

Abstract

RACE is a first-order reasoner for At-
tempto Controlled English (ACE). This
paper introduces mathematical and func-
tional extensions. It is the third system
description of RACE, and also the final
one since RACE now covers all ACE
constructs that have a representation in
first-order logic.

1 Introduction

Attempto Controlled English (ACE)1 is a logic-
based knowledge representation language that
uses the syntax of a subset of English. The At-
tempto Reasoner RACE2 allows users to show
the consistency of an ACE text, to deduce one
ACE text from another one, and to answer ACE
queries from an ACE text.

Two previous system descriptions (Fuchs,
2012; Fuchs, 2016) of RACE detailed its struc-
ture, its functionality, its implementation and its
user interfaces, material that will repeated here
only to the extent to make this paper self-con-
tained.

This is the third – and final – system descrip-
tion of RACE intended to complete its coverage
of ACE. Concretely, RACE has been extended
to reason with ACE's mathematical and func-
tional constructs. The mathematical extension
offers primarily solutions for arithmetic prob-
lems and linear equations. The functional exten-
sion allows ACE to directly access Prolog pred-

1 http://attempto.ifi.uzh.ch/
2 http://attempto.ifi.uzh.ch/race/

icates which has a number of important conse-
quences, for example the ability to express re-
cursive algorithms – previously not available –
and to operate on ACE's list, set and string con-
structs.

To avoid a possible misunderstanding, this is
not a venture of ACE/RACE into the field of
mathematics per se, as realised in the project
Naproche3, or as outlined in this report4.

Section 2 of this paper recalls general fea-
tures of RACE. Section 3 presents the mathe-
matical extension. Section 4 motivates and in-
troduces the functional extension. Section 5
concludes with a summary of the presented ex-
tensions and with a discussion of their strengths
and limitations.

2 General Features of RACE

For the convenience of the reader and to make
this paper self-contained the material of this
section is partially copied from (Fuchs 2012).

RACE has the following general features:
• RACE offers consistency checking, tex-

tual entailment and query answering of
ACE texts.

• RACE does not presuppose knowledge of
formal logic or theorem proving, does not
require users to understand RACE's inter-
nal workings, nor does it require users to
control the reasoning process.

• All input of RACE is in ACE, all output
is in ACE and English.

• Consistency checking: For inconsistent

3 https://korpora-exp.zim.uni-duisburg-essen.de/naproche
4 https://jiggerwit.files.wordpress.com/2019/06/header.pdf

Reasoning in Attempto Controlled English: Mathematical and Functional Extensions

Norbert E. Fuchs
Department of Computational Linguistics

University of Zurich
fuchs@ifi.uzh.ch

http://attempto.ifi.uzh.ch

ACE axioms RACE will list all minimal
inconsistent subsets of the axioms.

• Textual entailment and query answering:
If the ACE axioms entail the ACE theo-
rems, respectively ACE queries, RACE
will list all minimal subsets of the axioms
that entail the theorems, respectively que-
ries. Furthermore, there will be substitu-
tions for all occurring query words.

• RACE uses about 100 auxiliary axioms –
not expressed in ACE, but in Prolog using
ACE's internal representation – to pro-
vide domain-independent general
knowledge. In spite of their large number,
auxiliary axioms have little impact on
RACE's performance since they are only
called individually and only when
needed.

• RACE is implemented as a set of Prolog
programs that can be used locally. Fur-
thermore, RACE can be accessed re-
motely via its web-client5 or via its web-
service6.

3 Reasoning with Arithmetic, Linear
Equations and Quadratic Equations

Reasoning with positive integers that occur as
determiners (2 apples, at most 3 apples) and
with positive integers and reals that occur in
measurement nouns (2.25 l of water) was de-
scribed in a previous system description (Fuchs,
2012). Not covered, however, was until now
reasoning with ACE's arithmetical constructs,
which is part of the present system description.

Here is a brief summary of ACE's arithmeti-
cal constructs.

