
Toward a Reference Architecture for Traceability in SBVR-based Systems

Lloyd Rutledge
Open University of the Netherlands

Heerlen, The Netherlands
Lloyd.Rutledge@ou.nl

Rudy Italiaander
Tax and Customs Administration

of The Netherlands
Utrecht, The Netherlands

Abstract

We present an initial reference architecture for
traceability in SBVR-based systems. It facili-
tates rule-based development that lets end users
trace interface behavior back to the human de-
cision points that lead to it. This closes a feed-
back loop, which facilitates agile development.
The architecture is based on Web standards to
generalize comparison and implementation.

It begins with the human process of linking doc-
ument excerpts to the SBVR code that defines
them. The next step transforms SBVR into
computer code that implements it. Reasoners
then form conclusions by applying the rules to
data. They can also provide rudimentary expla-
nations for these conclusions. The system then
provides an end-user interface to all this rule-
derived information. The core challenge here
is maintaining the data needed to trace back
through these layers, so end-user feedback can
improve the entire development process.

1 Introduction

Semantics of Business Vocabulary and Business
Rules (SBVR) provides a controlled natural lan-
guage (CNL) for data models and business rules
(Group, 2006). It can be mapped to more
easily readable equivalents such as RuleSpeak
(Spreeuwenberg and Healy, 2010). Such CNLs
provide a step between stakeholders and program-
mers that helps designers communicate with both.

Rule-based systems constrain users to follow
rules but often cannot explain where the rules come
from or why they exist. This is because develop-
ment of such systems often follows a sequential, or
waterfall, approach. Analysis of legal text or policy
documents leads to descriptions in SBVR. Other
people then write program code for this SBVR.
However, nothing in the code, and thus nothing
in the resulting system interface, necessarily leads
back to its source in SBVR or further back to the
source documentation. The original motivation for

the rules becomes effectively forgotten. End users
end up several layers of one-way traffic away from
understanding or potentially influencing change in
the documents and discussions that form the rules
they must follow.

Traceability in rapid prototypes of rule-based
systems adds resilience to the process of forming
laws and implementing them (Ausems et al., 2021).
However, the mapping from human-readable busi-
ness rules to computer-processed logic on the Se-
mantic Web is complex (Spreeuwenberg and Ger-
rits, 2006). A reference architecture could help
implement traceability in this complex mapping.

We propose forming a reference architecture in
which this software development for business rule
systems is less waterfall and more agile. It pro-
vides end users with transparency to the origins
of rules in their systems so they can take part in
their longer-term maintenance. In addition, de-
velopment can then more easily include end-user
representatives who provide short-term feedback
over the effectiveness of both the documented rules
and how the SBVR rules and resulting business
systems implement them. Problems involving mis-
matches between high-level agreements and how
well end-users of the system can appreciate and
execute them can then be detected and addressed
earlier and more often.

2 Reference Architecture

Fig. 1 illustrates our reference architecture. It has
three broader components. First is the development
of the specifications and code by people. Then
comes the automation, which compiles the code
into the business system. Finally, automation pro-
vides the system interface that the end user inter-
acts with. The first step in development is discus-
sion between human stakeholders, which results
in documents, such as legislation or contracts, that
define agreements reached. An analysis of the doc-
uments provides annotation of it, which shows the



Figure 1: Our reference architecture for traceability in
SBVR-based systems.

phrases for primary components in the system’s
data model and rules. The next process is the de-
sign of SBVR code for the model and rules.

With the SBVR code established, the automation
of it is ready to start. The transformation of human-
readable SBVR to machine-processable code can
be human, automated or a combination of both.
The resulting logic code defines the model and rules
in a format a computer can process. The reasoning
process applies the logic to the data in the system
to generate conclusions. Conclusions can infer
additional data, or find violations that the given
data triggers. Core to traceability is automatically
justifying these conclusions to provide explanation
of them to the end-user.

The results of this automated processing need,
of course, to be presented to the end user. The
transformation of SBVR into system code includes
not just the logic for data processing but also the
style of this presentation. The rendering step pro-
cesses this style code to determining how the data,
conclusions and explanations should appear in the
interface. This interface should not only let the user
see all this information, but also trace back from it
to the SBVR code and fragments of the documents
from which the information originates.

