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Abstract

This paper compares two influential theories
of processing difficulty: Gibson (2000)’s De-
pendency Locality Theory (DLT) and Hale
(2001)’s Surprisal Theory. While prior work
has aimed to compare DLT and Surprisal The-
ory (see Demberg and Keller, 2008), they have
not yet been compared using more modern and
powerful methods for estimating surprisal and
DLT integration cost. I compare estimated sur-
prisal values from two models, an RNN and
a Transformer neural network, as well as DLT
integration cost from a hand-parsed treebank,
to reading times from the Dundee Corpus. The
results for integration cost corroborate those of
Demberg and Keller (2008), finding that it is a
negative predictor of reading times overall and
a strong positive predictor for nouns, but con-
trast with their observations for surprisal, find-
ing strong evidence for lexicalized surprisal as
a predictor of reading times. Ultimately, I con-
clude that a broad-coverage model must inte-
grate both theories in order to most accurately
predict processing difficulty.

1 Introduction

Computational theories of language processing
difficulty typically argue for either a memory or
expectation-based approach (Boston et al., 2011).
Memory based models (eg. Gibson, 1998, 2000;
Lewis and Vasishth, 2005) focus on the idea that
resources are allocated for integrating, storing, and
retrieving linguistic input. On the other hand,
expectation-based models (eg. Hale, 2001; Juraf-
sky, 1996) propose that resources are proportion-
ally devoted to maintaining different potential rep-
resentations, leading to an expectation-based view.
(Levy, 2008, 2013; Smith and Levy, 2013).

Here, I focus on one representative theory from
each group. The first is the Dependency Locality
Theory, or DLT, which was initially proposed by
Gibson (2000). The DLT quantifies the processing
difficulty, or integration cost (IC) of discourse ref-
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erents (i.e. nouns and finite verbs), as the number
of intervening nouns and verbs between a word and
its preceding head or dependent, plus an additional
cost of 1. Thus, the IC is always incurred at the
second word in the dependency relation in linear
order. This is shown in Figure 1. Note that IC only
assigns a non-zero cost to discourse referents.

Meanwhile, Hale (2001) and Levy (2008)’s Sur-
prisal Theory formulates the processing difficulty
of a word w,, in context C' = wy ... w,_1 to be its
information-theoretic surprisal, given by

difficulty (wy,) o< —logy P(wy, | C) (1)
so that words that are more likely in context will
then be assigned lower processing difficulties.

Some work has attempted to compare DLT and
surprisal as competing predictors of processing dif-
ficulty. Most notably, Demberg and Keller (2008)
compared processing difficulties from DLT and
surprisal to the Dundee Corpus (Kennedy et al.,
2003), a large corpus of eye-tracking data. Specif-
ically, they examined lexicalized surprisal (where
the model assigned probabilities to the words them-
selves), unlexicalized surprisal (where the model
only had access to parts of speech), and integration
cost. They found that unlexicalized surprisal was a
strong predictor of reading times, while IC and lex-
icalized surprisal were weak predictors. They also
observed that IC was a strong positive predictor of
reading times for nouns, and found little correlation
between IC and surprisal.

Notably, however, Demberg and Keller’s study
relied on older methods of calculating surprisal,
using a probabilistic context free grammar (PCFG).
Other similar work (eg. Smith and Levy, 2013)
has used n-gram models, which do not account for
structural probabilities. Computational language
models (LMs) such as n-grams and PCFGs are sub-
optimal for estimating the probabilities of words in
context compared to humans.
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Figure 1: Dependency Locality Theory integration costs

However, recent work in neural network lan-
guage modeling has shown that recurrent neural
networks (RNNs) and Transformers are capable
not only of learning word sequences, but also un-
derlying syntactic structure (Futrell et al., 2019;
Gulordava et al., 2018; Hewitt and Manning, 2019;
Manning et al., 2020). This makes them suited for
more accurate estimations of surprisal.

In this paper, I examine the correlation between
reading times, DLT integration cost, and surprisal.
Specifically, I compare results from a manually
parsed treebank for IC and two neural LMs for
surprisal, to eye-tracking times sourced from the
Dundee Corpus. I additionally examine the corre-
lation between IC and surprisal.

2 Methods

The method in this study is similar to that of prior
work on empirically testing theories of sentence
processing (eg. Demberg and Keller, 2008; Smith
and Levy, 2013; Wilcox et al., 2020), using reading
time data in order to estimate processing difficulty.

