their study shows promising results, and inspired
our work.

Preparing a dataset for classification tasks often

1FRIENDS-QIA is available at: https://github.
com/friendsQIA/Friends_QIA.

requires collecting labels from multiple annotators.
A unanimous gold standard label cannot always be
clearly achieved (e.g. Aroyo and Welty, 2015; Ro-
drigues et al., 2013; Palomaki et al., 2018; Pavlick
and Kwiatkowski, 2019). The problem of learning
from multiple annotators has become more impor-
tant and several attempts have been made to deal
with biases present in such data. Yan et al. (2014)
look into different levels of expertise among anno-
tators and how a model can learn from this, taking
into consideration the biases present while labeling
the dataset. By measuring the inter-annotator agree-
ment and incorporating the annotator uncertainty in
model training, Plank et al. (2014) show that mod-
elling annotator disagreement can be useful even
in cases of seemingly more objective annotation
tasks, like part-of-speech tagging. An interesting
and similar approach was suggested by Rodrigues
and Pereira (2018). Their method, deep learning
from crowds (DLFC), adds a crowd layer on top
of a neural network which takes advantage of the
reliability and bias from different annotators. It
assumes access to the raw annotations from the
training data. This is in contrast to the weighting
approach proposed by Plank et al. (2014), who inte-
grate aggregated disagreement from a sample. As
we have the full data available with multiple an-
notations in FRIENDS-QIA, we here experiment
with the deep learning from crowds (DLFC) ap-
proach proposed by Rodrigues and Pereira (2018).
The key idea is to train a model directly from the
noisy annotator-specific annotations modeled as ad-
ditional per-annotator auxiliary tasks on top of the
gold distribution. By using backpropagation and
creating annotator-specific weights in the crowd
layer, it allows us to include the label bias in the
model’s learning. There is emerging interest in
learning from disagreement, and we refer the reader
to a recent survey on this topic (Uma et al., 2021).

3 FRIENDS-QIA Corpus

We introduce a new corpus called FRIENDS-QIA
for studying indirect answers. The three steps in-
volved in corpus construction are: data collection,
data preprocessing and data annotation.

Instead of crowdsourcing the data collection as
done by Louis et al. (2020), we attempt to exploit
already existing data by simply looking for useful
question-answer (QA) pairs in dialogues. We use
the existing transcriptions of the American televi-

https://github.com/friendsQIA/Friends_QIA
https://github.com/friendsQIA/Friends_QIA
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1: Yes 2: No 3: Yes, subject to some conditions
Monica: You still work at the multiplex?
Chip: Oh, like I’d give up that job! Free
popcorn and candy, anytime I want. I can
get you free posters for your room.

Monica: He is right, isn’t he?
Chandler: Y’know what, I think this
might be one of the times he’s wrong.

Joey: Now if a cow should die of natural
causes, I can have one of those right?
Phoebe: Not if I get there first.

4: Neither yes nor no 5: Other 6: N/A
Phoebe: Okay—ooh, but are you going
to have time to read it?
Rachel: Oh, I read that in high school.

Monica: I need more swordfish. Can
you get me some more swordfish?
Kitchen Worker: I don’t speak English.

Joey: You know more than one Fun
Bobby?
Chandler: I happen to know a Fun Bob.

Table 2: Examples of QA pairs from FRIENDS-QIA for each of the 6 labels.

sion sitcom "Friends".2 This data provides rich
dialogues from conversations covering regular, ev-
eryday topics. FRIENDS-QIA includes 10 seasons
consisting of 17–25 episodes each. This sums to
a total of 228 episodes of the TV series. The full
dataset, including metadata, is described in Ap-
pendix C.

3.1 Data Collection

To collect the QA pairs we manually scan all
episodes of "Friends" for polar questions and
retrieve both the question and the answer as well
as which character said each of the two. A few
examples are listed below.

Example 3.1
Joey: Hey Pheebs, you wanna help?
Phoebe: Oh, I wish I could, but I don’t want to.