ACE offers numbers that syntactically act as
nouns. Numbers are positive and negative inte-
gers and positive and negative reals. Further-
more, there are arithmetic expressions ((X ^ 3) ^
1/2 – 4*Pi) built with the help of the operators
+, –, *, /, ^ from numbers, variables, proper
names and parenthesised subexpressions. Arith-
metic expressions can evaluate to numbers and
thus count as nouns.

ACE's boolean formulas (X >= 13.4 and X <
20.) are built from numbers, arithmetic expres-
sions, proper names and variables with the help
of the comparison operators =7, \=, >, >=, <

5 http://attempto.ifi.uzh.ch/race/
6 http://attempto.ifi.uzh.ch/ws/race/racews.perl

and =<. Boolean formulas syntactically act as
sentences.

When reasoning with arithmetic expressions
and formulas one encounters four new phenom-
ena.

• While previously RACE fundamentally
relied on unification, i.e. on the syntactic
matching of logical atoms, numerical ex-
pressions – like those in the formula
100/50 + 8 ≟ 4 + 6 – cannot simply be
unified but must be numerically evalu-
ated before being tested.

• While previously the order of processing
did not matter, the evaluation of expres-
sions – as in A is B + C. C is D - 1. B is 2.
D is 3. – must be delayed until all constit-
uents have a value.

• Even after evaluation remain problems of
relating formulas, as can be seen in the
deduction X=1 |– X>0.

• As in standard logic, arithmetical contra-
dictions can involve negation, as for in-
stance in A is 1. A is not 1. But there are
new forms of contradictions not involv-
ing negation, for example A is 1. A is 2.
or simply 1=2.

While it is possible to solve the problems as-
sociated with these phenomena in RACE's im-
plementation language SWI Prolog, this would
amount to duplicating functionality that is avail-
able off-the-shelf in the form of mathematical
frameworks. Because it efficiently copes with
the four phenomena above, because it does not
require changes of ACE's syntax, because it is
highly efficient, and because of its simple inte-
gration, RACE uses SWI Prolog's library clpqr8
that provides constraint logic programming
over rationals and reals, and also logical entail-
ment.

Following are three simple examples that
show a range of possible applications of
RACE's mathematical extension.

A Banking Problem. A capital C is invested in
a bank at an interest rate I for the duration of D
years while the bank charges a yearly fee F.
Then the approximate final balance is

C	*(1+I)^D	-	F*(1+I)^(D	-	1)	-	F(1+I)*(D	-	1)	

disregarding higher powers of I in the last term
to get a closed expression. This leads to a small

7 Note: RACE accepts the copula is as a synonym for the
comparison operator =.

8 https://www.swi-prolog.org/man/clpqr.html

error that will be ignored here. Given the ACE
axioms

The	capital	C	is	1000.00.		
The	interest	I	is	0.005.		
The	yearly	fee	F	is	12.00.		
The	duration	D	is	10.		
The	 balance	 of	 the	 account	 is	 C	 *(1+I)^D	 -	
F*(1+I)^(D	-	1)	-	F*(1+I)*(D	-	1).		

and the ACE query

What	is	the	balance	of	the	account?	

RACE arrives at the balance of 930.05.

Figure 1: A Banking Problem

The result (Figure 1) is presented as a screen-
shot of the output window of RACE's web-in-
terface. This window contains the ACE axioms,
the ACE query, the subset of the axioms needed
to answer the query and the substitution of the
query word what, i.e. the actual numerical re-
sult. The entry "parameters" is used for testing.

A Word Problem. Many word problems are
dressed-up arithmetic problems. Here is an ex-
ample:

A farmer has some cows and some ducks. Alto-
gether he has 100 animals with 260 feet. How
many cows and how many ducks does the
farmer have?

To solve this word problem, one needs some
background information, namely

Every cow is an animal. Every duck is an ani-
mal. No cow is a duck. Every cow has 4 feet.
Every duck has 2 feet.

