
 
 
 

Abstract 

RACE is a first-order reasoner for At-
tempto Controlled English (ACE). This 
paper introduces mathematical and func-
tional extensions. It is the third system 
description of RACE, and also the final 
one since RACE now covers all ACE 
constructs that have a representation in 
first-order logic. 

1 Introduction 

Attempto Controlled English (ACE)1 is a logic-
based knowledge representation language that 
uses the syntax of a subset of English. The At-
tempto Reasoner RACE2 allows users to show 
the consistency of an ACE text, to deduce one 
ACE text from another one, and to answer ACE 
queries from an ACE text.  

Two previous system descriptions (Fuchs, 
2012; Fuchs, 2016) of RACE detailed its struc-
ture, its functionality, its implementation and its 
user interfaces, material that will repeated here 
only to the extent to make this paper self-con-
tained.  

This is the third – and final – system descrip-
tion of RACE intended to complete its coverage 
of ACE. Concretely, RACE has been extended 
to reason with ACE's mathematical and func-
tional constructs. The mathematical extension 
offers primarily solutions for arithmetic prob-
lems and linear equations. The functional exten-
sion allows ACE to directly access Prolog pred-

                                                             
1 http://attempto.ifi.uzh.ch/ 
2 http://attempto.ifi.uzh.ch/race/ 

icates which has a number of important conse-
quences, for example the ability to express re-
cursive algorithms – previously not available – 
and to operate on ACE's list, set and string con-
structs.  

To avoid a possible misunderstanding, this is 
not a venture of ACE/RACE into the field of 
mathematics per se, as realised in the project 
Naproche3, or as outlined in this report4. 

Section 2 of this paper recalls general fea-
tures of RACE. Section 3 presents the mathe-
matical extension. Section 4 motivates and in-
troduces the functional extension. Section 5 
concludes with a summary of the presented ex-
tensions and with a discussion of their strengths 
and limitations. 

2 General Features of RACE 

For the convenience of the reader and to make 
this paper self-contained the material of this 
section is partially copied from (Fuchs 2012).  

RACE has the following general features: 
• RACE offers consistency checking, tex-

tual entailment and query answering of 
ACE texts. 

• RACE does not presuppose knowledge of 
formal logic or theorem proving, does not 
require users to understand RACE's inter-
nal workings, nor does it require users to 
control the reasoning process. 

• All input of RACE is in ACE, all output 
is in ACE and English. 

• Consistency checking: For inconsistent 

3 https://korpora-exp.zim.uni-duisburg-essen.de/naproche 
4 https://jiggerwit.files.wordpress.com/2019/06/header.pdf 
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ACE axioms RACE will list all minimal 
inconsistent subsets of the axioms. 

• Textual entailment and query answering: 
If the ACE axioms entail the ACE theo-
rems, respectively ACE queries, RACE 
will list all minimal subsets of the axioms 
that entail the theorems, respectively que-
ries. Furthermore, there will be substitu-
tions for all occurring query words. 

• RACE uses about 100 auxiliary axioms – 
not expressed in ACE, but in Prolog using 
ACE's internal representation – to pro-
vide domain-independent general 
knowledge. In spite of their large number, 
auxiliary axioms have little impact on 
RACE's performance since they are only 
called individually and only when 
needed. 

• RACE is implemented as a set of Prolog 
programs that can be used locally. Fur-
thermore, RACE can be accessed re-
motely via its web-client5 or via its web-
service6. 

3 Reasoning with Arithmetic, Linear 
Equations and Quadratic Equations 

Reasoning with positive integers that occur as 
determiners (2 apples, at most 3 apples) and 
with positive integers and reals that occur in 
measurement nouns (2.25 l of water) was de-
scribed in a previous system description (Fuchs, 
2012). Not covered, however, was until now 
reasoning with ACE's arithmetical constructs, 
which is part of the present system description.  

Here is a brief summary of ACE's arithmeti-
cal constructs. 

ACE offers numbers that syntactically act as 
nouns. Numbers are positive and negative inte-
gers and positive and negative reals. Further-
more, there are arithmetic expressions ((X ^ 3) ^ 
1/2 – 4*Pi) built with the help of the operators 
+, –, *, /, ^ from numbers, variables, proper 
names and parenthesised subexpressions. Arith-
metic expressions can evaluate to numbers and 
thus count as nouns. 

ACE's boolean formulas (X >= 13.4 and X < 
20.) are built from numbers, arithmetic expres-
sions, proper names and variables with the help 
of the comparison operators =7, \=, >, >=, < 

                                                             
5 http://attempto.ifi.uzh.ch/race/ 
6 http://attempto.ifi.uzh.ch/ws/race/racews.perl 

and =<. Boolean formulas syntactically act as 
sentences. 

When reasoning with arithmetic expressions 
and formulas one encounters four new phenom-
ena. 