Example 3.2
Rachel: Hey! So, did you quit?
Chandler: No, I almost did, couldn’t leave Ross
there without a spotter!

Example 3.3
Joey: (intrigued) Really?
Mr. Treeger: Yeah, you could dance real good with
her, she’s the same size as me.

As the examples show, some answers directly
give away cues (e.g., Example 3.2 starts with a
"No,"). We preprocess the data manually, to ob-
fuscate direct cues and enrich short questions with
information from the context, to keep the setup
similar to prior work and model single question-
answer pairs. The data preprocessing motivation
and details are outlined next.

2The transcriptions are available at https://fangj.
github.io/friends/

3.2 Data Preprocessing

To prepare the QA pairs in a useful format for the
task at hand, we assign each collected pair to one
of four categories. The categories are included in
the final FRIENDS-QIA dataset and describe if,
and in what way, the question or answer had to be
modified. Modifications include removing direct
cues to the answers ‘yes’ or ‘no’, such as ‘yeah’
or ‘nope’ (a full list is provided in Appendix B),
adding context to the question in case we deem
it insufficient, as well as removing metadata and
irrelevant parts of the question or answer. The
four categories are listed below along with their
respective description.

1. Able to use question and answer, exactly as
they are

2. Have to only remove yes/no/nope/yeah (etc.)
in the answer

3. Clarifying/adding context to the question (or
rarely the answer)

4. Questions with an answer only containing a
yes/no/nope/yeah (etc.)

Example 3.1 is a QA pair which is useful for our
task exactly as it is. It has a polar question and a
perfectly indirect answer with no direct mappers or
cues, so we assign this QA pair to category 1.

However, in Example 3.2 we remove a bit
of irrelevant context, namely the "Hey!" in the
question. Furthermore, the answer contains an
actual "No", which should not be present in an
indirect answer, so this is also removed. These
modifications cause the QA pair to be assigned to
category 2. The modified example is shown below.

Example 3.4
Rachel: So, did you quit?

https://fangj.github.io/friends/
https://fangj.github.io/friends/
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Chandler: I almost did, couldn’t leave Ross there
without a spotter!

Example 3.3 is from category 3, where we
need to do a larger modification to make the QA
pair useful. This modification could for example
be to add context, which is usually found in the
transcript lines immediately above the question.
The modified example is shown below.

Example 3.5
Joey: Really? Marge has a girlfriend?
Mr. Treeger: You could dance real good with her,
she’s the same size as me.

Category 4 contains QA pairs where the answer
consists of only a direct mapper or cue alone, so
it cannot easily be modified into an indirect an-
swer. Therefore, this category is ultimately ex-
cluded from the final FRIENDS-QIA dataset.

3.3 Data Annotation

We adopt the RELAXED label set as introduced
by Louis et al. (2020). It consists of six classes:
YES, NO, YES SUBJECT TO SOME CONDITIONS,
NEITHER YES NOR NO, OTHER and N/A. A de-
scription of each class as used in FRIENDS-QIA is
as follows:

1. YES: The answer is either a definite yes, a
probably yes or a sometimes yes

2. NO: The answer is either a definite no or a
probably no

3. YES, SUBJECT TO SOME CONDITIONS: The
answer is only yes/no, if a certain condition is
satisfied

4. NEITHER YES NOR NO: The answer does not
imply yes nor no

5. OTHER: The answer is not related to the ques-
tion

6. N/A: Lack of majority agreement

The label distribution of FRIENDS-QIA is
shown in Figure 1.

3.3.1 Annotator Agreement and Aggregation
We measure the agreement and thereby the reli-
ability of the annotations in FRIENDS-QIA. The
three annotators independently labeled all QA pairs
in the dataset. The raw agreement distribution of
the annotations is listed in Table 3, which includes
the agreement for each of the final three categories
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Figure 1: Gold label distribution.
1: YES, 2: NO, 3: YES, SUBJECT TO SOME CONDI-
TIONS, 4: NEITHER YES NOR NO, 5: OTHER, 6: N/A.

described in Section 3.2 as well as for the entire
FRIENDS-QIA (all three categories). The resulting
Fleiss Kappa score of the full dataset is 0.8833.