3 Related Work

The software Cognitatie supports annotation of doc-
uments for conversion into knowledge models, in-
cluding rules, placing it in the development block
of our architecture (PNA Group). The tool RuleX-
press processes business rules against a data set,
functioning as the automation block (RuleArts).
The Web service s2o1 is a converter from SBVR
to the Semantic Web ontology language OWL-2,
thus automating the transformation process (Kar-
povic et al., 2014). Also on the Semantic Web,
the ontology editor Protégé provides all automa-
tion processes, from reasoning on logic and data, to
providing explanations (Musen and Protégé, 2015).

The Fresnel vocabulary for Semantic Web
browsers is a format for style sheets mapping
Semantic Web data to end-user interfaces to it
(Pietriga et al., 2006). In earlier work, we devel-
oped software for generating Fresnel code for any
given ontology (Rutledge et al., 2016).

HTML provides, perhaps obviously, a well ap-
plicable standard for source document descriptions
of rules. We propose also having HTML browsers
in the end user interface of our architecture pro-
vide direct user access to these source documents.
For the system between rule documents and end
users, the Semantic Web provides standards for
data, its structure and rule-based logic applied to
it. HTML and the Semantic Web both use URLs,
which allows processing source document excerpts
like any other Semantic Web concepts. Davis gives
an overview of different ways to annotate HTML
documents in the context of CNLs (Davis, 2013).
Some techniques do not require editing of the an-
notated documents. The text to be annotated can
be both CNL and the source document text they
encode.

The RACE Reasoner for Attempto Controlled
English processes input CNL logic and facts and
outputs conclusions and reasoning explanations in
CNL as well (Fuchs et al., 2008). The reference
architecture we propose here models much of this
processing, including processing CNL text to form
conclusions. One difference is that our architecture
does not explicitly account for generating explana-
tions of conclusions in CNL. What the architecture
does do here is provide links to the source CNL and
document texts that defines the rules involved in
a reasoning. As such, either the user can navigate
to those document sources, or a natural language

1https://s2o.isd.ktu.lt/



generator can use these links to get the information
needed to provide a readable explanation.

The course Rule-based Design that we teach at
the Open University in the Netherlands uses the
business rule reasoner Ampersand, which special-
izes in legal reasoning (Joosten, 2017). While Am-
persand has no automatic generation of explana-
tions behind its reasoning as RACE does, the Am-
persand syntax provides the human editor some
constructs for traceability (AmpersandTarski Git-
Book project). One is the RULE construct, which
provides template-based explanation text, which
the interface shows the user when the given rule
is violated. This template text has placeholders
for labels of specified components of the rule. In
addition, the PURPOSE construct offers a human-
readable citation of the document source for a rule
or component of the data model. We propose here
a PURPOSE-like citation for ontology components,
but one that is machine-readable, and can link to
source CNL chunks as well as document fragments.

Much real-world data exists on the Semantic
Web, which matters for both practical application
and academic validation of research results. For ex-
ample, in earlier work, we created large amounts of
data for applying Semantic Web logic to in order to
generate statistics about the efficiency of that logic
(Italiaander, 2019). Including the Semantic Web
in our rule-based system development architecture
facilitates testing and analysis with large amounts
of existing or synthetic data.

4 Illustrative Scenario

We illustrate our reference architecture by applying
it in an example scenario. This scenario derives
from the fictional business EU-Rent, with its text
descriptions and SBVR code (Object Management
Group, 2016). In particular, we use a rule in EU-
Rent’s section G.6.7 “Car Movements”. This EU-
Rent section starts with the text “Car movements
meet the business requirement that a car of a given
group has to be moved between branches”. We
treat this as source text in our reference architecture.
EU-Rent then provides the following SBVR rule
it derives from that text: “Necessity: Each car
movement includes exactly one receiving branch”.

We convert this SBVR rule into machine-
processable logic standard OWL with the tool
s2o (Karpovic et al., 2014). Its equivalent in
s2o’s SBVR dialect that this scenario puts in s2o’s
rules field is “It is necessary that car_movement

has_receiving_branch exactly 1 branch”. The
conversion’s output is OWL code that makes
car movements a subclass of the class of things
with exactly one assignment for the property
has_receiving_branch. The OWL constructs it uses
are restrictions and qualified cardinality. This code
corresponds to the logic code in the architecture.