• While previously RACE fundamentally 
relied on unification, i.e. on the syntactic 
matching of logical atoms, numerical ex-
pressions – like those in the formula 
100/50 + 8 ≟ 4 + 6 – cannot simply be 
unified but must be numerically evalu-
ated before being tested. 

• While previously the order of processing 
did not matter, the evaluation of expres-
sions – as in A is B + C. C is D - 1. B is 2. 
D is 3. – must be delayed until all constit-
uents have a value.  

• Even after evaluation remain problems of 
relating formulas, as can be seen in the 
deduction X=1 |– X>0. 

• As in standard logic, arithmetical contra-
dictions can involve negation, as for in-
stance in A is 1. A is not 1. But there are 
new forms of contradictions not involv-
ing negation, for example A is 1. A is 2. 
or simply 1=2. 

While it is possible to solve the problems as-
sociated with these phenomena in RACE's im-
plementation language SWI Prolog, this would 
amount to duplicating functionality that is avail-
able off-the-shelf in the form of mathematical 
frameworks. Because it efficiently copes with 
the four phenomena above, because it does not 
require changes of ACE's syntax, because it is 
highly efficient, and because of its simple inte-
gration, RACE uses SWI Prolog's library clpqr8 
that provides constraint logic programming 
over rationals and reals, and also logical entail-
ment.  

Following are three simple examples that 
show a range of possible applications of 
RACE's mathematical extension. 

A Banking Problem. A capital C is invested in 
a bank at an interest rate I for the duration of D 
years while the bank charges a yearly fee F. 
Then the approximate final balance is  

C	*(1+I)^D	-	F*(1+I)^(D	-	1)	-	F(1+I)*(D	-	1)	

disregarding higher powers of I in the last term 
to get a closed expression. This leads to a small 

7 Note: RACE accepts the copula is as a synonym for the 
comparison operator =. 

8 https://www.swi-prolog.org/man/clpqr.html 



 
 
 

error that will be ignored here. Given the ACE 
axioms 

The	capital	C	is	1000.00.		
The	interest	I	is	0.005.		
The	yearly	fee	F	is	12.00.		
The	duration	D	is	10.		
The	 balance	 of	 the	 account	 is	 C	 *(1+I)^D	 -	
F*(1+I)^(D	-	1)	-	F*(1+I)*(D	-	1).		

and the ACE query  

What	is	the	balance	of	the	account?	

RACE arrives at the balance of 930.05. 

Figure 1: A Banking Problem 

The result (Figure 1) is presented as a screen-
shot of the output window of RACE's web-in-
terface. This window contains the ACE axioms, 
the ACE query, the subset of the axioms needed 
to answer the query and the substitution of the 
query word what, i.e. the actual numerical re-
sult. The entry "parameters" is used for testing. 

A Word Problem. Many word problems are 
dressed-up arithmetic problems. Here is an ex-
ample: 

A farmer has some cows and some ducks. Alto-
gether he has 100 animals with 260 feet. How 
many cows and how many ducks does the 
farmer have? 

To solve this word problem, one needs some 
background information, namely 

Every cow is an animal. Every duck is an ani-
mal. No cow is a duck. Every cow has 4 feet. 
Every duck has 2 feet. 

Even with this background information the 
problem cannot yet be solved because a prob-
lem-solving strategy is needed. Schwitter 
(2012) demonstrated how such a strategy could 
be devised for the Marathon Puzzle that should 

                                                             
9 https://en.wikipedia.org/wiki/Quadratic_equation 

determine the arrival order of a group of run-
ners. Schwitter's strategy consists of formulat-
ing the puzzle in the controlled natural language 
PENG, and then translating the PENG text into 
an answer set program (ASP) that is submitted 
to an ASP solver. Though Schwitter's strategy is 
elegant and efficient, it is specific to the Mara-
thon Puzzle and cannot be immediately gener-
alised. 

Instead, I suggest for word problems that are 
hidden arithmetic problems a strategy that is 
perhaps less elegant, but efficient and more gen-
eral, namely to manually derive from the text 
the – often linear – equations, thereby taking 
into account the explicit or implicit background 
information.  

Here is the ACE version of the farmer-cow-
duck problem, expressed as three axioms and 
two queries. Note that the axioms implicitly in-
corporate the complete background infor-
mation. 

A	farmer	has	a	number	X	of	some	cows	and	has	a	
number	Y	of	some	ducks.		
X+Y=100.		
4*X+2*Y=260.	
|-	
What	is	a	number	of	some	cows?	What	is	a	num-
ber	of	some	ducks?	

Submitting these axioms and queries to 
RACE we get the result (Figure 2) that the 
farmer has 70 ducks and 30 cows. Note that by 
design the two queries are answered separately 
since there are different substitutions of the two 
occurrences of the query word what. 

 

Figure 2: Farmer, Cows and Ducks 

Quadratic Equations. Quadratic equations oc-
cur in many problems9, specifically in physics 
and geometry.  



 
 
 

Unfortunately, clpqr cannot solve quadratic 
equations directly. However, replacing the 
quadratic equation X^2 + P * X + Q = 0 by its 
two solutions X = -P/2 ± √ (P^2/4 - Q) elimi-
nates this stumbling block.  