All agree Two agree All disagree

Full dataset 75.02% 23.39% 1.59%

Category 1 72.79% 25.48% 1.73%
Category 2 77.80% 20.70% 1.50%
Category 3 77.17% 21.54% 1.29%

Table 3: Annotator agreement.

We use majority voting to aggregate the gold
standard from the three annotations. In few cases
(1.59%), all three annotators disagreed on the la-
bel, and we map these to N/A. Examples from
FRIENDS-QIA are provided in Table 2, where the
QA pairs with label 1–5 were given the same la-
bel by at least two annotators, whereas the example
with label 6 is a case of full annotator disagreement.

For compatibility with CIRCA, we exclude
OTHER (as we found it annotated when the ques-
tion was not polar in CIRCA) and N/A, which is
very infrequent in FRIENDS-QIA (only 1.59% of
the labels). We note here that OTHER is used in
FRIENDS-QIA in cases where the answer is not
related to the question —which is possible due to
the dialogue context on which FRIENDS-QIA is
based.

Dataset FRIENDS-QIA CIRCA

All 5,930 32,993

Train 4,744 26,394
Dev 593 3,300
Test 593 3,299

Table 4: Data split and dataset sizes using labels 1–4.



5

The resulting dataset used in the experiments
contains 5,930 question-answer pairs over four la-
bels. The dataset sizes after splitting it are listed
in Table 4, including a comparison to the CIRCA

dataset (Louis et al., 2020). The splits for both
datasets are stratified to ensure similar label distri-
bution across all three sets.

Table 5 provides additional insights into the two
datasets, by providing measures on vocabulary size,
length of the instance as well as type-token ratio
(TTR). We observe that FRIENDS-QIA is richer in
terms of vocabulary, has higher lexical variety and
contains on average longer utterances, despite the
smaller overall size compared to CIRCA.

Statistic Q A Q + A

FRIENDS-QIA
Vocabulary size 4,207 4,843 6, 373
Maximum length 80 188 195
Average length 11 13 24
Type-token ratio 0.06 0.06 0.04

CIRCA
Vocabulary size 2,003 7,317 7,499
Maximum length 25 27 38
Average length 7 6 14
Type-token ratio 0.01 0.03 0.02

Table 5: Vocabulary statistics (in number of tokens).

4 Experiments

We experiment with different variants of a Con-
volutional Neural Network (CNN). In particular,
we explore the use of BERT embeddings, a crowd
layer and combining datasets to obtain higher per-
formance on FRIENDS-QIA.

Base CNN Our CNNs are implemented with
inspiration from Kim (2014), who uses 1-
dimensional convolutions in parallel. As shown
in Figure 2, our implementation of the parallel con-
volutions consists of a convolutional 1d, a max
pooling, a flatten and a dropout layer, after which
they are concatenated and fed to the final output
layer which uses softmax as activation function.
The convolutional layer applies the ReLU activa-
tion function after which the maximum of each fil-
ter is selected. The dropout layer applies a dropout
rate of 0.5 which is the same rate we use on the
final layer when we apply regularization with a
constraint of the L2-norm on the weights. The
models either take English BERT embeddings (De-
vlin et al., 2019) as input or use GloVe embed-
dings (Pennington et al., 2014). The models are

Figure 2: CNN architecture.

optimized using the Adam optimizer (Kingma and
Ba, 2015). This general architecture is what all of
our CNN variants are built upon. In preliminary
experiments we took a portion of the training data
as hyperparameter tuning set. We performed a grid
search on the base CNN to find the optimal hyper-
parameters. For the CNN with BERT no further
hyperparameter tuning was done.

Figure 3: Illustration of deep learning from crowds pro-
posed by Rodrigues and Pereira (2018).