Even with this background information the
problem cannot yet be solved because a prob-
lem-solving strategy is needed. Schwitter
(2012) demonstrated how such a strategy could
be devised for the Marathon Puzzle that should

9 https://en.wikipedia.org/wiki/Quadratic_equation

determine the arrival order of a group of run-
ners. Schwitter's strategy consists of formulat-
ing the puzzle in the controlled natural language
PENG, and then translating the PENG text into
an answer set program (ASP) that is submitted
to an ASP solver. Though Schwitter's strategy is
elegant and efficient, it is specific to the Mara-
thon Puzzle and cannot be immediately gener-
alised.

Instead, I suggest for word problems that are
hidden arithmetic problems a strategy that is
perhaps less elegant, but efficient and more gen-
eral, namely to manually derive from the text
the – often linear – equations, thereby taking
into account the explicit or implicit background
information.

Here is the ACE version of the farmer-cow-
duck problem, expressed as three axioms and
two queries. Note that the axioms implicitly in-
corporate the complete background infor-
mation.

A	farmer	has	a	number	X	of	some	cows	and	has	a	
number	Y	of	some	ducks.		
X+Y=100.		
4*X+2*Y=260.	
|-	
What	is	a	number	of	some	cows?	What	is	a	num-
ber	of	some	ducks?	

Submitting these axioms and queries to
RACE we get the result (Figure 2) that the
farmer has 70 ducks and 30 cows. Note that by
design the two queries are answered separately
since there are different substitutions of the two
occurrences of the query word what.

Figure 2: Farmer, Cows and Ducks

Quadratic Equations. Quadratic equations oc-
cur in many problems9, specifically in physics
and geometry.

Unfortunately, clpqr cannot solve quadratic
equations directly. However, replacing the
quadratic equation X^2 + P * X + Q = 0 by its
two solutions X = -P/2 ± √ (P^2/4 - Q) elimi-
nates this stumbling block.

As an example, here is the quadratic equation
for the ubiquitous Golden Ratio10:

Figure 1: Quadratic Equation for Golden Ratio

Like most quadratic equations this one has
two solutions (Figure 3). Only the positive so-
lution pertains to the golden ratio.

The current implementation for quadratic
equations has the following syntactic re-
strictions: The quadratic term has no coeffi-
cient, the terms P and Q are integers, integer
fractions or reals. Since ACE does not know
complex numbers, quadratic equations with
complex solutions are flagged with an error
message.

Replacing quadratic equations by their solu-
tions solves an important problem, yet in a way
that cannot easily be generalised. A mathemati-
cal framework more powerful than clpqr could
possibly avoid this problem.

4 Extending RACE by a Functional
Notation

For most of its intended applications ACE does
not need a functional notation, and hence does
not provide one. RACE, however, needs a func-
tional notation to extend its reasoning capabili-
ties. Exploiting ACE's list structure, I devised a
functional notation in the form ["functor", ar-
gument1, argument2, ...] that allows RACE to

10 https://en.wikipedia.org/wiki/Golden_ratio

call the Prolog predicate functor(argument1, ar-
gument2, ...). Note that the functor is expressed
as a string to be accepted by the ACE parser
without having an entry in ACE's lexicon.

This simple extension has three beneficial
consequences. RACE can

• call any built-in or user-defined Prolog
predicate,

• make use of recursive algorithms that
cannot be implemented otherwise,

• operate on ACE's list, set and string con-
structs.

Here is a simple example of list operations
using three built-in Prolog predicates combined
with RACE's arithmetic:

There	is	a	list	L	of	["append",	[1,2,3],	[4,5,6],	L]	
and	there	is	a	maximum	M1	of	["max_list",	L,	M1]	
and	there	is	a	minimum	M2	of	["min_list",	L,	M2]	
and	there	is	a	result	R	and	R	=	M1	+	M2.	
|-	
What	is	a	result?	

Submitting this example to RACE we get 7
as the result (Figure 4).