As an example, here is the quadratic equation 
for the ubiquitous Golden Ratio10: 

 

Figure 1: Quadratic Equation for Golden Ratio 

Like most quadratic equations this one has 
two solutions (Figure 3). Only the positive so-
lution pertains to the golden ratio. 

The current implementation for quadratic 
equations has the following syntactic re-
strictions: The quadratic term has no coeffi-
cient, the terms P and Q are integers, integer 
fractions or reals. Since ACE does not know 
complex numbers, quadratic equations with 
complex solutions are flagged with an error 
message. 

Replacing quadratic equations by their solu-
tions solves an important problem, yet in a way 
that cannot easily be generalised. A mathemati-
cal framework more powerful than clpqr could 
possibly avoid this problem. 

4 Extending RACE by a Functional 
Notation 

For most of its intended applications ACE does 
not need a functional notation, and hence does 
not provide one. RACE, however, needs a func-
tional notation to extend its reasoning capabili-
ties. Exploiting ACE's list structure, I devised a 
functional notation in the form ["functor", ar-
gument1, argument2, ...] that allows RACE to 

                                                             
10 https://en.wikipedia.org/wiki/Golden_ratio 

call the Prolog predicate functor(argument1, ar-
gument2, ...). Note that the functor is expressed 
as a string to be accepted by the ACE parser 
without having an entry in ACE's lexicon.  

This simple extension has three beneficial 
consequences. RACE can 

• call any built-in or user-defined Prolog 
predicate, 

• make use of recursive algorithms that 
cannot be implemented otherwise, 

• operate on ACE's list, set and string con-
structs. 

Here is a simple example of list operations 
using three built-in Prolog predicates combined 
with RACE's arithmetic: 

There	is	a	list	L	of	["append",	[1,2,3],	[4,5,6],	L]	
and	there	is	a	maximum	M1	of	["max_list",	L,	M1]	
and	there	is	a	minimum	M2	of	["min_list",	L,	M2]	
and	there	is	a	result	R	and	R	=	M1	+	M2.	
|-	
What	is	a	result?	

Submitting this example to RACE we get 7 
as the result (Figure 4).  

	

Figure 4: Using Prolog's List Predicates 

Figure 5 shows an example of the user-de-
fined Prolog predicate gcd/3 that implements 
Euclid's recursive algorithm for the greatest 
common divisor. In this case a function name is 
explicitly introduced. 

 

Figure 5: Euclid's Recursive GCD Algorithm 



 
 
 

Besides the three beneficial consequences 
listed above, the functional notation has another 
practical application. Understanding Prolog pro-
grams can pose problems for people not familiar 
with this language, as it happened recently in the 
context of a psychology project (private commu-
nication, 2021). The psychologist in question had 
developed a set of Prolog programs to solve sta-
tistical problems, but could not help to notice the 
lack of understanding of his colleagues. The 
functional notation would have enabled him to 
incorporate calls to these Prolog programs into 
ACE texts that his colleagues could understand 
without knowing much of Prolog. 

5 Conclusions 

I added to the Attempto Reasoner RACE math-
ematical and functional extensions and illus-
trated them by small examples.  

RACE's mathematical extension does not 
raise any questions besides being limited to 
some extent by the restrictions of the chosen 
mathematical framework clpqr. 

RACE's functional extension, however, 
raises two issues. First issue: Though the list no-
tation is accepted ACE syntax, the explicit calls 
of Prolog predicates in an ACE text could be 
considered a violation of the intention of the At-
tempto project to hide formality from its users. 
Second issue: RACE relies on auxiliary Prolog 
axioms that add domain-independent general 
knowledge to the domain-specific knowledge of 
the given ACE axioms (Fuchs, 2012). This reli-
ance on Prolog is increased by the functional ex-
tension that allows us to directly call Prolog 
predicates. Since Prolog has the power of the 
Turing machine, RACE could in principle de-
duce any conclusion from the axioms. As a con-
sequence, besides the usual questions of the cor-
rectness and the completeness of the reasoning 
process a further question arises, namely the rel-
evance. What should RACE actually deduce? 
For instance, RACE's auxiliary axioms enable 
the deduction John's cat purrs. |- John has a cat. 
Is this deduction – that has no logical justifica-
tion, but is based solely on common sense – ac-
ceptable? The answer depends not only on the 
application domain, but also on the expectations 
and intuitions of the users, and this – as my ex-
perience has amply shown – may be highly de-
batable.  

RACE now covers all language constructs of 
ACE with the exception of imperative sentences 
that do not play a role in logical deduction, and 
two constructs that have no – or at least no gen-
erally accepted – logical representation, namely 
the unconventional modal operators for recom-
mendation (should) and admissibility (may) that 
were provisionally introduced into ACE to 
cover the medical jargon of Clinical Practice 
Guidelines (Shiffman et al., 2009). 
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