Crowd Layer Figure 3 illustrates the key idea of
the DLFC approach we adopt on top of our CNN.
Training the models with a crowd layer is closely
based on the paper and code by Rodrigues and
Pereira (2018). Following their implementation,
our crowd layer is applied on top of the existing
network. It takes as input the output of the dense
layer and uses the annotator-specific labels, each
modeled as a separate task, to propagate errors
through the network and adjust the gradients. The
layer is applied on the already trained and saved
base model with an annotator-specific weight ma-
trix (Wr), and further training is performed with
the crowd layer. We found this setup to perform
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best. For the CNN+crowd layer model we use the
same parameters as when training the base model.
After training, the crowd layer is removed to allow
for the final classification using the original dense
layer with a softmax activation function.

Evaluation Accuracy and macro-average F1-
score are the evaluation metrics. We first report
results on the development set, and report the per-
formance of the best models on the test portion. As
baselines, we provide results of a majority baseline
and a Naive Bayes model with word trigrams.

5 Results

The main results on the development set are given
in Table 6. It provides results of a majority baseline,
the CNN with GloVe and BERT embeddings, and
the CNN trained with the crowd layer. We first dis-
cuss results for models trained on FRIENDS-QIA,
followed by results on training with FRIENDS-QIA
and CIRCA.

Accuracy F1-score

Majority baseline 49.07 16.46
Train on FRIENDS-QIA:

Naive Bayes 52.45 37.08
CNN 54.86 33.02
CNN (Q only) 49.92 23.46
CNN (A only) 55.09 35.32
CNN, multi-input 53.91 35.61
CNN + crowd layer 55.71 39.38

CNN with BERT 64.08 49.16
CNN with BERT (Q only) 43.79 26.96
CNN with BERT (A only) 52.22 29.96
CNN with BERT, multi-input 61.27 50.31
CNN with BERT + crowd layer 63.46 55.00

Train on FRIENDS-QIA + CIRCA:
Naive Bayes 52.11 45.67
CNN 53.51 43.16
CNN with BERT 61.27 48.65

Table 6: Results on the FRIENDS-QIA development
data.

Take-aways There are four take-aways. First, we
observe the difficulty of the task. This can be seen
from the low baseline results: The majority base-
line reaches an accuracy of 49.07 and F1-score of
16.46. The Naive Bayes model reaches an accuracy
of 52.45 and F1-score of 37.08.

Second, we test several variants of the base CNN
with GloVe embeddings: one which takes the con-
catenation of question and answer as input (CNN),

one that models question and answer separately
(CNN, multi-input), and a CNN using only the
answer or the question. The latter provides infor-
mation on how much signal is represented in the
answer (or question) alone. As the results in Table 6
show, multi-input modeling is not consistently the
best model (on both metrics). Training the CNN
on answers alone is highly predictive and performs
substantially better than the question alone. This
corroborates findings by Louis et al. (2020): the an-
swer alone is highly predictive for the task (yet not
sufficient). Overall, the best models are obtained
when considering both question and answer, reach-
ing an accuracy of 54.86 and F1-score of 33.02 on
the development set with base CNN.

Third, we observe that modeling the annotator
uncertainty is beneficial. When we add the crowd
layer to the base CNN (CNN + crowd layer), we ob-
serve both improved accuracy and F1-score, reach-
ing 55.71 and 39.38, respectively. This is encour-
aging, as it shows that the disagreement in human
annotations is informative for this task.

Finally, we observe that using BERT embed-
dings as input representations consistently and re-
markably improves the performance of the model.
The CNN model with BERT reaches an accuracy
of 64.08 and F1-score of 49.16, which is an abso-
lute improvement of over 9% in accuracy and over
16% in F1-score. What is, however, striking, is
that this trend does not hold for the BERT-based
model trained on answer or question alone; we at-
tribute this to the limited context, but this result
warrants further investigation. Especially the F1-
score is not even better than the base CNN model
with GloVe embeddings on answers alone. Nev-
ertheless, BERT representations overall improve
the best models that take question-answer pairs
as input, which are necessary for the overall best
performance on the task.