A trigger for this rule is a car movement that is as-
signed to more than one different branch, resulting
in an OWL inconsistency. In OWL, an inconsis-
tency is a collection of facts and rules that cannot
all be true. Fig. 2 shows a display from Protégé
for such an inconsistency in our scenario. The top
right of this display shows these two conflicting re-
ceiving branch assignments in red lettering, which
in Protégé indicates an inconsistency. In the refer-
ence architecture, this shows a conclusion resulting
from Protégé’s OWL-defined reasoning.

When recognizing such an inconsistency, Pro-
tégé announces it to the user and then lets the user
request an explanation for it. The explanation that
Protégé then provides for our scenario appears in
the lower part of Fig. 2. In this display under “Ex-
planation 1”, the first line shows the OWL code
for the rule that is triggered. The other lines show
the data that collectively triggers this rule. What
traceability demands here is that the end-user be
able to browse from the top line back to the SBVR
code that derived it, and then back further to the
document text that SBVR code defines.

5 Traceability

The solid arrows in the reference architecture dia-
gram in Fig. 1 show the traditional view without
traceability: we generate systems from rules, but
can then easily forget the rules we generated the
systems from. The dotted arrows show the pri-
mary places where traceability needs implementing.
Each has a label describing which layer of trace-
ability it provides. We describe them here in the
order in which tracing happens here: from lower to
higher in the diagram.

User explanations are the presentation of the ex-
planations behind logical conclusions that appear
in the interface for the end user. First, we should
note that the process of justifying conclusions to
provide explanations for them provides a layer of
traceability. Logic systems such as Protégé imple-
mented justification later than the simple display
of conclusions, as it is a substantial technical chal-
lenge beyond generating the conclusions. Fig. 2



Figure 2: Protégé display of an inconsistency with its explanation.

shows how, in our scenario, Protégé informs the
user that an inconsistency has occurred and which
data it involves. Protégé shows an explanation only
when and if the user requests it.

As this demo shows, this aspect of traceability
is substantially implemented in Semantic Web sys-
tems. However, most end users cannot understand
it, as it is an unstructured collection of all the data
involved in forming the logical conclusion. It does
have all the relevant information for an explana-
tion, and software could process it for a CNL ex-
planation, such as RACE does for its internal logic.
However, the focus in this reference architecture is
on how to access this information instead of how to
present it understandably. In addition, our architec-
ture focuses more on traceability as accessing the
documented origins behind the logical rule applied
in a situation.

The next dotted arrow, “triggering rule”, in the
architecture diagram goes from explanations back
up to logic program code. This is where our ar-
chitecture focuses on human-accessible traceabil-
ity instead of the automated generation of human-
understandable text, as other research does. Instead
of processing all of the triples of an explanation
into text, we propose focusing on the information
regarding the rule that is triggered. That rule can

then, in turn, lead to the CNL text and original doc-
ument text that people wrote earlier to describe that
rule. The other triples in the explanation data de-
scribe mainly the data that triggers the rule, instead
of the triggered rule itself. The challenge here is
to find the code for the triggered rule from all the
data for an explanation.

In Fig. 2’s scenario, the rule triggered is in the
first line of the explanation, especially where it
says “exactly 1”. This line refers to the code for an
OWL restriction, which has Semantic Web-defined
properties that define the restriction. One property
assignment declares the type of cardinality as ex-
actly one. Another assigns it to the property "has
receiving branch". This restriction resource is then
assigned as a superclass of car movements. This
is how the restriction defines that all movements
much have exactly one receiving branch.

The question is then: where does this OWL-code
come from? The “SBVR for logic” dotted arrow
leads from the machine-processed logic code back
up to that rule’s definition in layperson-readable
SBVR text. A platform providing this function
would need to support links from chunks of logic
code, such as OWL, to fragments of SBVR text.
HTML could encode these fragments of SBVR
text as anchors, giving each a URL. Then in the au-



tomation layer, Semantic Web code can associate
these SBVR fragment URLs with the Semantic
Web-defined logical constructions that implement
them. What the end user then sees in the interface
is navigable web browser links from the display
of the triggered rule in the explanation to the cor-
responding piece of SBVR. In our example, this
would be an additional property linking the restric-
tion to the fragment of SBVR code defining it. The
value would simply be a URL with a fragment iden-
tifier linked to the relevant portion of SBVR code
in its online document.