	

Figure 4: Using Prolog's List Predicates

Figure 5 shows an example of the user-de-
fined Prolog predicate gcd/3 that implements
Euclid's recursive algorithm for the greatest
common divisor. In this case a function name is
explicitly introduced.

Figure 5: Euclid's Recursive GCD Algorithm

Besides the three beneficial consequences
listed above, the functional notation has another
practical application. Understanding Prolog pro-
grams can pose problems for people not familiar
with this language, as it happened recently in the
context of a psychology project (private commu-
nication, 2021). The psychologist in question had
developed a set of Prolog programs to solve sta-
tistical problems, but could not help to notice the
lack of understanding of his colleagues. The
functional notation would have enabled him to
incorporate calls to these Prolog programs into
ACE texts that his colleagues could understand
without knowing much of Prolog.

5 Conclusions

I added to the Attempto Reasoner RACE math-
ematical and functional extensions and illus-
trated them by small examples.

RACE's mathematical extension does not
raise any questions besides being limited to
some extent by the restrictions of the chosen
mathematical framework clpqr.

RACE's functional extension, however,
raises two issues. First issue: Though the list no-
tation is accepted ACE syntax, the explicit calls
of Prolog predicates in an ACE text could be
considered a violation of the intention of the At-
tempto project to hide formality from its users.
Second issue: RACE relies on auxiliary Prolog
axioms that add domain-independent general
knowledge to the domain-specific knowledge of
the given ACE axioms (Fuchs, 2012). This reli-
ance on Prolog is increased by the functional ex-
tension that allows us to directly call Prolog
predicates. Since Prolog has the power of the
Turing machine, RACE could in principle de-
duce any conclusion from the axioms. As a con-
sequence, besides the usual questions of the cor-
rectness and the completeness of the reasoning
process a further question arises, namely the rel-
evance. What should RACE actually deduce?
For instance, RACE's auxiliary axioms enable
the deduction John's cat purrs. |- John has a cat.
Is this deduction – that has no logical justifica-
tion, but is based solely on common sense – ac-
ceptable? The answer depends not only on the
application domain, but also on the expectations
and intuitions of the users, and this – as my ex-
perience has amply shown – may be highly de-
batable.

RACE now covers all language constructs of
ACE with the exception of imperative sentences
that do not play a role in logical deduction, and
two constructs that have no – or at least no gen-
erally accepted – logical representation, namely
the unconventional modal operators for recom-
mendation (should) and admissibility (may) that
were provisionally introduced into ACE to
cover the medical jargon of Clinical Practice
Guidelines (Shiffman et al., 2009).

Acknowledgments
Many thanks go to my colleague Uta Schwertel for
her essential contributions in the initial phase of the
development of RACE. The constructive comments
of the reviewers of a previous version of this paper
are gratefully accepted. Finally, I would like to thank
the Department of Computational Linguistics, Uni-
versity of Zurich, for its hospitality.

References

Norbert E. Fuchs. 2012. First-Order Reasoning for
Attempto Controlled English. In Proc. of the Sec-
ond International Workshop on Controlled Natu-
ral Language (CNL 2010). Marettimo, Italy.

Norbert E. Fuchs. 2016. Reasoning in Attempto Con-
trolled English: Non-monotonicity. In Proc. of the
Fifth International Workshop on Controlled Nat-
ural Language (CNL 2016). Aberdeen, UK.

Richard N. Shiffman, George Michel, Michael
Krauthammer, Norbert E. Fuchs, Kaarel Kalju-
rand, and Tobias Kuhn. 2009. Writing Clinical
Practice Guidelines in Controlled Natural Lan-
guage. In Proc. of the Workshop on Controlled
Natural Language (CNL 2009), Marettimo, Italy.

Rolf Schwitter. 2012. Answer Set Programming via
Controlled Natural Language Processing. In
Proc. Third International Workshop on Con-
trolled Natural Language (CNL 2012). Maret-
timo, Italy.