We observe that the crowd layer for the CNN
taking the concatenation of question and answer
as input (CNN) further improves upon BERT rep-
resentations, for which we obtain an F1-score of
55 and the overall best performance with the CNN
with BERT and crowd layer. The accuracy with the
crowd layer does not improve considerably, which
shows that the crowd layer is not equally helpful
for all classes. We hypothesize that the crowd layer
is particularly helpful for infrequent classes, which
are the most difficult for this task and which we ob-
served the highest annotator disagreement on. This
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is in fact the case, as we will discuss in Section 6.

Training on FRIENDS-QIA and CIRCA We in-
vestigated whether we could improve the model
further by using also the CIRCA data as additional
training data. The bottom rows of Table 6 show
that this is not the case; taking the union of the two
datasets is generally not beneficial. The limited
added vocabulary of CIRCA does not yield better
generalization within FRIENDS-QIA.

Accuracy F1-score

Majority baseline 49.07 16.46
Train on FRIENDS-QIA:

CNN with BERT 61.33 45.65
CNN with BERT, multi-input 61.10 45.53
CNN with BERT + crowd layer 60.32 47.89

Train on FRIENDS-QIA + CIRCA:
CNN with BERT 58.52 41.82

Table 7: Results on the FRIENDS-QIA test data.

Test Set Results Table 7 shows the results of
evaluating the best models and baselines on the test
set. The results corroborate our findings from the
development set. Training with the crowd layer is
beneficial, and improves F1-score from 45.65 to
47.89. Similarly as on the development set, overall
accuracy slightly drops with the crowd layer (it is
within a 1% range). Training on the union of the
two datasets does not outperform a model trained
on FRIENDS-QIA alone.

6 Discussion

In the following section, we provide additional in-
sights on the task.

Crowd Layer Analysis We observe a consistent
improvement of overall macro F1-score, at a cost
of a slight drop in accuracy. Therefore we analyze
the per-class F1-score for the BERT-based model
trained with and without the crowd layer. Moreover,
we analyze the resulting estimated annotator bias
matrices obtained from the crowd layer.

1 2 3 4

CNN with BERT 73.42 51.93 14.23 57.06
CNN with BERT + crowd layer 72.28 53.98 38.72 55.05

Table 8: Per-class results on the development set.
1: YES, 2: NO, 3: YES, SUBJECT TO SOME CONDI-
TIONS, 4: NEITHER YES NOR NO.

The results are presented in Table 8. The re-
sults confirm that the crowd layer is particularly
useful for more easily confused (in this task low
frequency) classes, namely 3 (YES, SUBJECT TO

SOME CONDITIONS). It helps on 2 (NO) as well.
The crowd layer hurts the most frequent class,
which aligns well with the overall gain in macro
F1-score at a slight cost in accuracy.
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(b) Annotator 2
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(c) Annotator 3

Figure 4: Normalized weight matrices from the crowd
layer for each annotator.
1: YES, 2: NO, 3: YES, SUBJECT TO SOME CONDI-
TIONS, 4: NEITHER YES NOR NO.

Figure 4 shows the three annotator-specific
weight matrices extracted from the crowd layer.
Overall, the weight matrices show several patterns.
The dark diagonals mean that the estimated weights
are high and the annotators agree with the gold stan-
dard. This is also reflected in the raw agreement
as shown in Table 3. The crowd layer generally
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models each annotator similarly with a few excep-
tions. One of them is a clear uncertainty of label 3
(YES, SUBJECT TO SOME CONDITIONS). This fits
exactly with the label distribution in the FRIENDS-
QIA, where class 3 is heavily underrepresented.
For annotator 2, the estimated weights are visibly
lower for the gold standard 3 (YES, SUBJECT TO

SOME CONDITIONS). That means that this anno-
tator tends to give other labels, mostly 1 (YES)
and 4 (NEITHER YES NOR NO), when the actual
gold standard is 3 (YES, SUBJECT TO SOME CON-
DITIONS). The annotators 1 and 2 assign label
4 (NEITHER YES NOR NO) more often, in cases
where the gold standard was actually one of the
other labels. This pattern is not as apparent for an-
notator 3, which means that this annotator agreed
slightly more with the gold labels than the other
two annotators.