The next step, “document for SBVR”, lets the
user go from such a segment of SBVR code to the
extract of documentation that is its source. Again,
this could be a URL leading from that SBVR frag-
ment to the fragment of the other document pro-
viding its original definition. If the SBVR is in
HTML in order to link it to the Semantic Web,
then this HTML can also give the user a hyperlink
from SBVR to the corresponding portions of the
HTML-defined source document. The end user can
then browse from reasoned conclusions through the
triggered rule in an explanation, back to the rule’s
SBVR source, and then to the document text. This
enables the final step in rule traceability: discussing
the document text with those who formed it, per-
haps in order to improve it, which in turn improves
how well system end users can understand and
carry out those rules. With such a reference archi-
tecture for traceability, we aim to help developers
of software for this architecture’s processes craft
exchange formats that let all components of the
broader platform exchange all information needed
to provide a traceable whole.

6 Acknowledgements

We thank Mariette Lokin for her helpful comments
and suggestions about this architecture and paper.

References
AmpersandTarski GitBook project. Documentation

of Ampersand. https://ampersandtarski.
gitbook.io/documentation/. Accessed:
2021-07-05.

Anouschka Ausems, John Bulles, and Mariette Lokin.
2021. Wetsanalyse voor een werkbare uitvoering van
wetgeving met ICT. Boom Juridische Uitgevers.

Brian Patrick Davis. 2013. On Applying Controlled
Natural Languages for Ontology Authoring and Se-

mantic Annotation. Ph.D. thesis, National University
of Ireland Galway.

Norbert E Fuchs, Kaarel Kaljurand, and Tobias Kuhn.
2008. Attempto controlled english for knowledge
representation. In Reasoning Web, pages 104–124.
Springer.

Object Management Group. 2006. Semantics of Busi-
ness Vocabulary and Business Rules (SBVR). OMG
Specification.

Rudy Italiaander. 2019. AgentRole, TimeInstant en
InverseOf Ontology Design Patterns voor efficiën-
tere afleidingen van beweerde data. Master’s thesis,
Open University of the Netherlands, Heerlen, The
Netherlands.

Stef Joosten. 2017. Software Development in Relation
Algebra with Ampersand. In Relational and Alge-
braic Methods in Computer Science, pages 177–192,
Cham. Springer International Publishing.

Jaroslav Karpovic, Gintare Krisciuniene, Linas Ablon-
skis, and L. Nemuraite. 2014. The Comprehensive
Mapping of Semantics of Business Vocabulary and
Business Rules (SBVR) to OWL 2 Ontologies. Inf.
Technol. Control., 43:289–302.

Mark A. Musen and Team Protégé. 2015. The Pro-
tégé Project: A Look Back and a Look Forward. AI
matters, 1(4):4–12.

Object Management Group. 2016. Semantics of Busi-
ness Vocabulary and Business Rules (SBVR), Ap-
pendix G - EU-Rent Example.

Emmanuel Pietriga, Christian Bizer, David Karger, and
Ryan Lee. 2006. Fresnel: A browser-independent
presentation vocabulary for RDF. In International
Semantic Web Conference, pages 158–171. Springer.

PNA Group. Cognitatie. http://www.
cognitatie.nl/. Accessed: 2021-07-05.

RuleArts. RuleXpress. http://www.rulearts.
com/RuleXpress. Accessed: 2021-07-05.

Lloyd Rutledge, Thomas Brenninkmeijer, Tim Zwanen-
berg, Joop van de Heijning, Alex Mekkering, J. N.
Theunissen, and Rik Bos. 2016. From Ontology to
Semantic Wiki – Designing Annotation and Browse
Interfaces for Given Ontologies. In Semantic Web
Collaborative Spaces, pages 53–72, Cham. Springer
International Publishing.

Silvie Spreeuwenberg and Rik Gerrits. 2006. Business
Rules in the Semantic Web, Are There Any or Are
They Different?, pages 152–163. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Silvie Spreeuwenberg and Keri Anderson Healy. 2010.
SBVR’s Approach to Controlled Natural Language.
In Controlled Natural Language, pages 155–169,
Berlin, Heidelberg. Springer Berlin Heidelberg.

https://ampersandtarski.gitbook.io/documentation/
https://ampersandtarski.gitbook.io/documentation/
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1145/2757001.2757003
http://www.cognitatie.nl/
http://www.cognitatie.nl/
http://www.rulearts.com/RuleXpress
http://www.rulearts.com/RuleXpress
https://doi.org/10.1007/11837787_6
https://doi.org/10.1007/11837787_6
https://doi.org/10.1007/11837787_6
http://ceur-ws.org/Vol-448/paper26.pdf