2.1 Corpus

Specifically, I used a large corpus of eye-tracking
data, the Dundee Corpus (Kennedy et al., 2003).
The corpus consists of a large set of English data
taken from the Independent newspaper. Ten En-
glish speaking participants read selections from
this data, comprised of 20 unique texts, and their
reading times were recorded. The final corpus con-
tained 515,020 data points.

As with other work done on reading times (see
Demberg and Keller, 2008; Smith and Levy, 2013),
I excluded data from the analysis if it was one
of the first or last in a sentence, contained non-
alphabetical characters (including punctuation),
was a proper noun, was at the beginning or end
of a line, or was skipped during reading. I also
excluded the next three words that followed any

excluded words to account for spillover in the re-
gression. This left me with 383,791 data points.
For the RNN, I additionally removed any data (and
the three following words) that was not part of the
Wikipedia vocabulary.

As a second analysis, I restricted the data solely
to nouns, as well as to nouns and verbs (see Dem-
berg and Keller, 2008), given that DLT only makes
its predictions for discourse referents.

2.2 Integration Cost

For calculating IC, I used the Dundee Treebank
(Barrett et al., 2015), a hand-parsed Universal De-
pendencies style treebank of texts from the Dundee
Corpus. This hand-parsed dataset is more accu-
rate than the automatic parser used by Demberg
and Keller (2008). To account for syntactic traces,
which are not explicitly marked in the annotation,
I added traces based on the dependency relations
in the parsed sentence. Traces contributed a cost
of one as intervening referents, and were added
after the following UD relations: acl:relcl, ccomp,
dobj, nsubj:pass, and nmod, as in Howcroft and
Demberg (2017).

2.3 Surprisal Models

I used two language models (LMs) to calculate Sur-
prisal. While earlier work has relied on PCFGs and
n-grams to estimate surprisal, some recent work
suggests that these neural models are capable of
learning and generating syntactic representations
to the same degree as grammar-based LMs (van
Schijndel and Linzen, 2018). Thus, I used neural
LMs in order to generate probability distributions
without explicitly encoding symbolic syntax.

The first model was a recurrent neural network
(RNN) model from Gulordava et al. (2018) trained
on 90 million words of English Wikipedia.! The

"The RNN consisted of two LSTM layers with 650 units
each, with a batch size of 128 and a dropout rate of 0.2.
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All Data Nouns
RNN GPT-2 RNN GPT-2

Coeff. p  Coeff. p  Coeff. p  Coeff. P
Intercept 164.1  *** 170.0 #EE 1440  FEx 1546 kEE
S0 1.847  *** 1.606 RE 1752 FEE1.561 0 kEE
S1 1.738  *** (.853 wkx o 2.042 wEx (0.864  kEE
IC —0.823 ***  _(0.767 **1.374 * 1.593 *
Iy —0.566 -0.1332 0.154 -0.957

Table 1: Combined Surprisal and IC regression. *** p < 0.001, ** p < 0.01, * p < 0.05.
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Figure 2: GAM plots from RNN (blue) and GPT-2 (red) surprisals at words n through n — 3. Shaded region

indicates a 95% confidence interval.

second model was the GPT-2 Transformer model
from Radford et al. (2019). This study used the 1.5
billion parameter version of GPT-2 trained on the
English WebText corpus.

2.4 Analysis

The reading times used for the analyses were first
pass gaze durations. As in previous work (Boston
et al., 2008; Demberg and Keller, 2008; Monsalve
etal., 2012), IC and estimated surprisal values were
entered into a mixed-effects model in order to ac-
count for other predictor and random effects. I used
1me4 to construct linear models, and obtained ap-
proximate p-values via Satterthwaite’s degrees of
freedom with the lmerTest package (Bates et al.,
2015; Kuznetsova et al., 2017).

To account for spillover effects, where the pro-
cessing difficulty of prior word impacts the reading
time of the current word (Rayner, 1998), as in pre-
vious work (see Smith and Levy, 2013; Wilcox
et al., 2020) I used the previous word in the model:

rt ~ so+s1+1x f+1x fi +p+ (1] subj) (2)

Here, s refers to the surprisal or IC, s; indicates
the surprisal/IC of the previous word, ! is word
length, f is frequency, [ * f indicates that there is
a relationship between [ and f, and p is the word
position. Additionally, I performed GAM regres-
sions on the raw surprisals. I also examined the
correlation between the surprisal estimates and IC.

3 Results

Table 2 shows the coefficients of the regression for
the RNN and GPT-2 surprisal estimates. The RNN
and GPT-2 surprisal regressions resulted in signif-
icant positive coefficients, with spillover effects
contributing strongly to reading times. The GAM
regressions are shown by Figure 2. Surprisal of w,,
had a strong linear effect in both models, as well as
a slightly weaker effect for w,,_;.