Incorrect Predictions Figure 5 shows the anno-
tator agreement for correct and incorrect predic-
tions of CNN with BERT (using FRIENDS-QIA on
the test set). It is clear that the model is more likely
to predict the wrong label, when the annotators are
also in disagreement with each other.

Figure 5: Correct and incorrect predictions of CNN
with BERT vs. annotator agreement.

Furthermore, we show the amount of correct
and incorrect predictions of CNN with BERT for
each category (which were described in Section
3.2) in Figure 6. The amounts are generally similar,
but category 3, which required the largest modifi-
cations such as adding context to the question, is
slightly harder to classify than category 1 and 2,
which required either no modification or removing

direct cues in the answer, respectively.

Figure 6: Correct and incorrect predictions of CNN
with BERT vs. category.

FRIENDS-QIA versus CIRCA In general, we
see a lower performance when we train and eval-
uate on FRIENDS-QIA, compared to using the
CIRCA data for training and evaluation (we also
trained models on CIRCA alone and evaluate on
FRIENDS-QIA but leave them out for space rea-
sons). The difference in performance is largely due
to the general differences between the two datasets,
and we describe a few of those differences as well
as the reasons for them in the following paragraphs.

First of all, the data is collected in a different
way, which greatly affects the content of the ques-
tions and answers. CIRCA is created specifically
for the task at hand by Louis et al. (2020), namely
understanding indirect answers, and was created
under specific, topic-restricted settings, consisting
of 10 different dialogue prompts. FRIENDS-QIA
is obtained from a more open domain (yet, con-
fined to typical TV series dialogues) and includes
a broader context (also reflected in the vocabulary
size differences). For example, it includes cases
of both sarcasm and irony as well as additional
information in the utterances, which might not be
related to the actual question or answer.

Secondly, FRIENDS-QIA includes multi-
sentence responses. Given the dialogue context,
we observe cases where the speaker might change
their mind in-between the sentences, further
complicating the task of interpreting the questions
and answers. This is very different from CIRCA

due to the restricted and written setup, resulting
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in the CIRCA data being much more concise in
meaning and structure than FRIENDS-QIA.

Third of all, a major difference between CIRCA

and FRIENDS-QIA is the data size. FRIENDS-QIA
contains much fewer QA pairs than CIRCA, which
makes it considerably more difficult for the CNNs
to learn well from. Additionally, FRIENDS-QIA
has fewer annotations contributing to the gold stan-
dard (three versus five annotations in CIRCA), yet
each of the three corresponds to a single annotator
for FRIENDS-QIA, which is not the case in CIRCA.

7 Conclusions and Future Work

In this paper, we present FRIENDS-QIA, a corpus
for studying indirect answers in English dialogues.
We propose to mine TV series transcripts of a well-
known TV series. Recent work proposed this chal-
lenging answer-understanding task, and collected
CIRCA, a dataset on question-answer pairs from 10
dialogue prompts constructed instead using crowd-
sourcing (Louis et al., 2020). Motivated by their
work, we propose FRIENDS-QIA. It contains a to-
tal of 5,930 question-answer pairs, and is released
both with a majority label and the raw annotations.

Our results with CNNs show that a model
trained with BERT embeddings outperforms a
CNN trained with GloVe word representations.
Most interestingly, this is, however, only the case
for a model that considers both question and answer.
Training on the answers alone provides reasonable
signal for the task, but is not sufficient to resolve
the indirect answer.

Understanding indirect answers is a challenging
pragmatic task, and even human annotators might
not agree on a single gold label. We experiment
with a way to leverage disagreement in labeling,
which proves encouraging: the macro F1-score of
the two best CNN models further improves, when
fine-tuning with a crowd layer that encodes indi-
vidual annotator preferences. This is encouraging,
as — to the best of our knowledge — human dis-
agreement has not yet been leveraged in modeling
for understanding indirect answers; our dataset can
be considered a starting point for further research
in learning from disagreement.

Overall, the data in FRIENDS-QIA was origi-
nally written in a manuscript for the TV series,
then uttered in a spoken dialogue context on the
show and ultimately transcribed again. Our results
show that understanding indirect answers remains
a challenging task. We are missing out on influ-

ential factors such as intonation, body language
and discourse relations from this dialogue context,
when we only process the QA pairs in written form.
Modeling such factors is interesting and challeng-
ing future work.
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A FRIENDS-QIA Data Statement

Following (Bender and Friedman, 2018), the fol-
lowing outlines the data statement for FRIENDS-
QIA:

A. CURATION RATIONALE: Collection of
examples of polar questions and curated answers
for identification of indirect answer types.

B. LANGUAGE VARIETY: US (en-US)
mainstream English.

C. SPEAKER DEMOGRAPHIC: Characters
in a TV series.

D. ANNOTATOR DEMOGRAPHIC: All an-
notators are female, highly proficient in English.
Native languages include Danish and Polish. So-
cioeconomic status: higher-education student.

D. SPEECH SITUATION: Both standard and
colloquial US English, i.e., spontaneous speech.

D. TEXT CHARACTERISTICS: Sentences
from transcripts of a TV series.

PROVENANCE APPENDIX: The data orig-
inates from https://fangj.github.io/
friends/.

B FRIENDS-QIA Direct Mappers

B.1 Direct mappers which are removed

To avoid having direct mappers or cues in the an-
swers, we remove all occurrences of the words
listed below, if they "stand alone".

• Yes / yeah / yup / yep / yeah-eah / yah

• No / nope / nah / na / noo(...) / na-ah

B.2 Direct mappers which are not removed

We had to draw a line somewhere, between what to
keep and what to remove. We ultimately decided
to only remove variants of "yes" and "no" listed in
the previous section. This results in keeping terms
such as the ones listed below, which otherwise in
certain cases might also act as a direct mapper or
cue to the answer meaning "yes" or "no".

• Of course (not) / absolutely (not) / totally (not)
/ definitely (not) / certainly (not) / obviously
(not) / apparently (not) / I guess (not)

• Alright / all right / affirmative / that’s right
/ right / that’s correct / sure / exactly / fine /
please / okay / OK / ‘kay / exclusively

• No way / no can do

• Thank you / thanks / no thanks / I don’t know
/ maybe / kind of / (not) really (not)

• Uhuh / a-huh / mm-hm / mm-mh

C FRIENDS-QIA Variables

Here we list the variables which FRIENDS-QIA
contains as well as a description of them.

• SEASON is the season of the TV series from
which the QA pair was extracted.

• EPISODE is the episode (of the season) of
the TV series from which the QA pair was
extracted.

• CATEGORY tells the category which the QA
pair was assigned to during data collection in
order to know which preprocessing had to be
performed.

• Q_PERSON is the name of the character of
"Friends" who asked the question.

• A_PERSON is the name of the character of
"Friends" who said the answer.

• Q_ORIGINAL is the original, non-modified
question taken directly from the transcription.

• A_ORIGINAL is the original, non-modified
answer taken directly from the transcription.

• Q_MODIFIED is the modified question (might
be exactly the same as Q_ORIGINAL, if no
modification was needed).

• A_MODIFIED is the modified answer (might
be exactly the same as A_ORIGINAL, if no
modification was needed).

• ANNOTATION_1 is the annotation given by
annotator 1.

• ANNOTATION_2 is the annotation given by
annotator 2.

• ANNOTATION_3 is the annotation given by
annotator 3.

• GOLDSTANDARD is the aggregated gold label
from the three annotators.

https://fangj.github.io/friends/
https://fangj.github.io/friends/