Table 3 shows the coefficients for the IC regres-
sion on the Dundee Corpus. There was signifi-
cant negative coefficient for integration cost across
the full dataset, with insignificant spillover effects
(p = 0.49). Restricting data solely to nouns yields
a strong positive coefficient. A model fit on both
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RNN GPT-2
Coeff. p Coeff. p
Intercept 163.9  ***  169.8  ***
S0 1.826  ***  1.609  ***
S1 1.733  ***%  (.854  *k¥*

Table 2: Surprisal regression results from RNN and
GPT-2. *** p < 0.001, ** p < 0.01, * p < 0.05.

nouns and verbs missed significance by a wide
margin. For the RNN and GPT-2, regressions on
solely nouns were similar to those on all data, with
coefficients of 1.75 and 1.560 for sg.

There was minimal correlation between surprisal
and IC across both models, and moderately high
correlation between GPT-2 and RNN surprisal val-
ues (Table 4). The results from the regression con-
taining both IC and Surprisal are shown in Table 1.
Surprisal continued to be a significant positive pre-
dictor, whereas IC was a significant negative pre-
dictor, albeit weaker than on it’s own. On nouns,
IC was again a much stronger positive predictor.
Again, spillover effects for IC were insignificant.

4 Discussion and Conclusion

This study examined the strength of two different
theories of processing difficulty as predictors of
eye-tracking data. Overall, neural surprisal has a
significant positive relationship with reading times,
indicating that it is a strong candidate for a broad-
coverage model of sentence processing difficulty.
Contrary to the predictions of DLT, there was a
significant negative relationship between reading
times and integration cost, as in Demberg and
Keller (2008).

All Data

IC GPT-2
GPT-2 0.128
RNN 0.267 0.684

Nouns Only

IC GPT-2
GPT-2 -0.0163
RNN -0.0188 0.562

Table 4: Correlations (Pearson’s r) between surprisal
and IC for all data and nouns only, p < 0.001 for all.

All Data Nouns
Coeff. P Coeff. p
Intercept 166.8  ***  153.6  ***
IC —1.298 ***  1.134 *
1Cy -0.201 0.127

Table 3: IC regression results for all data and nouns.
% p < 0.001, ** p < 0.01, * p < 0.05.

This negative coefficient is likely due to the fact
that DLT only makes its reading time predictions
for discourse referents, assigning non-referents a
processing difficulty of zero. When comparing IC
solely to noun reading times, there was a strong
positive coefficient, as expected. Additionally, de-
pendency locality has a well-documented cross-
linguistic impact on word order (Futrell et al., 2015;
Liu et al., 2017; Temperley and Gildea, 2018), sug-
gesting that a modified form of IC which predicts
non-discourse referent processing difficulties may
be a stronger and more accurate model.

Our results for surprisal are promising evidence
that Surprisal Theory can accurately measure sen-
tence processing difficulty. As hypothesised by
Surprisal Theory, there was a positive linear effect
for both GPT-2 and the RNN. This differs from
Demberg and Keller (2008), who found that lex-
icalized surprisal had an insignificant correlation
with reading times from a grammar-based LM. As
the corpus used in this study was identical to that
in Demberg and Keller (2008), these findings sup-
port work which indicates that neural LMs are ca-
pable of simulating human language processing
better than grammar-based LMs (Monsalve et al.,
2012; van Schijndel and Linzen, 2018). I also
found a moderately high correlation between RNN
and GPT-2 surprisal values, implying that neither
model significantly differs from the other.

Similarly to Demberg and Keller (2008), IC and
neural surprisal were minimally correlated. When
both were added as factors in a mixed effects model,
the results remained similar, with IC being negative
for all data, and strongly positive for nouns. Given
our results as a whole, this suggests that as IC is a
strong predictor for nouns, a true broad-coverage
model must integrate ideas from both DLT and Sur-
prisal Theory. While I did not note any major gaps
in predictions of surprisal, other work has found
that it cannot fully account for reading time dif-
ferences in ambiguities (van Schijndel and Linzen,
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2018). Our positive results are in part due to the
fact that the Dundee Corpus consists mostly of com-
mon syntactic constructions, and therefore does not
provide a perfect generalized picture of sentence
processing. Thus, this work is consistent with the
hypothesis that while appealing, a broad-coverage
measure of processing difficulty cannot simply use
one model of processing. Potential future work
could aim to combine expectation-based models
with memory-based theories, such that processing
involves both discarding potential representations
and integration into the prior structure.
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